Interprocedural Control Flow Reconstruction

Andrea Flexeder, Bogdan Mihaila, Michael Petter, and Helmut Seidl

Technische Universitit Miinchen, Boltzmannstrasse 3, 85748 Garching, Germany,
{flexeder, mihaila, petter, seidl}@cs.tum.edu,

Abstract. In this paper we provide an interprocedural algorithm for reconstructing
the control flow of assembly code in presence of indirect jumps, call instructions
and returns. In case that the underlying assembly code is the output of a compiler,
indirect jumps primarily originate from high-level switch statements. For these,
our methods succeed in resolving indirect jumps with high accuracy. We show
that by explicitly handling procedure calls, additional precision is gained at calls
to procedures exiting the program as well as through the analysis of side-effects
of procedures onto the local state of the caller. Our prototypical implementation
applied to real-world examples shows that this approach yields reliable and mean-
ingful results with decent efficiency.

Key words: static analysis, binary analysis, control flow reconstruction, reverse
engineering

1 Introduction

In contrast to high-level languages as e.g. C at the assembler level the semantics of a
program can be fully specified, i.e. the effect of every assembler instruction is formally
given by the instruction manual of the processor vendor. Consequently, an analysis
of executables can provide more reliable results than a source-code analysis [S]]. Full
information about the behaviour of an assembly program is required e.g. for reverse
engineering (8], i.e. to obtain an understanding of the structure of an executable, or
when analysing safety-critical real-time applications. For instance, determining tight
bounds for the worst-case execution time of an application [12] or checking safety
properties of micro-controllers [7] for flawless functionality, demand for analysing the
compiler output. Sometimes only the executable is available or the compiler may even
contain bugs, s.t. the executable provides the basis for a static analysis. However, in order
to perform analyses on assembly code, the control flow has to be reconstructed first.
Resolving the jump targets for indirect calls and indirect jumps requires an analysis of
the values of registers as well as of memory locations. Many architectures have specific
instructions for both local jumps and procedure calls. However, not all occurrences of
call instructions semantically denote procedure calls in the sense of temporary transfer of
control to a subroutine. For instance consider the call to procedure exit in figure [T which
never returns control back to the caller. An analysis that assumes that every function
returns can be misled by a call to such a non-returning function, since the immediately
following program point should not be influenced by such a call. Thus, it is essential to
deal with procedure calls for reconstructing meaningful control flow graphs.

mailto:flexeder@cs.tum.edu
mailto:mihaila@cs.tum.edu
mailto:petter@cs.tum.edu
mailto:seidl@cs.tum.edu

Moreover, switch-statements at the assembler level are often translated to indirect
jumps [9], as e.g. demonstrated by example[T] These jumps are controlled by a jump table
containing relative jump targets for each case statement. In our setting this table is located
in the read-only data segment of the executable and thus its entries are never changed.
The target address of such an indirect jump is computed via the following instruction
sequence: First via a comparison instruction (cf. instruction 0x08) the value range of the
index register is restricted. For example [T|register 70 is restricted to 0 < r0 < 5. Note
that the unsigned comparison instruction cmplwi treats its operands as unsigned integers
(cf. [23]), i.e. all the negative numbers are rejected because their two‘s complement
representation is larger than that of any positive number. If the value of register 0 is
not inside these bounds, then the default case is executed, which results in a call to the
exit function (cf. instruction 0x14). Otherwise the instructions starting at 0x18 will be
considered. Here, register 70 serves as an index into the jump table. Before the indirect
jump is performed (cf. instruction 0x30) the address offset read from the jump table is
added to the table base address (cf. instruction 0x2C).

// 1 = read();

00: call 0x70
04: mr r0, r3

int i = read(); /gS'SWltCh?,{ Cios

switch (i) : cmpiwl o cri,r,

(0C: jle cr7,0x18
case 1: i += 11; break; 1Zf llll ESéé coxits
case 2: 1 += 22; break; 18: Call' ; 0 le
case 3: f(i); break; lC: T? . rg,g !
case 4: i += 44; break; 20: ;Z, rlé 5 7264
case 5: i1 += 55; Dbreak; 24: addl r9 ’g ’10

default: exit (l); break; : a L2 e, t

} 28: 1wz rll,0(r9)

2C: add rll,r11,r10
The jump table is given by: 30: jump rll
dat // case 1: i += 11; break;

é]lfogo{il Efif fa e3 d4 // 51c60 — 34 34 addi r0,z0, 11
coU: a e c 38: Jjump 0x64 <postswitch>

51c64: ff fa e3 dc // 51lc60 - 3c .

// case 2: i += 22; break;

51c68: ff fa e3 ed4 // 51lce60 - 44 .

51c6C: ff fa e3 // 51c60 - 4 3¢ addi r0,r0,22
cob: a &2 ec c c 40: Jump 0x64 <postswitch>

51c70: ff fa e3 f4 // 51lc60 - 54

//<exit>:
80: 1i r1l0, 99
84: halt

Fig. 1: Switch statement in PPC assembler

In this paper we present our example programs and our implementation for the
PowerPC architecture (PPC) [23] which is still broadly used in embedded systems, as
e.g. automotive industry, aeronautics or robotics. However, our approach can be applied
to arbitrary architectures as well.

