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MARKUS MÜLLER-OLM, Westfälische Wilhelms-Universität Münster
MICHAEL PETTER, Technische Universität München
HELMUT SEIDL, Technische Universität München

In this paper we provide an interprocedural analysis of linear two-variable equalities. The novel algorithm
has a worst-case complexity of O(n · k4), where k is the number of variables and n is the program size.

Thus, it saves a factor of k4 in comparison to a related algorithm based on full linear algebra. We also

indicate how the practical runtime can be further reduced significantly. The analysis can be applied, e.g.,
for register coalescing, for identifying local variables and thus for interprocedurally observing stack pointer

modifications as well as for an analysis of array index expressions, when analysing low-level code.
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1. INTRODUCTION
The key task when realising interprocedural analyses along the lines of the functional approach [Sharir
and Pnueli 1981; Knoop and Steffen 1992] is to determine the summary functions for procedures
which describe their effects on the abstract program state before the call. Given a complete lattice D
for the abstract program states, the summary functions are taken from the set of monotonic or (if
we are lucky) distributive functions D → D. This set is often large (if not infinite), rendering it a
non-trivial task to identify a representation for summary functions which efficiently supports basic
operations such as function composition or function application to values of D. Examples for such
efficient representations are pairs of sets in case of gen/kill bit-vector problems [Horwitz et al. 1995]
or vector spaces of matrices in case of affine equality analyses [Müller-Olm and Seidl 2004].

Müller-Olm and Seidl [2008] present a fast interprocedural analysis for variable equalities that can
be used, e.g., for register coalescing [George and Appel 1996]. Here, we extend this analysis first to
variable differences and, in a second step, to linear two-variable equalities. This extended analysis
has essentially the same worst-case complexity, i.e., O(n · k4) where n is the program size and k the
number of variables, while providing much stronger program invariants that enable new applications.
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r14 := M [r11− 144]

rest 15()

rest 14 :

r15 := M [r11− 136]

rest 16()

rest 15 : . . .

. . .

rest 31 :

r1 := r11

r31 := M [r11− 8]

M [r11 + 8] := r31M [r11 + 144] := r14

save 15()

save 14 :

M [r11 + 136] := r15

save 16()

save 15 : . . .

. . .

save 31 :

r1 := r11

Fig. 1: Calling sequence for saving and restoring registers.

It allows us, for instance, to verify calling conventions for the stack pointer or to identify accesses to
local memory locations when analysing low-level code.

It seems to be natural to assume that the stack levels before and after a procedure call are the same.
This invariant, however, may be violated for code generated by common compilers such as the GNU
C Compiler or the Greenhills Compiler which may rely on calls to auxiliary procedures for saving
and restoring local registers. With the aid of our analysis of variable differences we can nevertheless
verify the assumption for non-auxiliary functions.

Example 1.1. According to the calling convention for the PowerPC architecture as specified,
e.g., in [Zucker and Karhi 1995], caller-save registers must be saved before and restored after a
procedure call. The corresponding instructions for saving and restoring the registers r14 up to r31
can be organised into chains of system-level routines _save_X and _rest_X which save and restore
the registers rX up to r31. The control flow graphs for these routines are shown in Figure 1. In this
control flow representation, memory access instructions are represented by assignments of the form
ri := M [t] for memory read access instructions or M [t] := ri for memory write access instructions,
respectively. Here, t is a linear expression of the form ri, ri+ c, ri− c, ri− rj, ri+ rj, with ri, rj
processor registers and c a constant.

The auxiliary register r11 holds the stack level before saving the locals, increased by the amount
of memory for saving the local registers. It is only in the procedure _save_31 that the stack pointer
register r1 is set to the value of r11. Similarly for restoring the local registers, the stack pointer r1 is
not updated until the call of procedure _rest_31.

Accordingly, the calling-conventions are violated both by the procedures _save_X and the pro-
cedures _rest_X. Since our interprocedural analysis tracks the two-variable equalities which hold
between r11 and the stack pointer, it is able to reveal that the stack pointer invariant holds for all
other procedure calls in the program.

In this paper we present an analysis which infers all valid variable differences, i.e., all valid equalities
of the form xi

.
= c or xi

.
= xj + c for some constant c ∈ Z. Moreover, we indicate how this analysis

can be generalised further to an algorithm which infers all interprocedurally valid linear two-variable
equalities, i.e., all valid equalities of the form xi

.
= b or xi

.
= axj + b for constants a, b ∈ Q.
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Related Work. Certain variable equalities can be determined as a particular case of a generalised
analysis of availability of expressions called value numbering [Alpern et al. 1988]. Originally, this
analysis tracks for basic blocks the symbolic expressions representing the values of the variables
assigned to. In contrast to our analysis, value numbering leaves operator symbols uninterpreted.
The inferred equalities between variables and terms therefore are Herbrand equalities. Later, the
idea of inferring Herbrand equalities was generalised to arbitrary control flow graphs by Steffen
et al. [1990]. Only recently, this problem has attracted fresh attention. In [Gulwani and Necula
2004], the authors show that the algorithm of Steffen, Knoop and Rüthing can be turned into a
polynomial time algorithm if one is interested in polynomially sized equalities between variables and
terms only. Progress in a different direction was made in [Müller-Olm et al. 2005] and [Müller-Olm
et al. 2005] where an analysis for Herbrand equalities that deals with negative guards and side-
effect free functions is presented. It is still open whether full interprocedural analysis of Herbrand
equalities is possible. However, when only assignments of variables and constants are tracked, the
abstract domain can be chosen finite and valid equalities can be computed by an exponential-time
algorithm. A less naive approach may interpret (or code) the constants as numbers. The problem
then consists in inferring specific affine equalities between variables. Therefore, in principle, the
precise interprocedural analyses of [Müller-Olm and Seidl 2004; Müller-Olm and Seidl 2007] are
applicable. These analyses use linear algebra for computing vector spaces of affine equalities and
have a worst-case runtime of O(n · k8) where n is the program size and k the number of program
variables. In a former paper [Müller-Olm and Seidl 2008] an analysis was proposed that determines
variable-variable together with variable-constant equalities, i.e., equalities of the form xi

.
= xj and

xi
.
= b. This algorithm improves the complexity bound by reducing the exponent to 4 in the worst

case and thus results in the worst-case complexity of O(n · k4), where n is the program size and k
is the number of program variables. In this paper we extend our approach from [Müller-Olm and
Seidl 2008] to infer all interprocedurally valid variable differences and all interprocedurally valid
linear two-variable equalities maintaining the same complexity bound. Drawing a comparison to
the best known upper bound for interprocedural copy constant propagation [Horwitz et al. 1995],
where no equalities between variables (let alone linear two-variable equality relations) are tracked
and to the interprocedural linear constant propagation introduced by [Sagiv et al. 1996], the resulting
bound is worse only by one factor k. In [Sagiv et al. 1996] the authors consider programs with
instructions of the form xi := a · xj + b and xi := c. Similar to copy-constant propagation, their
analysis runs in time O(n · k3), but only determines constant values of variables. At the expense of
introducing quadratically many variables xij for the differences xi − xj , our analysis of variable
differences can be reduced to this analysis. This reduction, though, would result in an algorithm of
complexity O(n · k6), which is by a factor k2 worse than our algorithm, and we have no clue how
potential sparsity of variable dependencies could be systematically exploited in this approach. Also,
this reduction does not extend to our analysis of general two-variable equalities.

Finally, we compare our domain with approaches inferring linear inequality relations. In the
octagon approach [Miné 2001b] at most two program variables per inequality are allowed with
restrictions on the values of the coefficients, permitting only inequalities of the form ±x± y ≤ c.
Another approach [Miné 2001a] only permits inequalities of the form x − y ≤ c, respectively
±x ≤ c, which represent polyhedra as difference-bound matrices. In the TVPLI domain [Simon et al.
2002] at most two program variables per inequality are allowed, however, without any restrictions on
the values of the coefficients. TCMs [Sankaranarayanan et al. 2005] consist of inequalities of the
form a1x1 + . . . anxn + c ≥ 0 where the coefficients a1, . . . , an have to be fixed in advance.

In contrast to our domain, all of these approaches require a widening to ensure termination
of fixpoint computation. Moreover, there is no general technique to lift all these approaches to a
summary-based interprocedural analysis.

The remainder of the paper is organised as follows. Section 2 is devoted to the definition of
programs and their collecting semantics. Then, in Section 3, we introduce the complete lattice of
consistent equivalence relations that is central for our approach. We discuss basic operations on this
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x31 :=?x14 :=?

rest 15()

rest 14 :

x15 :=?

rest 16()

rest 15 : . . .

. . .

rest 31 :

x1 := x11

Fig. 2: Control flow representation of Fig. 1.

lattice and their complexity in Section 4. We then describe the interprocedural approach. In Section
5 we specify weakest precondition transformers and show in Section 6, how to describe procedure
summaries effectively by using logical variables. We also briefly discuss a practical optimisation.
Section 7 provides an application for our approach when analysing low-level code. We describe how
to handle local variables in Section 8. In Section 9 we extend the variable difference analysis to
general linear two-variable equalities. Finally, Section 10 contrasts the implementation of variable
differences with the approach based on full linear algebra before we conclude in Section 11.

2. PROGRAMS AND THEIR COLLECTING SEMANTICS
In this section, we introduce our model of programs and define their collecting semantics. The
collecting semantics forms the basis for judging soundness and precision of our analyses. We assume
that programs are given as a collection of procedures q where each q is represented by a finite control
flow graph Gq .

Figure 2 illustrates the control flow graph for the calling sequence of system functions for restoring
the local registers of a procedure from Example 1.1. Note that in our control flow representation
memory access instructions are modelled via non-deterministic assignments.
Each control flow graph Gq consists of:
• a finite set Nq of program points of procedure q,
• a finite set Eq ⊆ (Nq × S ×Nq) of edges annotated with basic statements or procedure calls,
• a unique entry point sq ∈ Nq for procedure q, and
• a unique exit point rq ∈ Nq for procedure q.

We assume that there is a designated procedure main where program execution starts.
Let X = {x1, . . . ,xk} denote the set of variables the program operates on where k is the number

of variables. For the moment, we assume that all variables are global. Later, in Section 8, we extend
our approach to deal with local variables as well. For improved readability we switch from the
register names rZ as used throughout our examples to the variable notation xZ during the description
of our framework. In the following, we assume that the program variables X take values from the
integer domain Z. In order to concentrate on the essentials of the analysis, we consider simplified
programs. So, we assume that conditional branching has already been abstracted to non-deterministic
branching. Each edge in the control flow graphs is either labelled with a call q() to a procedure q or
with a variable assignment s of one of the forms xi := axj + b, xi := b, or xi :=? for xi,xj ∈ X
and a, b ∈ Z. This means that we only treat those assignments precisely where variables receive a
linear term of the form axi + b, while more complicated forms of assignments to a variable xi are
approximated by the non-deterministic assignment xi :=?. In this case any value may be assigned to
the left-hand side xi.