Before elaborating our framework in detail we present related approaches in the area
of control flow reconstruction.

Related Work. Several tools tackle the problem of reconstructing the control flow from
executables. Using a simple linear-sweep disassembler, as e.g. gcc‘s objdump, is not
sufficient for identifying the code sections of an executable [21]. Therefore modern
control flow reconstruction additionally relies on extra information either through code
patterns used by compilers or static program analysis.

The first category of tools using compiler patterns for control flow reconstruction are
e.g. exec2crl by Abslnt [25124], dcc by Cifuentes et al. [1110] and IDAPro [2]. exec2crl
is a tool which extracts the control flow from well-formed compiler-generated assembly
code of time-critical embedded systems. There, special coding conventions must be
adhered to which prevent the use of function pointers and dynamic data structures.
Additionally precise knowledge about the compiler and the target architecture is given.
Under these restrictions a complete and sound control flow reconstruction is possible.
The drawback of such a compiler-pattern driven approach is that for every compiler and
change in the code generation schemes the set of patterns has to be adjusted.

Cifuentes et al. [10] propose slicing and substitution of expressions for obtaining
normal forms for indirect jumps and calls. This normal form is matched against their
repository of compiler patterns to recover high-level data flow information from executa-
bles. They only use heuristics if local memory is used to compute the address expression
for an indirect jump or call. These heuristics make their tool unsound.

Our experiments with IDAPro [2]] lead us to assume that the latest version 5.5 also
uses compiler patterns to resolve those indirect jumps that represent switch statements.

The second category relies on static analyses. These approaches are used by tools
such as e.g. CodeSurfer by Reps et al. [2015], Jakstab by Kinder and Veith [14/15]
and the work of Myreen [18]]. In [15] Kinder and Veith present an analysis framework
based on partial control flow graphs to resolve indirect jumps. They present a generic
worklist algorithm to dynamically extend the control flow of a program. In [15]] they
claim that their approach yields “the most precise overapproximation of the control
flow graph w.r.t. the precision of the provided abstract domain.“ However, they rely
on an intra-procedural framework only, inlining newly detected procedures. Recursive
procedures may lead to assembly code which is not manageable by their framework.

CodeSurfer works upon the control flow reconstruction of IDAPro. Reps et al. are
aware of the fact that IDAPro yields an unsafe as well as incomplete control flow graph
in presence of indirect jumps and calls. Thus, they attempt to augment and correct the
information provided by IDAPro [3]. Their practical tool CodeSurfer, however, is not
available to us.

In the context of program proving, Myreen [18]] has presented a semantics-based
control flow reconstruction via a translation into tail-recursive functions.

In this paper we present an analysis that safely reconstructs an overapproximation
of the control flow for compiler-generated assembler programs by carefully examining
call and jump instructions. Here, we follow the approach of Kinder and Veith [15]]
for dealing with indirect jumps and extend it with a treatment of procedure calls. One
particular problem we deal with are abort and exit functions, which do not return to the
corresponding call site, but terminate the whole program whenever they are called.

The structure of the paper is as follows: In Section [2] we present the concrete seman-
tics our control flow reconstruction analysis builds on. Then, in Section [3]we describe a
general interprocedural framework to overapproximate the control flow and call graph
of an executable. Additionally we present a concrete instantiation of this framework in
order to resolve common indirect jump instructions. We present experimental results and
discuss several practical issues when analysing real-world code in Section[d And finally
we conclude.

2 The Concrete Semantics

Here, we present an instrumented concrete semantics w.r.t. which the control flow
graph is defined. Let X = {x1,..., Xy} denote the set of registers of the processor. The
instructions of the program are stored at the set of addresses N C N. For every executable
we assume that we are given a unique start address start € N where program execution
starts. The mapping I : N — Instr provides the processor instruction for a given
program address from N. Depending on the architecture, the width of an instruction
may vary. For the PPC architecture, however, all instructions have equal width 4. In this
paper, we consider the set Instr of processor instructions consisting of:
e stm: assignment statements x; := e, i.e. the value of expression e is assigned to
register x; € X, memory read instructions x; := M|e], where the content of
the memory location specified by e is assigned to register x; and memory write
instructions M [e1] := eq, where the value of e is assigned to the memory location
specified by ey;
e call x;: procedure calls, where the value of register x; denotes the start address of a
procedure;
e jump e x;: jump instructions, which transfer control to the address specified by x;
iff e evaluates to 0;
e return: the return-instruction transfers control back to the caller and
e halt: the program exit instruction which terminates execution of the whole program
and transfers control back to the operating system.
Here, e, e, es denote expressions as provided by the syntax of assembler instructions.

A procedure call call x; transfers control to the callee whose address is given by
the value of x;. We consider every address which is jumped to by a call instruction as
the start address of a procedure. The address of the instruction directly following the
procedure call is saved in a dedicated register, the link register of the processor. For
instance, instruction 0x00 from figure [I] sets the link register to address 0x04. The
instruction return is nothing but an indirect jump to the address currently stored in the
link register. For our control flow reconstruction, we only consider programs where
return-statements transfer control back to the caller. This means that it is up to the callee
to save the content of the link register (if necessary) and to restore it before executing the
return. We leave it for supplementary analyses to verify that the link register is handled
correctly.