A program state can be represented as a vector x = (x1, . . . , xk) ∈ Zk where xi ∈ Z denotes the
value of variable xi. The collecting semantics assigns to each program point the set of states that can
occur at this program point in some execution of the program. In order to capture the collecting
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semantics, we first define the effect [[s]] of an assignment s onto a set X ⊆ Zk of states:

[[xi :=? ]] X = {x′ | ∃x ∈ X : ∀ k 6= i : x′k = xk}
[[xi := b ]] X = {x′ | ∃x ∈ X : x′i = b ∧ ∀ k 6= i : x′k = xk}
[[xi := axj + b ]] X = {x′ | ∃x ∈ X : x′i = axj + b ∧ ∀ k 6= i : x′k = xk}

As a second step, we describe how a procedure q transforms the set of program states before
the procedure call to a set of program states after the procedure call to q. Following the approach
of, e.g., [Müller-Olm and Seidl 2004; Müller-Olm and Seidl 2008], we characterise this effect of
a procedure q as the least solution of a constraint system S over the complete lattice of monotone
(even completely distributive) functions 2Z

k → 2Z
k

:

S[rq] ⊇ Id rq return point of procedure q
S[u] ⊇ S[sq] ◦ S[v] (u, q(), v) a call edge, sq start point of q
S[u] ⊇ [[s]] ◦ S[v] (u, s, v) an assignment edge

Here, Id denotes the identity mapping and ◦ denotes the composition of transformations. The effect
of procedure q is given by the effect accumulated at the entry point S[sq] of q. Then, the set of
program states that can occur when reaching program point u is given by the least solution of the
following system of inequations C over the complete lattice of sets of program states 2Z

k

:

C[smain] ⊇ Zk

C[sq] ⊇ C[u] (u, q(), v) a call edge
C[v] ⊇ S[sq] (C[u]) (u, q(), v) a call edge
C[v] ⊇ [[s]] (C[u]) (u, s, v) an assignment edge

Since the right-hand sides in both constraint systems denote monotonic functions, a unique least
solution of these systems of inequations indeed exists.

Let us first consider the case of plain variable differences. This means that we restrict ourselves
to invariants consisting of equalities of the forms xi

.
= b or xi

.
= xj + b for variables xi,xj and

constants b ∈ Z. Within our analysis for this case we only consider deterministic assignments
of the form xi := b or xi := xj + b with b ∈ Z while all other assignments are abstracted to
non-deterministic assignments. In Section 9 we generalise our methods to programs with assignments
xi := axj + b and arbitrary linear two-variable equalities.

3. LATTICE OF CONJUNCTIONS OF EQUALITIES
Our goal is to infer for every program point v, valid equalities of the form xi

.
= b or xi

.
= xj + b

with xi,xj ∈ X and b ∈ Z. We denote the set of all equalities of this form by P(X). Equalities
of the form xi

.
= xi are called trivial. A vector x ∈ Zk satisfies the equality xi

.
= b iff xi = b.

Likewise, x satisfies the equality xi
.
= xj + b iff xi = xj + b. The vector x satisfies the conjunction

E of equalities iff x satisfies every equality in E. In this case, we write x |= E. Accordingly, the
set X ⊆ Zk satisfies E (written: X |= E) iff x |= E for all x ∈ X . Finally, we call a conjunction
of equalities E satisfiable iff x |= E for some vector x. A conjunction which is not satisfiable is
equivalent to false. Assume E is a satisfiable conjunction of equalities or false. Then, we say, E
implies an equality e iff x |= e whenever x |= E. Likewise, E implies a conjunction E′ iff E implies
every equality in E′ and we write E =⇒ E′. In particular, E is equivalent to E′ iff E =⇒ E′ and
E′ =⇒ E. Using these conventions, we define the lattice E(X) as the set of equivalence classes of
all satisfiable finite conjunctions of equalities from P(X) together with the value false. The ordering
v on E(X) is given by implication. The top element > w.r.t. this ordering is the empty conjunction
which corresponds to true, while the least element is false which we therefore denote also by ⊥.

Any finite satisfiable conjunction E of equalities together with all (non-trivial) equalities e implied
by E can be represented by a weighted directed graph G(E) on the set X∪{0} of program variables,
where node 0 represents the hard-wired value 0. An edge from xi to 0 with weight b represents
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x4

x3

x1 −2

2
1
−1

2
−2

x2−1 1
0

Fig. 3: Graphical representation of E.

the equality xi
.
= b. For convenience, G(E) then also has an edge from 0 to xi with weight −b.

Furthermore, an edge from xi to xj for i, j > 0 with weight b represents the equality xi
.
= xj + b.

By construction, the graph G(E) is symmetric, i.e., for every edge from u to v with edge weight b
there exists an edge from v to u with weight −b. This graph is also transitive, i.e., for every pair of
edges (u, v) and (v, w) with edge weights b1 and b2, respectively, there exists an edge from u to w
with weight b1 + b2. We conclude that G(E) consists of a disjoint union of complete digraphs.

Each maximal connected component Q within G(E) can be identified by a single reference node
for which we choose 0 if Q contains 0 and otherwise the variable xi in Q with the least index i. For
every other variable xj in Q, it then suffices to record the equality xj

.
= b if b is the weight of edge

(xj ,0) or the equality xj
.
= xi + b if b is the weight of the edge (xj ,xi) and xi is the reference node

of the maximal connected component of xj . The conjunction of all these equalities is still equivalent
to E. It has the following syntactical properties:
(1) If the conjunction has an equality xj

.
= b, then xj does not occur elsewhere in the conjunction.

(2) If the conjunction has an equality xj
.
= xi + b, then j > i and xj does not occur elsewhere in

the conjunction.
A conjunction with these properties is called normalised. Note that trivial equalities are omitted in
normalised conjunctions.

Example 3.1. Figure 3 illustrates the graphical representation of the normalised conjunction
E = (x2

.
= 2) ∧ (x3

.
= x1 + 1) ∧ (x4

.
= x1 + 2).

A normalised conjunction E of equalities consists of at most k equalities. Technically, such a
conjunction can be represented by an array of size k. This array is indexed with the variables
x1, . . . ,xk where the entry for xi is given by t, if xi

.
= t occurs in E or with xi, if xi does not occur

on the left-hand side of an equality in E. By abuse of notation, we will denote this array by E as well
and write in algorithms E(xi) for the right-hand side t of the equality xi

.
= t in E or xi if there is no

such equality in E. In order to specify an update of the right-hand side of a variable xi in E, we also
write E(xi)← t where t denotes the new right-hand side. With respect to this array representation,
two variables xi,xj belong to the same connected component of G(E) iff either both E(xi) and
E(xj) yield constants, or E(xi) = xh + bi and E(xj) = xh + bj for the same variable xh.

LEMMA 3.2. Assume E is a finite conjunction of r equalities. Then, the following holds:

(1) If E is satisfiable, then there exists a normalised conjunction E′ equivalent to E.
(2) There is an algorithm running in time O(r + k2) which returns the array representation of a

normalised conjunction E′ equivalent to E if it exists — or false if E is unsatisfiable.

PROOF. Assume that E = e1 ∧ . . . ∧ er for equalities ei. For computing the array representation
of the normalised conjunction E, we start with an array E0 for the empty conjunction and then for
i = 1, . . . , r determine a representation for Ei−1 ∧ ei. In order to implement the inductive step,
assume that we are given an array representation for a normalised conjunction E′ together with an
equality e. We distinguish two cases.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Fast Interprocedural Linear Two-Variable Equalities A:7

Case 1. e is of the form xi
.
= b for some b ∈ Z. First assume that E′(xi) = b′ for some constant

b′. Then e is implied by E′ iff b = b′. If, on the other hand, b′ 6= b, then E′ ∧ e is unsatisfiable
and we return false. Now assume, E′(xi) = xh + b′. Then the conjunction E′ ∧ e is equivalent to
E′ ∧ (xh

.
= b − b′), and we obtain the normalised form for E′ ∧ e by substituting b − b′ for all

occurrences of xh in the array corresponding to E′.

Case 2. e is of the form xi
.
= xj + b. First assume that E′(xi) = b1. Then the conjunction E′ ∧ e

is equivalent to E′ ∧ (xj
.
= b1 − b) and we may proceed as in case 1. Likewise if E′(xj) = b2, then

the conjunction E′ ∧ e is equivalent to E′ ∧ (xi
.
= b2 + b) and we again may proceed as in case 1.

Now assume that E′(xi) = xh1
+ b1 and E′(xj) = xh2

+ b2. If h1 = h2 and b1 = b2 + b, then e is
implied by E′. Otherwise, if h1 = h2 and b1 6= b2 + b, then the conjunction E′ ∧ e is unsatisfiable,
and we return false. Finally, if h1 6= h2, then xi and xj belong to different connected components of
the graph G(E′). The new equality will therefore join the maximal connected components of G(E′)
corresponding to h1 and h2. If h1 < h2, then xh1

becomes the reference node of the new component
where xh1

.
= xh2

+ b+ b2 − b1. This means that we obtain the new array for E′ ∧ e by substituting
in E′, xh1

+ b1 − (b + b2) for every occurrence of xh2
. If on the other hand h1 > h2, then xh2

becomes the reference variable of the new component implying that we then obtain the array for
E′ ∧ e by substituting xh2 + b+ b2 − b1 for every occurrence of xh1 .

Overall we remark that it can be decided in timeO(1) ifE′∧e is unsatisfiable. Otherwise, the array
representation of the normalised conjunction E′∧e can be computed from the array representation of
E′ in timeO(1) if e is implied by E′ and in timeO(k) if e is not implied. Since from all r equalities,
at most k equalities may not be implied, we obtain the complexity bound O(r + k2).

4. LATTICE OPERATIONS
The greatest lower bound E1 u E2 is the conjunction of all equalities of E1 and E2. Applying the
algorithm from Lemma 3.2, we obtain:

LEMMA 4.1. The greatest lower bound of n normalised conjunctions of equalities E1u . . .uEn

can be computed in time O((n+ k) · k).

PROOF. For computing the greatest lower bound E = E1 u . . . u En we start with E ← E1 and
then successively compute E ← E∧e for all k · (n−1) equalities e from the remaining conjunctions
of equalities (applying the algorithm from Lemma 3.2). Altogether the computation of the greatest
lower bound requires time O(n · k) for array look-ups and time O(m · k) for computing joins of
connected components. As the number m of possibly occurring join operations is bounded by k, we
arrive at the overall runtime O((n+ k) · k).

We conclude that we can restrict ourselves to computing with normalised conjunctions (or false). We
find:

LEMMA 4.2. The length h of every strictly increasing chain false @ E1 @ . . . @ Eh of
conjunctions of equalities Ei ∈ E(X) is bounded by k + 1.