For the sake of our analysis, we combine the comparison instruction and the succeed-
ing branch instruction to the guarded jump instruction jump e x;. In concrete machine
architectures, these instructions need not follow each other directly (see Section .

In the concrete semantics, we consider states ¢ assigning values to registers X
and to memory locations from some address space N’ which is disjoint from N. Let
V' denote the set of all possible values. The set of all such states then is given by
Y = (XUN') — V. Additionally, the instrumented operational semantics maintains a
pair (¢, f) where c is the address of the last call and f is the start address of the current
procedure, with ¢, f € N. Processor instructions from Instr modify the current state
o € Y. The semantics of a single processor instruction s on a given program state o is
defined via the semantic function [[s] : X' — Y. Besides modifying the state, it transfers
control to another instruction (if it is an assignment or a jump), to another procedure
(if it is a call) or to the environment (if it is a halt instruction). The transfer of control
is provided by the partial function next; : (N x X) — N which computes for every
program point v with state o, the next program point according to the semantics of the
processor instruction I(u):

o(x;) with [e]Jo =0 if I(u) = jump e x;
next;(u,0) = ¢ u + 4 with [e]Jo #0 if I(u) = jump e x;
u+4 otherwise

Here, the function [e]o evaluates an expression e and returns a value which is interpreted
as an integer. In case of a jump-instruction the successor node is either the immediately
following program point, if condition e does not evaluate to 0, or the value of the jump
target register x;, otherwise. For procedure calls, the successor node is the immediately
following program point (given that the called procedure returns).

Due to the presence of procedures, the small-step operational semantics is based
on the two transition relations g and -y denoting one step of intra-procedural and
inter-procedural execution, respectively. These relations are defined by:

(u,0,(c, f)) Fs (nextr(u,o),0', (¢, f)) if I(u) =call x; A f' = o(x;)A
(f' o, (u, f) s (r,07, (u, f7)),

I(r) = return

(u,0,(c, f)) Fs (nextr(u, o), [I(u)]o, (¢, f)) if I(u) not a call
(u,0,(c,) Fr (f 0, (u, 1)) if I(u) =call x; A f' = o(x;)
(u,0,(c, /) Fr (W, 0, (¢, f)) if (u,0,(c, f)) Fs (W, (c, f))

An initial program state is given by (start, o, (start, start)) for suitable o € X.

Given this operational semantics, an approximation of the control flow of the program
is a pair (N, nextgﬁ) where N C N and nextﬁlﬁ : N — 2N is a mapping such that for
every initial configuration conf = (start, oo, (start, start)) the following holds:

o Ifconf k%, (u,0,(c, f)) thenu € N;
o If conf % (u, 0, (c,) Fs (W, 0", (¢, f)) then v/ € next (u).

Let calls C N denote the subset of program points u where I(u) is a call instruction.
Then an approximation of the call graph of the program is a pair (F, funnIu) where
F C N and fumgti : calls — 2% is a mapping such that for every initial configuration
conf = (start, o, (start, start)), conf 5, (u, o, (¢, f)) for some I(u) = callx;, implies
that o (x;) C fun® (u).

3 Interprocedural Control Flow Reconstruction

Our goal is to construct sufficiently small pairs (V, nextﬁIn) and (F, funﬁlu). For that, we
must determine tight approximations to the values of registers x; occurring in indirect
jump instructions jump e x; and indirect call instructions call x;. In the following, we
abstract from the concrete contents of the main memory and concentrate on the values
of registers only. In order to be as precise as possible with the values of registers, we
directly use the powerset domain 2" ordered by subset inclusion as our abstract domain.
Thus, an abstract state is described by a mapping o* from registers to the abstract domain
X — 2. Only when sets of values grow, we may insert a widening to an enclosing
interval [19]. However, the interval domain also requires a widening operation [[11] to
ensure termination of the fixpoint iteration. Typically, loops and recursive functions
may lead to infinitely ascending chains. In our analysis framework, we therefore insert
widening operators at back-edges and at procedure entries.

The general framework relies on an arbitrary complete lattice X% of abstract states
together with a concretisation v : X% — 2% where (o) returns the set of concrete
states described by o*. Additionally, we require for every instruction s the corresponding
abstract transformer [s]]ti : X¥ — X% which safely approximates the concrete semantics
of s, i.e., which satisfies:

[slo € 7([s]*o") whenever o € y(o*)

Given the abstract lattice ¥ and the concretisation 7, we define the abstract next function
next : N x Xt — 2N py:

v(ot(x;)) NN with ([e]*o?) = {0} if I(u) = jump e x;

nexth (u, o) = {u + 4} with ([e]*0) # 0 if I(u) = jump e x;
{u+4}U~y(o¥(x;)) NN otherwise if I(u) = jump e x;
{u+4} otherwise

Here, the abstract evaluation function [[e]]lj takes an expression and returns a set of
possible values of e.

For guarded jump instructions the set of successor program points is specified by
the value of register x; in the current register valuation if condition e is fulfilled, by the
immediately following program point if e is not fulfilled or both sets otherwise. For all
other processor instructions next’ yields the immediately following program point.

Our analysis determines for each possible procedure entry node f a pair u(f) =
(of,C) where o € X% describes all possible concrete states at return points reachable
from f on the same level (i.e., through Fg), and C' C N is the superset of all possible
call sites for f. Additionally, the analysis determines for every program point u a pair
n(u) = (of, R) where o# describes the set of all states attained at when reaching u
from an initial state, and R C IN x N is a set of pairs (c, f) of call sites ¢ for procedure
entry points f such that the current program point is reachable from f on the same level
(i.e., w.rt. Fg).

Assume that n(u) = (0%, R). Then we refer to the i-th component of the pair 7(u)
via 7;(u). The components of the pair () will be accessed analogously.

The values u(f) and n(u) can be characterised as a solution of the following con-
straint system:

(D) pu(f) 2 e f) € n2(w)); (m(u),{c}) if I(u) = return
(2) n(start) 3 (T, {(start, start) })
@) nv) 2 (f €v(m(u)(x:) A (u € p2(f)));
(H*(ny(w), 1 (f)), n2(u)) if I(u) =call x; Av=u+4
(4) n(f) 2(]"67(771()(x:))); (E* (1 (w)), {(u,)}) if I(u) = call x;
(5) n(v) 3 (v € next](u, m (u)); ([s]¥ (1 (w), m2(w)) if I(w) = s € stm

Here, the operator “;” is defined by:

(v € A B = B ifzec A
"7)L otherwise

Constraint (1) describes the effect of a possibly called procedure f which may reach a
return point. For constraint system 7, initially at the start point start no information about
possible variable valuations is known. Additionally we mark the start point as reachable
by managing the relation (start, start), as constraint (2) specifies. Constraint (3) treats
the case of a procedure call call x;. There, on the one hand the set of successor nodes is
specified by the set of possible values of register x;, i.e., the set of entry points of the
callees, and on the other hand, by the immediately following program point — given
that any of the possibly called procedures returns. The value after the procedure call
u + 4 consists of the set of call site - callee - relations valid before the call to procedure
f together with the combination of the data flow value before the procedure call with
the procedure summary i (f). This combination is computed by the function H*. The
function E* computes the contribution of the abstract state of the current call site to the
start point f of the callee. Additionally we relate the current call site « to the entry point
of procedure f. This is defined by constraint (4). Constraint (5) treats all other forms
of statements, which have no influence on the call site - callee relations. The successor
node is computed by the abstract next function.

Note that for a procedure f which does not return, u(f) yields L. Thus, in case of a
call instruction at program point u the directly following program point u + 4 will not
be reached.

A safe approximation of E* and H* independent of the abstraction X* is:

Et(o?) — ot
H¥(ot, o) = o
Assume we are given a (not necessarily least) solution (u, 77) of the constraint system.

Then we can extract both an approximate control flow (N, nextgﬁ) and an approximate
call graph (F, funﬁlﬁ) by:

N = {uln(u) # (L, 0)}
next (u) = next’ (u, 11 (u))
F =Ulf [me(uw) = {11}

fun®®(u) = y(m(u))(x) "N if I(u) = call x;

F captures all possible procedure entry points of both functions that may return to the
caller and functions that do definitely not return.

The following theorem relates the least solution of our constraint system with the
(instrumented) operational semantics of the program as specified through the relations
H S and R-

Theorem 1. (Correctness) Let (11, m) denote the least solution of the constraint system.
Then the following holds:

1. Assume that n(u) = (0%, R) and (start, 0y, (start, start)) % (u,0, (c, f)). Then
(¢,f) € Rand o € ~(at).

2. Assume that p(f) = (o, C) and (start, 09, (start, start)) % (f,0,(c, f)) F&
(u, 04, (¢, f)) where I(u) = return. Then ¢ € C and o, € v(o?).

The proof of theorem I]is by induction on the length of the respective execution steps
Fs and g, respectively. As an immediate corollary, we obtain:

Corollary 1. The pairs (N, nextgﬁ) and (F, funﬁlﬁ) are approximations of the control
flow and call graph of the input program. a

Instead of abstracting the state at a program point v only, we may also abstract
the transformer along the path to program point u. The abstract domain £* can be
enhanced by additionally accumulating an abstraction of the state transformer from T
corresponding to the current procedure. Thus, we consider the abstract domain X% =
X x T. Accordingly we have to adjust the abstract semantic function [[s]]h P ILIRESS o

to elements from X7
[s) (0%, 7) = ([s]o*, [s]5 o 7)

where of denotes the composition of transformers 7 from T and [[s]]qhT : T denotes the
abstract semantic function on a processor instruction s, i.e. is a state transformer from T.

This enhancement by abstracting the state transformers enables a more precise
definition of the function H* w.r.t. the domain X",

i

Hﬂ((O’%le)v (0557—2)) = (L(T27L(Tlva§))v7—2 0 Tl)

with ¢ : T — X% — 2% (7, 0%) transforms an abstract state 0¥ by means of the state
transformer 7 € T which is interpreted in the context of the abstract domain X%,
Additionally the function E* is given by:

E¥((0%,)) = (o, 1)

with Id* the identity mapping.