PROOF. Let n(i) denote the number of connected components of the weighted directed graph
G(Ei) corresponding toEi. SinceEi strictly impliesEi+1, G(Ei+1) has more connected components
than G(Ei), i.e., n(i) < n(i+ 1). Since moreover, 1 ≤ n(h) ≤ k + 1, we conclude that h ≤ k + 1,
and the assertion follows.

Example 4.3. Figure 4 illustrates the evolution of connected components in strictly implying
normalised conjunctions of equalities E1 @ E2 @ E3:
• E1 = (x2

.
= 2) ∧ (x3

.
= x1 + 1) ∧ (x4

.
= x1 + 2).

• E2 = (x2
.
= 2) ∧ (x4

.
= x1 + 2).

• E3 = (x4
.
= x1 + 2).

Figure 4 demonstrates that the number of strongly connected components is increasing with the
decreasing number of relations between the variables.
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x4

x3

x1 −2

x4

x3

x1 −2
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x1
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−1

2
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x2−1 1
0
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2
−2

x2

2
−2

x2

0
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Fig. 4: Increasing chain of conjunctions of equalities.

Thus, the lattice E(X) satisfies the ascending chain condition and therefore forms a complete
lattice. By definition, the least upper bound of two conjunctions of equalities E1, E2 is given by
the conjunction of all equalities implied both by E1 and E2. The next lemma provides an efficient
algorithm for computing least upper bounds.

LEMMA 4.4. The least upper boundE1tE2 of two normalised conjunctions of equalitiesE1, E2

can be computed in time O(k · log(k)).

PROOF. Let E = E1 tE2. We first determine the connected components of the graph G(E). For
that, we first define the difference δ(xi) of variable xi w.r.t. the conjunctions E1 and E2 as b1 − b2 if
bi is the constant offset obtained via Ei(xi). Then, we observe:

OBSERVATION 4.5. Variables xi and xj are in the same component of G(E) iff the following
two properties hold:

• xi and xj are in the same component of G(E1) and G(E2);
• δ(xi) = δ(xj).

Using this observation, we proceed as follows. We first partition the set of variables X into classes of
variables which agree both in the reference nodes w.r.t. G(E1) and G(E2). Each such class Q again
is partitioned into subclasses of variables xj which additionally agree in their differences δ(xj).

Example 4.6. Consider the array representations of the normalised conjunctions E1, E2 as given
in the left table. Then stably sorting w.r.t. the reference nodes and δ yields the partitioning as specified
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in the right table:

E1 and E2 in normal form:
X E1 E2

x1 x1 x1

x2 x2 x2

x3 x1 x2 − 5
x4 x2 + 5 x2 + 5
x5 x1 + 5 x2

x6 x1 + 3 x2 + 1
x7 x1 + 2 x2

... and after partitioning:
X E1 E2 δ
x1 x1 x1 0
x2 x2 x2 0
x4 x2 + 5 x2 + 5 0
x6 x1 + 3 x2 + 1 2
x7 x1 + 2 x2 2
x3 x1 x2 − 5 5
x5 x1 + 5 x2 5

Let Π be the resulting partition of variables X. We define E for one equivalence class Q′ ∈ Π after
the other.

Assume that Q′ consists of a single member xi only. If E1(xi) = E2(xi) = b for some constant
b, we set E(xi) = b. Otherwise, we set E(xi) = xi.

Now assume that the equivalence class Q′ consists of more than one variable. Then we distinguish
two cases. Again E1 and E2 are given in array representation.

Case 1. For every xj ∈ Q′, both E1(xj) and E2(xj) yield constants. If δ(xj) = 0, these constants
are equal, and we set E(xj) ← E1(xj) for all xj ∈ Q′. If on the other hand, δ(xj) 6= 0, then
we choose that variable xh ∈ Q′ with least index h as new reference node. Let bh denote the
constant of the right-hand side of the equality for xh. Let E1(xj) = bj for xj ∈ Q′. Then we define
E(xj)← xh − bh + bj , xj ∈ Q′.

Case 2. For some i ∈ {1, 2},Ei(xj) = xhi
+bj for xj ∈ Q′. Let xh denote the variable inQ′ with

least index h. Let again bh denote the constant of the right-hand side of the equality for xh. Then xh

becomes the new reference node of Q′. Since xhi

.
= xh− bh, we then define E(xj)← xh− bh + bj .

This algorithm can be implemented by stably sorting the variables in X first according to the
variables occurring in the right-hand sides of E1 and E2, respectively, and then according to the
differences δ(xi). We thus conclude that the overall runtime is at most O(k · log(k)).

Example 4.7. (Example 4 continued) In order to compute E = E1tE2, we successively consider
each subclass. Since for variables x1,x2,x4 the equalities in E1 and E2 are syntactically equal, we
obtainE(x1)← x1, E(x2)← x2 andE(x4)← x2+5. For the remaining two subclasses we choose
new reference variables, i.e., x3 and x6, respectively, and thus: E(x3) ← x3, E(x5) ← x3 + 5,
E(x6)← x6 and E(x7)← x6 − 1.
The normalised conjunction for E1tE2 therefore, is given by E = (x4

.
= x2 + 5) ∧ (x5

.
=

x3 + 5) ∧ (x7
.
= x6 − 1).

Summarising, we have constructed a complete lattice E(X) of height k + 1 and provided efficient
implementations for the basic lattice operations t,u on normalised representations of conjunctions
of equalities.

Abstract Effect of Statements
Every element E ∈ E(X) can be considered as description of the set γ(E) of the concrete states
x ∈ Zk with x |= E. Likewise, the best description α(X) of a setX ⊆ Zk of states is the conjunction
of all equalities e with x |= e for all x ∈ X . Together, α and γ form a Galois connection between
(2Z

k

,⊆), the powerset of the set of states ordered by inclusion, and (E(X),⇒).
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For our analysis, we define the abstract effect [[s]]] for every assignment s by:

[[xi :=?]]] E = ∃]xi. E
[[xi := xi + c]]] E = E[xi − c/xi]
[[xi := c]]] E = (∃]xi. E) ∧ (xi

.
= c)

[[xi := xj + c]]] E = (∃]xi. E) ∧ (xi
.
= xj + c) if i 6= j

Here, ∃]xi. E denotes the abstract existential quantification, i.e., ∃]xi. E = ⊥ if E = ⊥, otherwise
it is the conjunction of all equalities implied by E which do not contain variable xi. The array
representation of the normalised conjunction for E′ = ∃]xi.E can be computed as follows. Let X
denote the connected component containing xi in the graph G(E). All entries of E′ for variables
xj 6∈ X equal the corresponding entries in E. If X = {xi}, E′ equals E. Otherwise, we remove the
variable xi from X . This means that we set E′(xi)← xi. If xi is not the reference variable of X ,
then also E′(xj) = E(xj) for all remaining xj ∈ X,xj 6= xi. If xi is the reference variable of X ,
then we determine the variable xh 6= xi ∈ X with least index. Assume that E(xh) = xi + b. Then
we set E′(xj)← xh − b+ bj if E(xj) = xi + bj .

Note that ∃]xi.E preserves ⊥ and commutes with least upper bounds. Furthermore, the given
algorithm runs in time O(k).

For an assignment xi := xi + c, we observe that the value of xi before the assignment can be
recovered from the value of xi after the assignment. Therefore, the conjunction after the assignment
can be obtained from the conjunction E before the assignment by substituting xi − c for xi. If xi

occurs on the right-hand side of equalities in E, this substitution is implemented by preserving the
equality xi

.
= xi and replacing every other equality xj

.
= xi + bj with xj

.
= xi − c+ bj . If xi only

occurs on the left-hand side, i.e., in an equality xi
.
= xh + bi or xi

.
= bi, then we replace this equality

with xi
.
= xh + c+ bi or xi

.
= c+ bi, respectively. Again, this operation is distributive and can be

executed in time O(k).
For the remaining instances of assignments, we first remove variable xi from all equalities in E

by means of abstract existential quantification, and then add the equality xi
.
= c or xi

.
= xj + c,

respectively. Since both abstract existential quantification and conjunction with a single equality
can be executed in time O(k), this transformation can be executed in time O(k), as well. Since it is
composed of distributive transformations, it is also distributive.

Summarising, we found that for every assignment s the transformation [[s]]] is distributive where
[[s]]] E can be computed in time O(k) for a normalised conjunction E. Moreover, we find:

LEMMA 4.8. For a set of program states X ⊆ Zk and an arbitrary assignment s:

α([[s]]X) = [[s]]](α(X))

PROOF. The proof of Lemma 4.8 is by construction.

5. INTERPROCEDURAL ANALYSIS
In order to construct an interprocedural analysis of variable differences, we must provide an effective
and if possible succinct representation of the effects of procedures. An obvious approach would be to
tabulate the abstract effect of a procedure on its inputs. Here, we follow the approach of [Müller-
Olm and Seidl 2008] and rely on weakest precondition transformers. The advantage of weakest
precondition transformers is that they are completely distributive, i.e., commute with arbitrary
conjunctions. This implies that weakest precondition transformers only need to be specified for single
equalities alone.

We are interested in preconditions of equalities of the form xi
.
= c or xi

.
= xj + c for global

variables xi,xj and constants c. Since the constants c may take arbitrary integer values, there are still
infinitely many equalities of interest. Instead of dealing with equalities for each constant c separately,
we introduce a fresh variable denoted by the symbol • which is not accessed by the program, but may
be instantiated with any constant c. Accordingly, for computing the representation of procedures we
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consider post-conditions of the form:

xj
.
= • or xi

.
= xj + •

for global variables xi,xj where, w.l.o.g., i > j. We call postconditions of this form generic. The
variable • thus acts as a logical variable which allows to relate a value occurring in the postcondition
with a value possibly occurring in the precondition.

Preconditions of generic equalities then may be conjunctions of equalities of one of the following
forms:

(1) 0
.
= a · •+ b

(2) xj
.
= a · •+ b

(3) xi
.
= xj + a · •+ b

for global variables xi,xj ∈ X with i > j and constants a, b ∈ Z. Let us call such equalities
parametric. Note that every generic equality is also parametric. (Choose a = 1 and b = 0 in
parametric postconditions of types (2) and (3).) Note further that 0

.
= a · •+ b is only satisfiable over

Z iff a = b = 0 or a divides b. In the latter case it has the unique solution • = −b
a .

Example 5.1. Consider the procedure p:

void p() { x1 = x1 + 1;x2 = x2 − 1; }

which increments the global variable x1 and decrements the global variable x2. The weakest precon-
ditions of x1

.
= •, x2

.
= • and x2

.
= x1 + • then are given by:

x1
.
= • x1

.
= • − 1

x2
.
= • x2

.
= •+ 1

x2
.
= x1 + • x2

.
= x1 + •+ 2

In case, the second assignment in the body of p is x2 = 5, we obtain the following preconditions:

x1
.
= • x1

.
= • − 1

x2
.
= • 0

.
= • − 5

x2
.
= x1 + • x1

.
= − •+4

Thus, the postcondition x2
.
= • can only hold if • equals 5.