One specific instance of this abstraction T records e.g. the set of registers which have
definitely not been modified since procedure entry. For that, we choose X% = (X —
2V) x 2%, Then H* can be refined to:

H¥ (0%, X), (o%, X)) = (6%, X' N X) where
; ’
5 (x) _ oi(x) ifx e X
o¥(x) otherwise

where for the instantiation of H*, of is the intersection of both register sets. Combining
the effect of a called procedure with the state of the call site results in a register valuation
&% which takes its values from the register valuation before the call for all registers
which are not modified by the called procedure and the values at procedure return for the
remaining ones. Additionally, the set of definitely not modified registers for the caller
after the call is given by the intersection of the respective sets of the caller before the
call and the callee.

The value for the start point of a procedure is given by the register valuation o# at
the call site for the procedure together with the set of all registers:

Ef (o, X) = (6%, X)

In this instance of domain T, Id* is given by the set of all registers.

The constraint system as specified above, is not really tractable. In particular, the
set of program locations is not known beforehand. In order to overcome this obstacle,
we extend the approach of [15] and explore the reachable program locations as they are
encountered during fixpoint computation. Besides indirect jumps, our extension also
handles calls and returns.

In case of a return instruction at program point r, we rely on the fixpoint algorithm for
updating the summaries p(f) of procedure entries f from which r is (intra-procedurally)
reachable, and let it re-consider the call sites of f if the summary pu(f) has changed.
This results in the worklist-based fixpoint algorithm T}

Fixpoint Algorithm 1

1: W« {(start, (T, {(start, start)}))};
2: while (W # () do
3 (u,s) = extract(W);
4: if (s £ n(u)) then
5: n(u) < n(u) Us;
6 (ofR) = n(u);
7: if (I(u) = jump e x; A o%(x;) = T) then
8: abort();
9: else if (I(u) = call xz A o¥(x;) = T) then
10: W+ Wu{(u+4,(T,R)}
11: else if (I(u) = call x; A aﬁ(;) # T) then
2 W e WU{(h (B oh), {(w HN) | £ €20)}
13: else if (I (u) = return) then
14: for all ((_, f) € R)do
15: if (o, {c| (¢, f) € R}) Z u(f)) then
16 u(f) — (U (oF e | (e f) € RY);
17 (o, By) = plf);
15 W e W U{(c+4, (HE O (e), 0h),m(e)) | () € Ry
19: else
20: W« W U{(v, (I(w)]*o%, R)) | v € next’(u, o?)};

Initially, we assume that n(u) is (implicitly) initialised with the least possible value
(L, D) for all possible values of u. Likewise, we assume that p assigns (L, () to all
possible entry points of procedures.

Algorithm (1| maintains a worklist W consisting of all pairs (u, s) of program points
together with a potential update s for the value n(u). The algorithm terminates when all
these updates have been processed. For processing one pair (u, s), the algorithm first
checks whether s is already subsumed by the current value of 7(w). If this is not the case,
s is added to 7(u), and this change is propagated to all consumers of the value 7(u).
Here, a case distinction on the instruction at program point u is performed.

In case the target addresses of a call-instruction are not known (cf. line 9), we at
least assume that the called function returns and overapproximate the return state with
T. Otherwise, we extend the worklist by pairs, consisting of all the targets f that may
be called and their corresponding states (cf. line 12). In case of a return-instruction in
procedure f we propagate the effect of f to all its call sites (cf. line 18). For all other
kinds of program instructions the worklist is extended by pairs, consisting of all the
successor nodes (computed via the abstract next function) and the corresponding state
update (computed via the abstract semantic evaluation function).

With our current instantiation of X* which only keeps track of the values of registers,
we are only able to resolve static procedure calls. A more sophisticated instantiation,
however, which additionally analyses the memory in greater detail, would also allow to
compute a safe approximation of the control flow of a larger class of programs.

An assembly program can be either stripped, i.e. symbol table and debugging infor-
mation is missing, or unstripped. The symbol table contains all the start addresses of
the procedures F' provided by the executable. In case we have a symbol table we start
our analysis from all procedure start points. Furthermore, we can make the assumption
that only those procedures may be called, which are listed in the symbol table in case of
a call-instruction whose target addresses are unknown. In case of analysing a stripped
executable, procedure start addresses are uncovered on the fly. Every executable is pro-
vided with a unique start address, specified in the header of the executable. Typically, the
entry point of an executable is the start address of the .text section. If the target address
of a call instruction call x; is unknown, we must assume that an unknown procedure is
called, which may call any other procedure in any state. Thus, a safe approximation of
E* and H* is only given by:

Efo?) =T
Hi(oh,ot) =T

The function abort (cf. line 8 of algorithm [I)) indicates that the reconstruction of
the control flow graph has failed. For unknown target addresses of jump-instructions
(cf. line 7 of algorithm[I]) we abort control flow reconstruction. Section @] shows that an
instantiation of our framework which tracks both the values of registers and memory
locations is able to resolve all indirect jumps (resolvable by a static analysis) on all our
benchmark programs. We fail in resolving some of the indirect calls since we do not
track code addresses stored in the heap.

On regular termination, let (11, n) be the variable valuations computed by algorithm

and let F = U{/ | a(w) = {(_, f)}} and N = {u € N | y(u) # (L,0)}. Then

the pair (u|r,n|n) is a solution of our constraint system when restricted to procedure
entries from F' and aprogram points from N. In artlcular this means that the control
flow graph (N, next}") and the call graph (F, fun) constructed from (7, u) are indeed
approximations of the control flow and the call graph of the program.

Our experiments show that in case of switch-statements which are realised by jump
table look-ups, we have to take memory into account. The jump table can either contain
absolute addresses or address offsets, as e.g. is the case in our example in figure[] Jump
tables T : N/ — V are located in the read-only memory N” C N’ of an executable.
Thus, in our instantiation of the framework we handle all those memory read accesses
x; := M[x,] to the read-only data section only. Then the abstract semantic function on
memory access expressions is defined by:

[M[xj]fo* = {{TM e € ot} ifohlx) \N" =0

Vv otherwise

In compiler-generated switch statements, typically no procedure calls are involved
in the address computation for the jump target. Nevertheless, our experiments with
real-world applications reveal that procedure calls may occur in-between this address
computation, as figure[T]illustrates. The compiler omits a jump to the end of the switch
statements, if an exit-procedure is called within the default branch of the switch-statement.
Only a sufficiently precise treatment of procedure calls can avoid the loss of essential
information for resolving the jump instruction at address 0x30 in figure

4 Practical Issues and Experiments

Based on our theoretical approach, we implemented a prototypical control flow recon-
struction tool to explore the quality of the resulting control flow graph and identify the
next challenges by means of real-world programs. Our current implementation tracks
the values of registers and memory locations but completely neglects the heap.

We conducted our experiments on a 2,2 GHz quad-core machine equipped with
physical memory of 16GB. All our benchmark programs have been compiled with
GCC version 4.4.3 using optimisation levels 0 and 2 without debug information for
the PowerPC architecture. For the moment we only inspect fully statically linked and
stripped executable programs. Hence our benchmark programs contain the whole GNU
C library code. Our prototypical implementation (VOTUM [4]) consists in the following
steps: First GCC*s objdump is applied to the binaries to extract the assembler instructions.
Then, we parse these assembler instructions and use them as the basis for our control
flow reconstruction. The following two tables present the performance of our analyser
on the benchmark programs.

Within these tables we specify: the binary file size Size; the number of procedure
entries Procs (which is provided by the symbol table of the corresponding unstripped
version of the binary) and in parentheses the number of procedures identified by our
analyser; the number of assembler instructions Instr; the number of indirect jumps
betr and indirect calls betrl; the number of unresolved indirect jumps ures and in
parentheses the number of statically not resolvable indirect jumps due to runtime linkage;

Table 1: Benchmark suite for programs with optimisation level 0

Program Size Procs Instr betr ures ureac betrl res ureac bl M(GB) T(s)
openSSL 3.8MB 6708(375) 769511 163 0(4) 129 1352 20 1219 35709 4 203
thttpd 884kB 1197(464) 196493 77 0(5) 42 321 21 189 6092 1.2 67
switches 636kB 825(364) 138178 82 0(4) 42 302 20 184 3680 0.8 45
control 633kB 817(354) 139917 83 0(4) 49 302 16 184 3670 0.8 42
coreutils 3.9MB 5671(2371) 852322 431 0(26) 219 1648 101 1004 24159 1.3 527
gzip 0.7MB 1076(472) 166213 79 0(4) 44 310 20 188 4634 1.1 132

Table 2: Benchmark suite for programs with optimisation level 2

Program Size Procs Instr betr ures ureac betrl res ureac bl M(GB) T(s)
openSSL 2.9MB 6232(380) 613882 150 0(4) 116 1355 20 1217 34405 3 156
thttpd 852kB 1147(469) 189034 77 0(5) 42 320 17 190 5890 1 60

switches 625kB 826(358) 137833 77 0(4) 41 302 17 184 3673 0.8 44
control 629kB 817(354) 138589 81 0(4) 47 302 20 184 3670 0.8 40
coreutils 3.8MB 5372(2534) 830407 424 0(28) 202 1634 104 959 23504 1.3 459
gzip 0.7MB 1026(384) 162380 83 0(5) 44 309 20 190 4587 1 117

the number of resolved indirect calls res; ureac denotes the number of unreachable
indirect jump and call instructions which the analyser did not reach when starting from
the entry point of the stripped binary; the number of static call instructions bl; the
memory consumption M (GB) in GB and the time consumption T (s) in seconds of our
analyser.

For our benchmark suite on the one hand we concentrate on applications from embedded
systems, as e.g. communication protocols openssL, lightweight HTTP servers thttpd
and a SCADE generated vehicle control program control from [3]. On the other
hand we took a home-made example program switches with several characteristics of
switches: nested switches, switches in loops, etc. coreutils consists of five selected
programs (1s,basename, vdir, chmod, chgrp) taken from the GNU Coreutils package
of Unix in order to demonstrate the applicability of our approach to ordinary desktop
software and gzip to be comparable to other tools which refer to SPECint.

Some of our benchmark programs use lazy binding of procedure addresses via
indirect jumps within the trampoline code to the so-called Procedure Linkage Table
(PLT) [L6]. The absolute address of such a dynamically loaded procedure is loaded
from a constant memory location in the PLT section and then branched to via a betr-
instruction. If this location is not yet initialised, the trampoline branches to the runtime
linker, which provides the dynamic address of the corresponding procedure. However,
the address of this runtime linker is not present in the binary — it is only provided after
loading the binary. Thus, no static value for the target of such a betr instruction can

be determined. Consequently, we list this kind of unresolvable betr instructions in
parentheses within our benchmark tables.