Satisfiability of single parametric equalities e as well as of conjunctions E of such equalities again
is denoted by Z |= e and Z |= E, respectively, where now Z ⊆ Zk+1 is a set of vectors, each
consisting of values for the variables xi together with one value for • as component k + 1. Such a
vector z ∈ Zk+1 is called an extended state which is also written as a pair (x, c) for a vector x ∈ Zk

with values for the variables xi together with a value c for •. For a satisfiable conjunction E of
parametric equalities without equalities of form (1), we define a normalised form analogously to the
normal form of finite conjunctions of ordinary equalities. However, if there is a satisfiable equality
of form (1), then we determine the unique value v for • and remove • from all other equalities. In
this case, the normal form is (• .

= v) ∧ E′ where E′ is the normal form which we have defined
for conjunctions without •. Let E•(X) denote the complete lattice of equivalence classes of finite
conjunctions of parametric equalities over variables from X.

The concrete semantics operates on sets X ⊆ Zk and does not affect the value of the logical
variable. Accordingly, we extend any completely distributive transformation f : Zk → Zk of concrete
sets of states to a completely distributive transformation ext f : Zk+1 → Zk+1 of sets of extended
states by defining:

ext f {(x, c)} = {(x′, c) | x′ ∈ f {x}}
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For an assignment s, the WP transformer [[s]]> applied to a single non-trivial equality e is given by:

[[xi :=?]]> e = ∀xi. e =

{
⊥ if e contains xi

e otherwise
[[xi := c]]> e = e [c/xi]
[[xi := xj + c]]> e = e [xj + c/xi]

for xi,xj ∈ X and c ∈ Z.
The weakest precondition for a non-deterministic assignment xi :=? applied to a non-trivial

equality e is ⊥ if variable xi occurs in e because e cannot hold for multiple values of xi. In order to
compute the weakest precondition for an assignment xi := t, we substitute t for every occurrence of
variable xi in e. If xi occurs on the left-hand side of e, this may violate the format we have fixed for
equalities. This format, though, can be restored straightforwardly by algebraic simplification , e.g.,

[[x4 := x1 + 5]]>(x4
.
= x3 + 2) = (x1 + 5

.
= x3 + 2) = (x3

.
= x1 + 3) .

By construction, we have:

LEMMA 5.2. For a set of extended program states Z ⊆ Zk+1, E ∈ E•(X) and an arbitrary
assignment s: ext [[s]] (Z) |= E iff Z |= [[s]]>E.

By this lemma, the WP transformers provide an exact abstraction of the extended concrete transform-
ers of the collecting semantics, i.e., the extended concrete effect function applied to a set of extended
states Z satisfies the conjunction E iff Z satisfies the conjunction returned by the WP transformer
for E.

In order to describe the abstract effects of whole procedures, we set up the following constraint
system S>:

S>[rq] v Id rq exit point of procedure q
S>[u] v S>[sq] ◦ S>[v] (u, q(), v) a call edge, sq entry point of q
S>[u] v [[s]]> ◦ S>[v] (u, s, v) an assignment edge

Again, Id denotes the identity mapping that maps E to itself for every E ∈ E•(X). Here, S>[u]
specifies the weakest precondition transformer for a program point u of procedure q when starting
from u and reaching the procedure exit of q. All operations in this constraint system are monotonic.
Therefore, it has a greatest solution. Since all occurring functions are u-distributive, composition is
u-distributive as well. We obtain:

THEOREM 5.3. Assume Z ⊆ Zk+1 is a set of extended states and E ∈ E•(X). Then, for every
program point u: ext S[u] Z |= E iff Z |= S>[u] E.

PROOF. The proof of Theorem 5.3 proceeds by induction on the i-th approximation of the least
fixpoint of S and the greatest fixpoint of constraint system S>.

For computing a solution for constraint system S> an effective representation of transformers is
required. As weakest precondition transformers distribute over conjunctions, it suffices to determine
the results of the transformer for single equalities only. However, since Z is infinite, the number of
possible equalities, is infinite as well, such that we cannot simply tabulate the results for all equalities.
In the next section we show how to circumvent this problem.

6. EFFECTIVE REPRESENTATION OF WP TRANSFORMERS
The key observation for obtaining an effective representation of WP transformers is that the WP
transformers are completely determined by their values for generic postconditions, i.e., postconditions
of the forms xj

.
= • or xi

.
= xj + • with i > j. The set P•(X) of all generic postconditions is

finite and contains only O(k2) many elements. Any other equality involving globals is obtained from
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a generic postcondition by means of substituting the logical variable • with a term a • +b which
consists of constants a, b and • only. Note that a, b can be 0.

In order to recover the full WP transformer from its values for generic postconditions, we use an
operator ext>. The operator ext> takes a function f> : P•(X) → E•(X) and transforms it into a
full WP transformer of type E•(X)→ E•(X). For a single equality e involving globals and •, this
transformer is defined by:

ext>(f>)(xi
.
= t) = f>(xi

.
= •)[t/•]

ext>(f>)(xi
.
= xj + t) = f>(xi

.
= xj + •)[t/•]

for globals xi,xj ∈ X and a term t = a •+b for constants a, b. For equalities e only containing •,
we define:

ext>(f>)(e) =

{
> if f>(x1

.
= •) = >

e otherwise

Here, we assume that f> corresponds to a computation that definitely does not terminate, if f>(x1
.
=

•) = >. In this case, the precondition of any equality should be >. Otherwise, the precondition of
the equality e should be e itself. In fact, we could have chosen any xi to perform the distinction
whether f terminates or not. Finally, for arbitrary conjunctions E = e1 ∧ . . . ∧ em, we set

ext>(f>)(E) = ext>(f>)(e1) ∧ . . . ∧ ext>(f>)(em)

Let f : 2Z
k → 2Z

k

be completely distributive. We call f uniform if f ({x}) = ∅ for some vector
x ∈ Zk implies that f ({x′}) = ∅ for all x′ ∈ Zk. Note that all concrete transformers which occur in
this context are completely distributive and uniform. We have:

LEMMA 6.1. Let f : 2Z
k → 2Z

k

denote a concrete transformer which is completely distributive
and uniform. Furthermore, let f> : P•(X) → E•(X) denote a function where for all Z ⊆ Zk+1

and e ∈ P•(X), ext f (Z) |= e iff Z |= f>(e). Then also

ext f (Z) |= E iff Z |= ext>(f>)(E)

for all Z ⊆ Zk+1 and E ∈ E•(X).

PROOF. Since f and ext>(f>) are completely distributive, it suffices to consider single equalities
e. We perform a case distinction on the different forms of e. First consider an equality e which
contains a single global xi, i.e., is of the form xi

.
= t for a term t = a • +b. Consider the set

Z ′ = {(x, ac+ b) | (x, c) ∈ Z}. Then

ext f (Z) |= e iff ext f (Z ′) |= (xi
.
= •)

iff Z ′ |= f>(xi
.
= •)

iff Z |= f>(xi
.
= •)[a •+b/•]

iff Z |= ext>(f>)(xi
.
= a •+b)

The proof for an equality e of the form xi
.
= xj + t for a second global xj is analogous.

Finally consider an equality e which does not contain globals xi, i.e., which only may contain
constants or •. We rely on the following claim:

Claim: Under the assumptions of the lemma for f and f>, one of the following statements is true:

• f({x}) = ∅ for some x ∈ Zk. Then f({x}) = ∅ for all x ∈ Zk, and f>(x1
.
= •) = >.

• f({x}) 6= ∅ for all x ∈ Zk, and f>(x1
.
= •) 6= >.

Before proving the claim, let us first show that the assertion of the lemma for equalities e without
globals follows from the claim. First assume case 1 of the claim, i.e., f({x}) = ∅ for all (x, ). Then
also ext f ({(x, c)}) = ∅ for all x and c. Since ∅ |= e, the left-hand side of the assertion is true for all
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Z. Now by the first case of the claim, f>(x1
.
= •) = >. Hence by definition, also ext>(f>)(e) = >,

and the right-hand side of the assertion also evaluates to true for all Z.
Now assume case 2 of the claim, i.e., f({x}) 6= ∅ for all x. Then

ext f (Z) |= e iff Z |= e
iff Z |= ext>(f>)(e)

and the assertion follows.
It therefore remains to prove the claim. First assume that f({x}) = ∅ for some x. Then by

uniformity of f , also ext f ({(x, c)}) = ∅ for all (x, c), i.e., ext f(Zk+1) = ∅. Since then
ext f(Zk+1) |= (x1

.
= •), we conclude by the assumption on f and f> that Zk+1 |= f>(x1

.
= •),

and therefore, f>(x1
.
= •) = >.

Now assume that f({x}) 6= ∅ for all x. For a contradiction assume that f>(x1
.
= •) = >. For

some x ∈ Zk and x′ ∈ f({x}), consider the sets Z = {(x, c) | c ∈ Z} and Z ′ = {(x′, c) | c ∈ Z}.
Then Z |= f>(x1

.
= •), and hence by the assumption on f and f>, ext f (Z) |= (x1

.
= •). Since

Z ′ ⊆ ext f (Z), also Z ′ |= (x1
.
= •). This means that for all c, x′1 = c, which yields a contradiction.

We conclude that f>(x1
.
= •) cannot be equal > and the second statement of the claim follows. This

completes the proof.

Using the new operator ext>, we obtain the following modified constraint system for the weakest
precondition transformers of procedures — as represented by their values on only the generic
postconditions:

S•[rq] v Id rq exit point of procedure q
S•[u] v ext>(S•[sq]) ◦ S•[v] (u, q(), v) a call edge, sq entry point of q
S•[u] v [[s]]> ◦ S•[v] (u, s, v) an assignment edge

For a distinction, let us call this constraint system S•. The construction of a representation for the
composition of transformers, as required for the constraints of the second and third line, must take into
account that we compute with mappings from P•(X)→ E•(X) only. This means for the constraints
from the second line that we must extend the transformer for the called procedure by means of ext>
before the composition can be performed. In general, consider a composition h = ext>(f>) ◦ g>
for completely distributive functions f>, g>. Let e denote a generic postcondition, and assume that
e1[t1/•] ∧ . . . ∧ er[tr/•] is a normalised conjunction for g>(e) where ei ∈ P•(X). Then the value
(ext>(f>) ◦ g>)(e) is the normalised conjunction for:

f>(e1)[t1/•] ∧ . . . ∧ f>(er)[tr/•]

i.e., amounts to normalising a conjunction of O(k2) equalities. According to Lemma 3.2, this can be
done in time O(k2). Since there are at most O(k2) generic postconditions, a representation for the
composition h can be computed in time O(k4).