Summarising, our instantiation of the framework is able to provide tight bounds for
all of the statically resolvable indirect jumps within the benchmark programs. We fail in
resolving some of the indirect call instructions due to the fact that we have not modelled
bit operations in our semantics yet and do not take the heap into account.

Position-independent Code. We examined switch-constructs within position-independent
code (PIC), which is common in shared libraries [16]. Such code accesses all constant
addresses through the global offset table (GOT), located in the read/write data section of
the program. Consider the following example:

04: call 0x08 After instruction 0x10 register 30 contains
08: mflr r30 the address of the GOT (cf. instructions
0C: lwz r0,-24(r30) 0x04-0x10). Typically, in order to obtain
10: add r30,r0,r30 the address of the GOT, instruction pointer
cee relative addressing is used. This is realised
2C: lwz r0, 24 (rl)

. via a call instruction to the immediately fol-
30: cmplwi c¢r7,r0,5 lowine 1 . The eff £ this local 5
34: bgt cr7, 0x70<default> ~0w1ng ocatlon: eF: ectof tl 1s. oca]ump
38: mulli 9 10,4 is that the continuation address is saved in
3C: 1wz r0,-32764 (r30) the link register. This continuation address
40: add r9,r9, r0 serves as a fixed point in the code section
44: lwz r9,0(r9) and via a constant difference the GOT can
48: add r9,r9,r0 be addressed, although its absolute address
4C: jump r9 is not known until runtime.

After instruction 0x38 register 79 holds the value of the switch index variable. The
base address of the switch table is computed via a look-up in the GOT, as instruction
0x3C illustrates. Finally, an access into the jump table (in the read-only data section) is
performed at instruction 0x44. Under the assumption that the location with offset 32764
to the GOT (cf. instruction 0x3c) is definitely not overwritten, we can safely infer the
base address of the jump table.

Control Flow Splitting. For our semantics we assumed that the compare- and branch-
instructions are either directly following each other (cf. instructions 0x08, 0x0C in
example [I)) or the processor instructions in between the compare and the branch-
instructions do not modify the register the compare is based on. This assumption,
however, need not always be satisfied. In order to deal with this case we propose the
technique of control flow splitting, as described in [22].

Function Pointers. At the assembler level, function pointers are realised via indirect
calls.

Consider the following example code motivated by a Linux kernel driver, as for
instance 1inux—-2.6.33/drivers/md/md. c, where a bunch of initialisation func-

tions is managed in a global array. Procedure global_init sequentially calls all the
initialisation functions.

//for (i=0; i<j; i++)

00: 1i r0,0

04: stw r0,8(rl)

08: Jjump 0x30
const fptr inits[] = //inits[i] ();

{initl, init2,init3}; 0C: lis r9,10
void global_init () { 10: addi r9,r9,6908
int j = sizeof (inits); 14: mulli r0,r0,4
int i; 18: add r9,r0,r9
for (i=0; i<3j; i++) 1C: 1wz r0,0(r9)

inits[1i] (); 20: call r0
} 24 lwz r9,8(rl)
28: addi r0,r9,1
2C: stw r0,8(rl)
30: cmpwi cr7,r0,12
34: blt cr7,0x0C

Assuming that the global array inits is located in the read-only memory, our
control flow reconstruction analysis allows to infer the targets for the call-instruction
0x20. There are common compilers arranging all constant global data in the read-only
memory. However, if this is not the case we either have to enhance our (theoretical)
analysis framework with a memory analysis or rely on a may-analysis of modified
memory locations. Let B denote such a set of possibly modified memory locations. Then,
in our analysis framework we only have to adjust the abstract effect function for memory
read accesses:

{M[c] | c€ol(x;)} if(cf(x)\N)NB =10

Mix: ot =
[M ;1] \% otherwise

Our benchmark examples show that the number of indirect call-instructions (column
betrl in table |1) is significantly smaller than the number of static call-instructions
(column b1 in table[2)). Our current implementation of the framework neither supports a
precise handling of bit operations nor of the heap memory and thus fails in resolving
some of the indirect calls.

Optimisation Levels. Our instantiation of the framework speaks about register valua-
tions, only. Thus, the control flow reconstruction yields precise results as long as values
are kept in registers only. This is the case for assembly code generated by compilers with
a higher optimisation level. However, in case of unoptimised code or register pressure
compilers store values on the stack. In order to analyse unoptimised assembly code, we
extended our implementation of the framework by a stack analysis. Via the approach
of inferring linear relations as presented in [17], we detect local and global memory
locations. Since in such code the values of stack locations are temporarily cached in
registers [[13], also an analysis of relations between registers and memory locations is
mandatory to precisely track the values of both registers and memory locations.

5 Conclusion

We have presented a framework for static analysis to jointly approximate the control
flow and the call graph in presence of indirect jumps and calls. Such an approach is less
restrictive than approaches relying on compiler patterns only. Furthermore, we discussed
the challenges and possible solutions for code generated via different optimisation levels.
In order to precisely reconstruct the control flow in presence of indirect calls, abstract
domains are required which capture side-effects of procedures, and possibly also track
code addresses which are stored in the heap [6].