LEMMA 6.2.

(1) Assume S>[u] (u a program point) is the greatest solution of S>. Then a solution of S• is
obtained by restricting each transformer S>[u] to generic postconditions.

(2) Assume S•[u] (u a program point) is the greatest solution of S•. Then a solution of S> is
obtained by defining S>[u] = ext>(S•[u]).

For the first statement of the lemma, we rely on Theorem 5.3 and Lemma 6.1. Since both restriction
and extension of transformers are monotonic operations, we conclude:

THEOREM 6.3. Assume that Z ⊆ Zk+1 and e ∈ P•(X). Then, for every program point u:
ext S[u] (Z) |= e iff Z |= S•[u](e).

PROOF. The proof of this theorem is by fixpoint induction.
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Our goal is to determine for every program point u, the conjunction of all equalities which are
valid when reaching u. Note that these equalities may comprise global variables only (no • is needed
here). For that, we require a transformation ext] which takes a weakest precondition transformer
f> for the body of a procedure and returns the corresponding forward transformation ext](f>)
of valid equalities. For a weakest precondition transformer f> : P•(X) → E•(X), we define
ext](f>) : E(X)→ E(X) as follows. Let E ∈ E(X). Then ext](f>)(E) is the conjunction of all
equalities e′ = e[c/•] for which E =⇒ (ext>(f>)(e′)) or, equivalently, E =⇒ (f>(e)[c/•]).
The following lemma states that the operator ext] allows us to determine all the equalities that are
valid after a procedure call from the conjunction of valid equalities before the call and the weakest
precondition transformer of the called procedure.

LEMMA 6.4. Let f : 2Z
k → 2Z

k

be completely distributive and uniform and let ext f :

2Z
k+1 → 2Z

k+1

be the corresponding extended transformer. Let f> : P•(X)→ E•(X) be a weakest
precondition transformer. Assume as in Lemma 6.1 that ext f (Z) |= e iff Z |= f> (e) for all subsets
Z ⊆ Zk+1 and elements e ∈ P•(X). Assume X ⊆ Zk and E is the conjunction of all equalities e
over X with X |= e. Then, for every E′ ∈ E(X), f(X) |= E′ iff ext](f>)(E) v E′.

PROOF. It suffices to consider the case where E′ is a single equality e′ involving global variables
xi. Then e′ = e[c/•] for a generic postcondition e and some constant c and we have

f(X) |= e′ iff ext f (Xc) |= e

where Xc = {(x, c) | x ∈ X}. Furthermore,

ext f (Xc) |= e iff Xc |= f>(e)

by Lemma 6.1. Then we deduce:

Xc |= f>(e) iff X |= f>(e)[c/•]
iff E v f>(e)[c/•]
iff ext](f>)(E) v e′

and the statement of the lemma follows.

Using the operator ext], we put up the following system of constraints over E(X):

C][smain] w >
C][sq] w C][u] (u, q(), ) a call edge
C][v] w ext](S•[sq]) (C][u]) (u, q(), v) a call edge
C][v] w [[s]]] (C][u]) (u, s, v) an assignment edge

The least solution of this constraint system precisely characterises for every program point u the
conjunction of all equalities from E(X) which are valid when program execution reaches u. Sum-
marising, we obtain:

THEOREM 6.5. The set of all valid equalities for an interprocedural program can be computed
in time O(n · k4) where n is the program size and k the number of global variables.

Note that throughout this paper the program size is defined as the sum of the number of nodes and
the number of edges in the control flow representation of the program.

PROOF. We use semi-naive fixpoint iteration as in [Fecht and Seidl 1998] in order to compute
the least solution of the system of inequations S•. Informally, semi-naive iteration means that
only individual increments for the handled values are propagated instead of whole values. For
our computation of summary functions this means that only single equalities instead of whole
conjunctions are propagated. Note that the overall costs caused by a single constraint in a semi-naive
iteration are at most as big as the cost of propagating a single value of maximal size in a standard
fixpoint iteration. Thus, the most costly operation of a right-hand side of a single inequation in S•
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which actually is function composition mainly contributes to the time effort estimation for computing
summary functions. As stated before function composition can be done in time O(k4). Thus, the
fixpoint of S• can be computed in time O(n · k4).

In contrast, we use ordinary worklist based least fixpoint computation for constraint system
C]. Here, it is not clear how to propagate only single equalities. Since the height of the lattice of
conjunctions of equalities E(X) is k + 1 (Lemma 4.2), each right-hand side of the constraint system
C] may be evaluated at most O(k) times. In system C] the most expensive operation is application
of the summary functions of a procedure call. This operation takes time O(k3). Hence, the least
solution of constraint system C] can also be computed in time O(n · k4).

Consequently, considering a whole program of size n, the estimation of the total running time of
O(n · k4) follows.

Practical Improvements
Typically, a procedure accesses only few global variables. Therefore, our goal is to reduce the size of
the representation of the abstract effects of procedures by tracking variable differences only for those
variables which are really modified. For this purpose, we define a function B which determines for a
weakest precondition transformer f the set of variables whose values stay unmodified when applying
the transformer:

B(f) = {xi ∈ X | f(xi
.
= •) = (xi

.
= •)}

Assume xj ∈ B(f). Then, f(xi
.
= xj + •) can be recovered from f(xi

.
= •) by replacing • with

xj + • in right-hand sides of equalities.
Therefore, we may proceed as follows. First we tabulate the values of f for generic postconditions

of the form xi
.
= •. From these values we can determine the set B(f). Then it suffices to tabulate in

addition only the preconditions for xi
.
= xj +• for xi,xj 6∈ B(f). This means that we can reduce the

size of the table for the effect of a procedure essentially to those variables which are actually touched
by this procedure. In order to reduce also the number of generic postconditions of the form xi

.
= •,

we can determine a sufficiently large subset B′(f) of B(f) by a straightforward syntactic analysis in
advance. Then it suffices to determine preconditions for xi

.
= • only for variables xi /∈ B′(f).

7. EXAMPLE APPLICATION
As an example for our analysis, consider the code generated for a procedure q where two registers are
saved and restored by means of auxiliary functions as described in the introduction. In accordance
with the naming conventions of this paper, the registers corresponding to global variables of q are
denoted by x1,x2,x3,x4. The resulting control flow graph is given in Figure 5. For the analysis,
memory writes are ignored and reads from memory into a variable are abstracted with corresponding
non-deterministic assignments. The global variable x1 represents the stack pointer while the global
x2 serves as an auxiliary register. We assume that the instructions of the function body of q (indicated
via dots at program point 3) do not modify the stack pointer x1.

Within the prologue of procedure q, 8 bytes of memory are reserved for the callee-save registers,
i.e., x3 and x4, which are saved via a call to save 3. Additionally, the stack pointer x1 is modified at
program point 11 in order to account for the stack growth for saving x3 and x4. Then, after executing
the body of q its callee-save registers are restored (in the call to rest 3) and additionally the memory
for saving these registers is freed (program point 17).

Our goal is to verify the invariant that any execution of procedure q leaves the stack pointer
unchanged, i.e., that after any call to q, the stack pointer has the same value as before the call. Note
that this property is violated by the procedures save 3, save 4, rest 3 and rest 4.

Let us first compute the weakest precondition of the generic postcondition x2
.
= x1 + • for

the procedures save 3 and rest 3 (program points 7, 13), respectively. Note that the memory
write instructions in procedures save 4 and save 3 do not affect register equalities and thus can be
ignored by the analysis. Thus, for procedure save 3 only the assignment to x1 (in procedure save 4)
is relevant. Therefore, we obtain S>[7](x2

.
= x1 + •) = (0

.
= •) as the weakest precondition of the
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q :

· · ·

x2 := x1 + 8

x2 := x1 − 8

x1 := x2
x1 := x2

save 3 :

save 3()

rest 3()

save 4 : rest 4 :

save 4()

M [x2 + 8] := x3

M [x2 + 4] := x4

x3 := M [x2]

x4 := M [x2 − 4]

rest 3 :

rest 4()

Fig. 5: Coding convention for saving and restoring registers x3,x4.

above generic postcondition at program point 7. For procedure rest 3, i.e., at program point 13, the
same precondition is computed, namely S>[13](x2

.
= x1 + •) = (0

.
= •). We may infer from these

preconditions that the equality x1
.
= x2 is valid upon termination of both procedures, save 3 and

rest 3.
Since it is our aim to verify that the stack pointer before and after executing the procedure body of

q (i.e. at program points 1 and 6) is the same, let us now consider on the one hand the conjunction of
all valid equalities and on the other hand the weakest precondition for the generic equality x1

.
= •,

for every program point i of procedure q:

i S>[i](x1
.
= •) C][i]

1 x1
.
= • >

2 x2
.
= • − 8 x2

.
= x1 − 8

3 x1
.
= • − 8 x2

.
= x1

4 x1
.
= • − 8 x2

.
= x1

5 x2
.
= • x2

.
= x1 + 8

6 x1
.
= • x2

.
= x1

The valid conjunction of equalities for every program point of q (cf. C][i]) provides us with infor-
mation about the relation of variables x1 and x2, but does not allow us to deduce a statement about
the relation of the stack pointer value at procedure start to its value at procedure exit. One way
to obtain such a statement would be to instrument procedure q with a new local variable x′1 that
stores the initial value of x1. Then our analysis would yield the equality x1

.
= x′1 at program point

6 that witnesses preservation of the stack pointer rather directly. We note, however, that the above
weakest precondition computation for procedure q (cf. S>[i](x1

.
= •)) already allows us to infer

the stack pointer invariant indirectly: From the fact that the WP transformer for x1
.
= • yields the

same equality x1
.
= • for the start point of procedure q we see that the value x1 stays the same in

any execution of the procedure whatever the initial value of x1 may be. Note that it is essential that
our analysis interprets statements of the form xi

.
= xj + b in scenarios like this one. Otherwise it

would be impossible to establish the stack invariant because of the statements that shift the value of
the stack pointer.
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8. LOCAL VARIABLES
In the following, we extend the interprocedural analysis to procedures with local variables. The con-
cept of local variables is not only provided by high-level programming languages. Also many modern
processor architectures support local registers. The calling convention of the PowerPC architecture,
e.g., treats the registers r14 up to r31 as local variables [Zucker and Karhi 1995]. For simplicity, we as-
sume that every procedure q has l local variables Y = {y1, . . . ,yl} , while the set of global variables
is still X = {x1, . . . ,xk}. Thus, a state is now described by a vector (x1, . . . , xk, y1, . . . , yl) ∈ Zk+l,
which we identify with the pair (x, y) of vectors x = (x1, . . . , xk) ∈ Zk and y = (y1, . . . , yl) ∈ Zl

of values for the global and local variables, respectively. Accordingly, the transformations S[u] are
completely distributive functions from the set T = 2Z

k+l → 2Z
k+l

. In order to avoid confusion
between the values of the local variables of caller and callee the rules for call edges must be modified.
For this purpose we introduce two auxiliary transformations. The transformation enter ∈ T captures
how a set of states propagates from the call to the start edge of the called procedure:

enter(X) = {(x, y) | y ∈ Zl,∃y′ : (x, y′) ∈ X}

Here, we assume that local variables receive an arbitrary value at the beginning of their scope but
other conventions can be described similarly. The second transformation H : T → T adjusts the
transformation computed for a called procedure to the caller:

H(g)(X) = {(x′, y) | ∃x, y′ : (x, y) ∈ X ∧ (x′, y′) ∈ g(enter {(x, y)})}

It ensures that local variables of the caller are left untouched by the call. The modified rules for call
edges in the systems of inequations for S and C are as follows:

S[u] ⊇ S[v] ◦ H(S[sq]) (u, q(), v) a call edge, sq entry point of q
C[sq] ⊇ enter(C[u]) (u, q(), ) a call edge
C[v] ⊇ H(S[sq])(C[u]) (u, q(), v) a call edge

In addition, Zk is replaced with enter(Zk+l) = Zk+l in the inequation for C[smain].
As in Section 5 in the case of global variables only, we want to determine the weakest precondition

transformers for procedures. When representing such transformers, we rely on the special logical
variable • for avoiding to treat each constant in postconditions separately. Recall that the local
variables of the caller are not visible to the called procedure and thus are also not modified during
the execution of the call. This means that the weakest precondition of the call for a postcondition
e which involves local variables of the caller and • only, equals just e (provided that the call may
terminate). Every other postcondition consisting of a single equality e can refer to at most one
local variable of the caller. The weakest preconditions for such equalities can be deduced from the
weakest preconditions of equalities involving globals and • only. Thus, for the sake of determining
weakest preconditions, it suffices to consider weakest preconditions for equalities containing globals
together with the auxiliary variable •. Due to our backward accumulation of weakest precondition
transformers for procedures, we therefore consider the same set P•(X) of generic postconditions
as in the last section, i.e., only postconditions of the two forms xi

.
= • or xi

.
= xj + • for globals

xi,xj ∈ X.
For these postconditions, we now obtain preconditions from E•(X∪Y) which mention constants,

local and global variables, as well as •. For representing such preconditions as normalised conjunc-
tions, let us adhere to the convention that we prefer local variables over globals as reference variables
of connected components whenever possible. Following the approach of [Müller-Olm and Seidl
2008], we use an operator H> which takes the representation of a weakest precondition transformer
f> : P•(X)→ E•(X ∪Y) for the body of a procedure and transforms it into the representation of
the effect of a call where the latter now may provide preconditions also for equalities between locals
and between locals and globals.
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One ingredient of this operator is the weakest precondition transformer corresponding to the
transformation enter from the concrete semantics. We define enter> : E•(X ∪Y)→ E•(X) by

enter>(E) = ∀y1, . . . , yl.E

For a weakest precondition transformer for the body of a called procedure f> : P•(X)→ E•(X∪Y),
the composition enter> ◦ f> thus is a transformation from P•(X) → E•(X) where the logical
variable • represents the subexpression from the postcondition which only depends on data not
modified during the call. The second ingredient for obtaining the effect of a call therefore is again
a (suitably adapted) operator ext> which now extends a transformer g> : P•(X) → E•(X) to a
transformer from E•(X ∪Y)→ E•(X ∪Y). This operator is defined as follows.

For a single equality e involving globals, we define

ext>(g>)(xi
.
= t) = g>(xi

.
= •)[t/•]

ext>(g>)(xi
.
= xj + a •+b) = g>(xi

.
= xj + •)[a •+b/•]

for globals xi,xj ∈ X and terms t of the form:

t ::= a •+b | yj + a •+b

for constants a, b and local variables yj .
For an equality e which only contains locals and •, we define:

ext>(g>)(e) =

{
> if g>(x1

.
= •) = >

e otherwise

This definition indicates that equalities between locals of the caller are left unchanged by the called
procedure — provided the called procedure terminates. (Recall that a procedure definitely does
not terminate iff its weakest precondition transformer transforms x1

.
= • into >.) Finally for a

conjunction E = e1 ∧ . . . ∧ er, we define:

ext>(g>)(E) = ext>(g>)(e1) ∧ . . . ∧ ext>(g>)(er)

The operator H> which determines the weakest precondition transformer of type E•(X ∪Y) →
E•(X ∪Y) for a call from a weakest precondition transformer f> : P•(X)→ E•(X ∪Y) for the
body of the procedure then is defined by:

H>(f>) = ext>(enter> ◦ f>)

In order to relate the weakest precondition transformers to the concrete semantics, we extend the
notions of uniformity and extended concrete transformers from Section 5 to deal with locals as well.
Now, a completely distributive transformer f : 2Z

k+l → 2Z
k+l

is called uniform if f {(x, y)} = ∅ for
some pair (x, y) implies f {(x′, y′)} = ∅ for all pairs (x′, y′) ∈ Zk+l. The corresponding extended
transformer ext(f) : 2Z

k+l+1 → 2Z
k+l+1

for a completely distributive uniform transformer is defined
by ext(f)({(x, y, c)}) = {(x′, y′, c) | (x′, y′) ∈ f({(x, y)})}. Analogously to Lemma 6.1 we
obtain:

LEMMA 8.1. Let f : 2Z
k+l → 2Z

k+l

denote a concrete transformer which is completely
distributive and uniform. Furthermore, let f> : P•(X)→ E•(X∪Y) denote a weakest precondition
transformer where for all Z ⊆ Zk+l+1 and e ∈ P•(X), ext(f)(Z) |= e iff Z |= f>(e). Then also

ext(H(f))(Z) |= E iff Z |= H>(f>)(E)

for all Z ⊆ Zk+l+1 and E ∈ E•(X ∪Y).
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Consider the modified constraint system S> for the weakest precondition transformers of procedures
using the operator H> to deal with function calls.

S>[rq] v Id rq exit point of procedure q
S>[u] v H>(S>[sq]) ◦ S>[v] (u, q(), v) a call edge, sq entry point of q
S>[u] v [[s]]> ◦ S>[v] (u, s, v) an assignment edge

Note that the composition H>(f>) ◦ g> for completely distributive transformers f>, g> takes
time O(k2 · (k + l)2), since the weakest precondition of a generic postcondition is represented by
a normalised conjunction, possibly containing globals, locals, and •, and consequently contains
O(k + l) many equalities. Extending Theorem 6.3 to programs involving local variables, we obtain:

THEOREM 8.2. Assume that Z ⊆ Zk+l+1 and e ∈ P•(X). Then, for every program point u:
ext S[u](Z) |= e iff Z |= S>[u](e).

PROOF. The proof is by fixpoint induction. For i ≥ 0, let Si[u], S>i [u] denote the i-th approxima-
tion to the least and greatest solutions of the constraint systems S and S>, respectively.
Claim. For every i ≥ 0 and every program point u, the following holds:

(1) Si[u] is uniform;
(2) ext Si[u] (Z) |= e iff Z |= S>i [u] (e).

We only prove the second assertion of this claim. First assume i = 0. Then ext Si[u] (Z) = ∅.
Therefore, for every e, ext Si[u] (Z) |= e. Since also S>i [u] (e) = true, the assertion holds.

Now assume i > 0. Then, in the concrete semantics, ext Si[u] (Z) is the union of sets
Si−1[v](ext [[s]]]i−1 Z) for edges (u, s, v) where [[s]]]i−1 is the transformer corresponding to the
label s according to the values of unknowns from the (i − 1)-th iteration. Likewise for every e,
S>i [u] (e) is the conjunction of the preconditions [[s]]>i−1(S>i−1[v] (e)) for every edge (u, s, v) where
[[s]]>i−1 is the weakest precondition transformer corresponding to the label s according to the values
of unknowns from the (i− 1)-th iteration. Therefore, it suffices to prove for every edge (u, s, v) that
ext Si−1[v](ext [[s]]]i−1 Z) |= e iff Z |= [[s]]>i (S>i−1[v] (e)). Consider the case of a procedure call
s ≡ q(). Then

Si−1[v]([[s]]]i−1 Z) = Si−1[v](H(Si−1[sq])Z) and
[[s]]>i (S>i−1[v] (e)) = H>(S>i−1[sq]) (S>i−1[v] (e)) .

We have:

ext Si−1[v](ext H(Si−1[sq])Z) |= e iff ext H(Si−1[sq])Z |= S>i−1[v] (e)

by induction hypothesis. Furthermore,

ext H(Si−1[sq])Z |= S>i−1[v] (e) iff Z |= H>(S>i−1[sq]) (S>i−1[v] (e))

by induction hypothesis for the transformers for sq and Lemma 8.1. Note that for the application of
this lemma we rely on the complete distributivity of all transformers Si−1[u] and S>i−1[u].

This completes the proof of the claim for the case of a function call. We omit the remaining cases
of assignments or non-deterministic assignments.
Using our claim, we argue that

ext S[u]Z |= e iff ∀i ≥ 0. ext Si[u]Z |= e
iff ∀i ≥ 0. Z |= S>i [u] (e)
iff Z |= S>[u] (e)

for all sets Z ⊆ Zk+l+1 and equalities e ∈ P•(X).
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In order to determine for every program point u, the conjunction of all equalities (now referring to
local as well as global variables) which are valid when reaching program point u, we modify the
constraint system C]. For that, we require a transformation enter] which determines the conjunction
of equalities at procedure entry from the conjunction of equalities before the procedure call. Since all
locals are uninitialised at procedure entry, this transformation removes all equalities involving locals.
Accordingly, the transformation enter] is defined by:

enter](E) = ∃]y1 . . . ∃]yl. E

For a weakest precondition transformer f> : P•(X)→ E•(X ∪Y) for the body of a procedure, we
define H](f>) : E(X∪Y)→ E(X∪Y) as follows. LetE ∈ E(X∪Y). First assume that f>(x1

.
=

•) = >. Then H](E) = ⊥. Otherwise, H](f>)(E) is the conjunction of all equalities which only
involve locals and are implied by E, together with all equalities e[t/•] for generic postconditions
e and terms t of the form c or yj + c (c ∈ Z,yj ∈ Y) for which E =⇒ (H>(f>)(e))[t/•].
In particular for E = ⊥, we have H](f>)(E) = ⊥ as well. The following lemma states that the
operator H] allows determining all valid equalities after a call from the conjunction of valid equalities
before the call and the weakest precondition transformer for the procedure body.