For our prototypical implementation, we have assumed that the code to be analysed
adheres to the coding conventions for calls to and returns from procedures. It remains
for future work to extend these techniques to deal with code which deliberately violates
these conventions. On the one hand, it remains to show that the executable to analyse
adheres to our assumptions, such as e.g. a correct management of the return address. On
the other hand, there are several areas for which code that does not adhere to the calling
conventions offers interesting challenges, as e.g. self-modifying code, self-extracting
executables or hand-made assembly code, as e.g. malicious code or optimised library
code.

References

—

. DCC decompiler. http://www.itee.uqg.edu.au/~cristina/dcc.html,

2. IDAPro disassembler. http://www.hex—rays.com/idapro/.

3. Sicherheitsgarantien Unter REALzeitanforderungen. http://www.sureal-projekt|
org/l

4. VoTUM. http://www2.in.tum.de/votuml

5. G. Balakrishnan. WYSINWYX: What You See Is Not What You eXecute. PhD thesis, Univer-
sity of Wisconsin, Madison, WIL,LUSA, August 2007.

6. G. Balakrishnan and T. W. Reps. Recency-abstraction for heap-allocated storage. In Static
Analysis, 13th International Symposium, SAS, volume 4134 of Lecture Notes in Computer
Science, pages 221-239. Springer, 2006.

7. J. Brauer and A. King. Automatic abstraction for intervals using boolean formulae. In Static
Analysis Symposium (SAS 2010), Perpignan, France, Lecture Notes in Computer Science.
Springer, 2010.

8. C. Cifuentes. Reverse Compilation Techniques. Ph.D. thesis, Queensland University of
Technology, July 1994.

9. C. Cifuentes and M. V. Emmerik. Recovery of jump table case statements from binary code.
Science of Computer Programming, 40:171-188, 2001.

10. C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to high-level language translation. In
ICSM, pages 228-237, 1998.

11. P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing ap-
proaches to abstract interpretation. In Proceedings of the International Workshop Pro-
gramming Language Implementation and Logic Programming, PLILP ’92,, pages 269-295.
Springer-Verlag, Berlin, Germany, 1992.

12. C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing,

and R. Wilhelm. Reliable and precise WCET determination for a real-life processor. In

EMSOFT ’01: Proceedings of the First International Workshop on Embedded Software, pages

469-485. Springer-Verlag, 2001.

http://www.itee.uq.edu.au/~cristina/dcc.html
http://www.hex-rays.com/idapro/
http://www.sureal-projekt.org/
http://www.sureal-projekt.org/
http://www2.in.tum.de/votum

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Flexeder, M. Petter, and H. Seidl. Analysis of Executables for WCET Concerns. Technical
Report TUM-10838, Technische Universitit Miinchen, 2008.

J. Kinder and H. Veith. Jakstab: A static analysis platform for binaries. In Proceedings of the
20th International Conference on Computer Aided Verification (CAV 2008), volume 5123 of
LNCS, pages 423-427. Springer, 2008.

J. Kinder, H. Veith, and F. Zuleger. An abstract interpretation-based framework for control
flow reconstruction from binaries. In Proceedings of the 10th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI 2009), volume 5403 of
Lecture Notes in Computer Science, pages 214-228. Springer, Jan 2009.

J. R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1999.

M. Miiller-Olm and H. Seidl. Precise interprocedural analysis through linear algebra. In 317s¢
ACM Symp. on Principles of Programming Languages (POPL), pages 330-341, 2004.

M. O. Myreen. Formal verification of machine-code programs. PhD thesis, University of
Cambridge, 2008.

F. B. Ramon E. Moore. Methods and Applications of Interval Analysis (SIAM Studies in
Applied and Numerical Mathematics) (Siam Studies in Applied Mathematics, 2.). Soc for
Industrial & Applied Math, 1979.

T. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from low-level
code. In PEPM ’06: Proceedings of the 2006 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation, pages 100-111, 2006.

B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revisited. In WCRE
’02: Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE’02),
page 45, Washington, DC, USA, 2002. IEEE Computer Society.

A. Simon. Splitting the control flow with boolean flags. In SAS '08: Proceedings of the
15th international symposium on Static Analysis, pages 315-331, Berlin, Heidelberg, 2008.
Springer-Verlag.

S. Sobek and K. Burke. PowerPC Embedded Application Binary Interface (EABI): 32-
Bit Implementation. Freescale Semiconductor, 2004. http://www.freescale.com/
files/32bit/doc/app_note/PPCEABRI.pdf}

H. Theiling. Extracting safe and precise control flow from binaries. In RTCSA ’00: Proceed-
ings of the Seventh International Conference on Real-Time Systems and Applications, page 23,
Washington, DC, USA, 2000. IEEE Computer Society.

H. Theiling. Control Flow Graphs for Real-Time System Analysis. PhD thesis, Universitit
des Saarlandes, 2003.

http://www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf
http://www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf

	Interprocedural Control Flow Reconstruction
	Andrea Flexeder, Bogdan Mihaila, Michael Petter and Helmut Seidl (Technische Universität München)