LEMMA 8.3. Assume Z ⊆ Zk+l and E = α(Z) is the conjunction of all equalities e over
X ∪Y with Z |= e. Let f : 2Z

k+l → 2Z
k+l

be completely distributive and uniform, and let f> be a
weakest precondition transformer. Assume as in Lemma 8.1 that for all e ∈ P•(X), ext(f)(Z) |= e iff
Z |= f> (e) for all subsets Z ⊆ Zk+l+1 and elements e ∈ P•(X). Then, for every E′ ∈ E(X ∪Y),
H(f)(Z) |= E′ iff H](f>)(E) v E′.

We put up the following constraint system over E(X ∪Y) using the operators enter] and H]:

C][smain] w enter](>)
C][sq] w enter](C][u]) (u, q(), ) a call edge
C][v] w H](S>[sq]) (C][u]) (u, q(), v) a call edge
C][v] w [[s]]] (C][u]) (u, s, v) an assignment edge

The least solution of this constraint system precisely characterises for every program point u, the
conjunction of all equalities from E(X ∪Y) which are valid when program execution reaches u.
Summarising, we obtain:

THEOREM 8.4. The set of all valid equalities for an interprocedural program of size n with k
global variables and l local variables can be computed in time O(n · k2 · (k + l)2).

9. LINEAR TWO-VARIABLE EQUALITIES
Now, we extend the variable difference analysis, described in the previous sections, in order to deal
with general linear two-variable equalities, i.e., equalities of the form: xi

.
= b or xi

.
= axj + b where

a, b ∈ Q. Let P(X) denote the set of all equalities of this form. The more general form of invariants
allows us to extend the analysis to handle precisely all linear assignments where right-hand sides
contain at most one variable, i.e., which are of the form xi := b or xi := axj + b. For simplicity,
we consider global variables only, but the methods presented here can also be extended to local and
global variables along the line of Section 8.

Any satisfiable conjunction E of equalities from P(X) can be brought into a normal form with the
following properties:

• If E has an equality xi
.
= b, then xi does not occur in any other equality from E.

• If E has an equality xi
.
= axj + b for a 6= 0, then i > j and E has no other equality containing

xi.

In particular, this means thatE consists of at most k equalities. Note that this normal form corresponds
to the reduced row-echelon form (RREF) known from linear algebra.
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As in the case of variable equalities, time O(k2 + r) suffices for an arbitrary conjunction of r
equalities to prove that it is unsatisfiable or in case it is satisfiable, to compute its equivalent normal
form. An algorithm for computing the least upper bound of two conjunctions E1, E2 in normal
form can be obtained as a generalisation of the corresponding algorithm for variable differences. A
corresponding algorithm which runs in time O(k · log(k)) is presented in Appendix A.

Representation of Procedure Effects
We are interested in program invariants of the form xi

.
= b or xi

.
= a · xj + b for rational numbers

a, b ∈ Q. Again, we represent the effect of a procedure by means of its weakest precondition for
postconditions of this form. In order to deal with all postconditions simultaneously which only differ
in the constants a, b, we introduce parameters a1,a2,b and consider generic postconditions of the
forms

a1xi
.
= b or a1xi

.
= a2xj + b

Note that there are at most O(k2) postconditions of these forms. Recall that we precisely only deal
with assignments xj := t where the right-hand sides t contain at most one variable, i.e., are of the
form t1xj + t0 for t0, t1 ∈ Q.

Then, the precondition which we may obtain for a procedure for a given generic postcondition is a
conjunction of equalities each of which is of one of the following types:

(1) a1xi′
.
= ca2xj′ + t

(2) a2xi′
.
= ca2xj′ + t

(3) b
.
= c1a1 + c2a2

(4) a1
.
= c2a2

(5) a2
.
= 0

for variables xi′ ,xj′ ∈ X, expression t of the form c0b + c1a1 + c2a2 where c, c0, c1, c2 ∈ Q, and
where for type 2, i′ > j′ whenever c 6= 0. Note that every conjunction of such equalities is satisfiable
by choosing value 0 for b,a1 and a2.

Any conjunction can be brought into RREF w.r.t. to the monomials a1xi′ ,a2xj′ ,b, a1 and a2 (in
this order) — which again uses only equalities of types 1 through 4. Due to the RREF, an equality of
type 3 implies that no other equality has occurrences of b. Moreover, we make the following two
additional assumptions on the normal form:

• If an equality of type 4 is present, then also all occurrences of a1 in monomials a1xi′ are removed.
• If an equality of type 5 is present, then all monomials a2xj′ are removed.

For every conjunction E in this normal form, we have:

• If a1xi′
.
= t occurs in E for some term t, then no other equality in E contains a1xi′ .

• If a2xi′
.
= ca2xj′ + t occurs in E for some term t, then no other equality in E contains a2xi′ .

Moreover, if c 6= 0, then i′ > j′.

These properties imply that E has at most k equalities of type 1 and at most k equalities of type 2.
Since there is at most one equality of each of the types 3, 4, and 5, E has at most 2k + 3 equalities.
Overall, we conclude that every satisfiable conjunction can be uniquely represented by a conjunction
of at most O(k) equalities each of which is of size O(1). Moreover, the standard algorithm for
reducing to reduced row echelon form can be modified to compute for a satisfiable conjunction of r
equalities a reduced conjunction of equalities in time O(k2 + r).

Example 9.1.
Consider the following conjunction E of parametric equalities in normal form:

(a1x5
.
= 2a2x3 + 3b + 7a1 + 2a2)∧

(a2x4
.
= 3a2x3 + 2b− 3a1 − 1a2)∧

(a2x2
.
= 2b + 5a1 + 3a2)
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together with the equality e = (a1x5
.
= 4a2x2 + 7b + 9a1 + 4a2).

Subtracting from e the first equality of E, we obtain:

0
.
= −2a2x3 + 4a2x2 + 4b + 2a1 + 2a2

or

a2x3
.
= 2a2x2 + 2b + a1 + a2

Using the last equality from E, the occurrence of a2x2 in the right-hand can be removed which gives
us:

a2x3
.
= 6b + 11a1 + 7a2 .

The resulting equality cannot be reduced further. Instead it can be used to remove occurrences of
a2x3 in the right-hand sides of the equalities in E. As the normal form for e∧E we therefore obtain:

(a1x5
.
= 15b + 29a1 + 16a2)∧

(a2x4
.
= 20b + 30a1 + 20a2) ∧

(a2x3
.
= 6b + 11a1 + 7a2)∧

(a2x2
.
= 2b + 5a1 + 3a2) .

The required space for the representation of summary functions is O(k3): for each of the O(k2)
generic postconditions, we provide a parametric precondition of size O(k). As we show next,
the time for computing the composition operation in our representation of weakest precondition
transformers is O(k4). Consider the composition of two weakest precondition transformers f and
g. For that, consider a single generic equality e. In order to compute the weakest precondition
f(g(e)), we first apply g to e giving us a conjunction E = g(e) of O(k) equalities. Applying
f to each of the equalities in E results in O(k) conjunctions each consisting of O(k) equalities.
The conjunction of these conjunctions thus has O(k2) equalities which can be normalised in time
O(k2 +k2) = O(k2). By repeating this for allO(k2) generic postconditions we thus have succeeded
to compute a representation for the composition of f and g in time O(k4).

It remains to compute the strongest postcondition of a procedure call given the WP transformer f>
for the procedure. Observe first, that, for any generic postcondition e, f>e is the empty conjunction
(representing true) if and only if the procedure in question has no terminating execution. In this case
the strongest postcondition is always false irrespective of the equations valid at the call because the
procedure never returns. Also a non-satisfiable conjunction (i.e. a conjunction equivalent to false) at
the call site gives rise to postcondition false. So let us assume that f>e is non-empty for all generic
postconditions e and that at the call to the procedure a satisfiable conjunction E is valid. Then
we determine the strongest postcondition of E as the conjunction of all equalities whose weakest
precondition w.r.t. f> is implied by E.

First, we determine the equalities of the form xi = b valid upon return from the procedure given
precondition E, i.e., the variables that are constant. Let E′ = f>e denote the weakest precondition
for e ≡ a1xi

.
= b as provided by the transformer f>. Note that E′ does not contain the parameter

a2. As we are specifically interested in postconditions of the form xi
.
= b for some b ∈ Q we fix the

parameter a1 to 1 and observe that a postcondition of this from can be valid for at most one value
b (given that the procedure may terminate) as otherwise two contradictory equations would hold
simultaneously. We determine this value (if any) as follows. We check first, if there is an equality of
the form a1xj

.
= t in E′ such that the conjunction E does not contain an equality xj

.
= c. In this

case E′ is not implied by E for a1 = 1 and some value of b and, consequently, xi cannot be constant
after the call. Otherwise, for every equality e′ of the form a1xj

.
= t occurring in E′, E contains an

equality xj
.
= c. This gives rise to the equation 0

.
= t[1/a1]− c. Let E1 denote the conjunction of

all these equations. Furthermore, let E0 denote the (possibly empty) conjunction of equalities in E′
not containing program variables xj′ . Then the equality xi

.
= b holds after the call iff b satisfies the

conjunction E0[1/a1] ∧ E1. This is a system of linear equations with at least one equation over the
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single variable b. Thus, there is either a single solution b ∈ Q or no solution at all. In the first case,
the equation xi = b is valid after the call; in the second case xi is not constant after the call.

Having determined in this way all equalities of the form xi
.
= b it remains to determine the valid

two-variable equalities of the form xi
.
= axj + b. As there can be no equalities between a constant

and a non-constant variable and the two-variable equalities valid between the constant variables
are already implied by the equations expressing constancy, it suffices to consider two-variable
equalities for non-constant variables xi and xj . So assume that e is a generic postcondition of the
form a1xi

.
= a2xj + b where neither xi nor xj could be proven to be constant after the call. Let

again E′ denote the conjunction E′ = f>e. As in the case of constants, we observe that there can
be at most one pair of values (a2, b) ∈ Q2 such that xi

.
= a2xj + b is valid as otherwise xj would

be constant after the call. In order to determine this pair (if any) we look for (a2, b) ∈ Q2 such that
E′[1/a1][a2/a2][b/b] is implied by E. For this we first check whether for every equality e′ in E′
the following conditions holds:

• If e′ contains exactly one program variable xj , then E contains an equality xj
.
= c for some

constant c;
• If e′ contains the two program variables xj ,xj′ , then there is a program variable xk such that E

contains both an equality xj
.
= c1xk + c2 and an equality xj′

.
= c′1xk + c′2.

If neither of this is the case, E′[1/a1][a2/a2][b/b] is not implied by E for any pair (a2, b) ∈ Q2

and no non-trivial two-variable equality between xi and xj is valid after the call. Otherwise, we
again put up a system of linear equations. For each equality satisfying the first condition, we extract
the equation e′[1/a][c/xj ]. For each equality satisfying the second condition, we first consider the
equation e′′ ≡ e′[1/a][c1xk+c2/xj ][c

′
1xk+c′2/xj′ ] obtained from e′ by substituting the occurrences

of xj and xj′ with the right-hand sides of the corresponding equalities in E. The equation e′′ now
can be written as 0

.
= t0 + t1xk where the terms t0, t1 are affine combinations of the parameters

a2,b. From that, we extract the two equations 0
.
= t0 and 0

.
= t1. Let E1 denote the conjunction of

all these equations. Let E0 again denote the conjunction of all equalities in E′ which do not contain
program variables. Then the set of all pairs (a2, b) for which E =⇒ E′[1/a1][a2/a2][b/b] is given
by the set of solutions of the conjunction E0[1/a1] ∧ E1. The set of solutions to this system of
equations is either empty, or consists of a single vector (a2, b). In the latter case, we add the equality
e[1/a1][a2/a2][b/b] to the postcondition; in the former case no non-trivial equality is valid between
xi and xj . Overall, the strongest postcondition can be computed in time O(k3).

Summarising, we obtain the following generalisation of Theorem 6.5.

THEOREM 9.2. The set of all equalities of the form xi
.
= axj + b with a, b ∈ Q which are valid

for an interprocedural program of size n with k global variables can be computed in time O(n · k4).

Example 9.3. Assume that we are given two arrays of data x arr, y arr whose data are accessed
via a call to procedure access by using the global pointers x ptr and y ptr. Here we are interested
in invariants for the memory addresses the variables x ptr and y ptr point to in every step of the
for-loop. The program below is represented by the control flow graph next to it.
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dataX_t x_arr[100];
dataY_t y_arr[100];
dataX_t *x_ptr;
dataY_t *y_ptr;

int main(){
int i;
x_ptr = &x_arr[0];
y_ptr = &y_arr[0];

for(i=0; i<100; i++){
access();
x_ptr++;
y_ptr++;

}
}

3

1

2

4

5

6

7

8

· · ·

i := 0

main :

i < 100i >= 100

access()

x ptr := x ptr + 8

y ptr := y ptr + 4

i := i+ 1

At program point 3, after the first iteration of the fixpoint algorithm the least upper bound of the two
conjunctions of equalities

E0 = (i
.
= 0) ∧ (x ptr

.
= x arr0) ∧ (y ptr

.
= y arr0)

E1 = (i
.
= 1) ∧ (x ptr

.
= 8 + x arr0) ∧ (y ptr

.
= 4 + y arr0)

is computed. All equalities which are both implied by E0 and E1 are represented by the conjunction

(x ptr
.
= 8 · i+ x arr0) ∧ (y ptr

.
= 4 · i+ y arr0) .

In the next round, the fixpoint iteration terminates and returns this conjunction as the invariant for
program point 3.

10. EXPERIMENTAL RESULTS
We have implemented the interprocedural analysis of variable differences in our assembly analyser
VoTUM [Votum 2010] where the 40 hardware registers of the PowerPC are modelled by means of
global variables. For a comparison, we have also implemented the full interprocedural analysis of
linear equalities from [Müller-Olm and Seidl 2007] based on vector spaces of matrices. Our bench-
mark suite consists of PowerPC assemblies of publicly available programs such as the cryptography
library openSSL, and the HTTP server thttpd. Moreover, we experimented with the five larger
programs ls, basename, vdir, chmod, chgrp from the Unix GNU Coreutils package, and also ran
the prototype on gzip from SPECint. The binaries of these programs have sizes between 0.6 and
2.9 MB. We conducted our experiments on a 2.2 GHz quad-core machine equipped with 16 GB
of physical memory where the algorithm occupies just a single core. Since our main contribution
consists in an interprocedural equality analysis, we compare the time and memory consumption of
the procedure effect computation of the two approaches. In order to reduce memory consumption
the implementation of the linear algebra-based analysis from [Müller-Olm and Seidl 2007] relies
on sparse matrices. Similarly, the implementation of the variable differences analysis represents the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 Andrea Flexeder et al.

Table I: Benchmark Results

Program Size Instr Procs T(LA) M(LA) T(VD) M(VD) T(oVD) M(oVD)
openSSL 2.9MB 613882 6232 — — 1239sec. 3865MB 563sec. 2678MB
thttpd 0.8MB 189034 1197 297sec. 3348 MB 323sec. 1512MB 229sec. 1365MB
basename 0.6MB 139271 907 356sec. 922MB 223sec. 894MB 123sec. 622MB
chgrp 0.7MB 164420 1082 324sec. 1032MB 265sec. 1027MB 147sec. 645MB
chmod 0.6MB 148702 990 408sec. 913MB 247sec. 1091MB 169sec. 651MB
ls 0.8MB 177022 1203 339sec. 1060MB 298sec. 1321MB 277sec. 953MB
vdir 0.8MB 177022 1202 411sec. 1048MB 299sec. 1335MB 216sec. 925MB
gzip 0.7MB 162380 1026 363sec. 2825 MB 284sec. 1472MB 187sec. 955MB

Size: the binary file size in MB; Instr: the number of assembler instructions; Procs: the number of
procedures; T: the absolute running time in seconds; M: the peak memory consumption in MB.

precondition of a generic equality not by a matrix but a (possibly sparse) map. Table I summarises
our results.
For each benchmark from our suite, we compared the interprocedural analysis of linear equalities
(LA) with the interprocedural analysis of variable differences (VD) as well as with the interprocedural
analysis of variable differences where the optimisation from Section 6 is taken into account (oVD).
For each of these analyses we track the following parameters:

T:. the absolute running time in seconds;
M:. the peak memory consumption in MB.

Evaluating our experimental results, we have:

• The linear algebra analysis consumes definitely more memory than the (optimised) variable
difference analysis. Moreover, our biggest example program, openSSL, could not be analysed
with the linear algebra approach (LA) as the memory consumption exceeded the heap limit of
16GB. For (almost) all the example programs the variable difference analysis terminated faster.
Interestingly, for benchmark thttpd the linear algebra approach still beats the unoptimised
version of variable differences. The reason is that linear algebra has been implemented with sparse
matrices, while the implementation based on variable differences explores quadratically many
generic postconditions. Compared to the variable difference analysis (VD), the running time of the
optimised variable difference analysis (oVD) has improved between 17% up to 48%, whereas the
memory consumption decreased by around 20%. Summarising, the optimised variable difference
analysis (oVD) outperforms the linear algebra approach (LA) for the given application by a factor
of 2 while using only 75% memory.
• The standard code generation scheme for PowerPC code (which consists in three-address code)

does not heavily rely on the addition of two registers. In practise, the variable difference analysis
yields precise results for identifying local variables on the stack—approximately 85% of all
the stack accesses could be identified—as well as for checking the stack pointer invariant—for
approximately 95% of all the procedures the stack pointer invariant could be verified and for the
remaining 5% the analysis indicates where the stack pointer invariant may be violated. While
in general, the linear algebra approach clearly may detect more equalities than just variable
differences, this difference in precision, though, seems not to matter for this particular application.

11. CONCLUSION
In this paper we presented an interprocedural analysis of constant values of variables and constant
differences of variables. We also extended these analyses to deal with arbitrary linear two-variable
equalities.

We used parametric weakest precondition transformers to represent procedure effects. The pre-
sented techniques can be seen as non-trivial generalisations of the analysis of variable equalities
proposed in [Müller-Olm and Seidl 2008]. While inferring much stronger invariants, the algorithms
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still have the same worst-case time complexity O(n · k4) where n is the program size and k the
number of variables. We also indicated how the running time of the analysis can be improved by
taking into account that many procedures may access only very few variables.

Various applications of our analysis can be envisioned. Information on definite equalities between
variables can be used, e.g., during register allocation for coalescing of registers [Müller-Olm and
Seidl 2008]. Variable differences can be used for verifying whether a low-level code adheres to
the calling conventions for the stack pointer or for identifying more advanced concepts such as
local variables, whereas general two-variable equalities may be useful to infer relationships between
iteration variables and pointer variables.
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OpIAT project (MU 1508/1-1 and SE 551/13-1) funded by the Deutsche Forschungsgemeinschaft
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MINÉ, A. 2001b. The octagon abstract domain. In Proc. of the Workshop on Analysis, Slicing, and Transformation (AST’01).

IEEE. IEEE CS Press, 310–319.
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APPENDIX
A. AN ALGORITHM FOR THE LEAST UPPER BOUND
Here, we present an algorithm for computing the least upper bound of satisfiable normalised con-
junctions E1, E2 of two-variable equalities as introduced in Section 9. In the first step, we extend
the conjunctions E1, E2 by trivial equalities xi

.
= xi such that in both E1 and E2 every variable

occurs exactly once as a left-hand side. As in the case of variable differences alone, we successively
partition the set of variables.

Let X0 denote the set of variables xi where the right-hand sides in E1 and E2 coincide. Then the
least upper bound of E1 and E2 will have the conjunction E′0 =

∧
xi∈X0,ti 6=xi

(xi
.
= ti) if ti is the

right-hand side for xi in E1.
Let X1 denote the set of variables xi where the right-hand sides in E1 and E2 are just constants

c
(i)
i but do not coincide, i.e., c(1)

i 6= c
(2)
i . Assume that h is the least variable index with this property.

This means that for every such variable xi ∈ X1 with i 6= h, the system of equations:

c
(1)
i = ac

(1)
h + b c

(2)
i = ac

(2)
h + b

has a unique solution a = ai,b = bi. Then, the least upper bound of E1 and E2 will have the
conjunction E′1 =

∧
xh 6=xi∈X1

(xi
.
= aixh + bi).

Let X2 denote the set of variables xi where the right-hand sides in E1 are constants ci but the
right-hand sides in E2 contain occurrences of variables, i.e., the equalities in E2 are of the form
xi

.
= aixhi + bi. Then we define a partition Π2 on the set X2 where variables xi,xj are in the same

equivalence class iff the following two conditions are satisfied:

• the variables on the right-hand side in E2 coincide, i.e., hi = hj ;
• ci−bi

ai
=

cj−bj
aj

.

For one such class Q ∈ Π2, let xh denote the variable with least index. Then, we obtain for every
other variable xi 6= xh in Q the equality xi

.
= ai

ah
xh + (bi − aibh

ah
). Let E′2,Q denote the conjunction∧

xh 6=xi∈Q(xi
.
= ai

ah
xh + (bi− aibh

ah
)). Then the least upper bound of E1 and E2 has the conjunction

E′2 =
∧

Q∈Π2
E′2,Q.

Let E′3 denote the conjunction analogous to E′2 but with the roles of E1 and E2 exchanged.
Now let X4 denote the set of variables xi occurring as left-hand sides both in E1 and E2 where

the corresponding right-hand sides both contain variables, i.e., E1 and E2 have the equalities
xi

.
= aixhi

+ bi and xi
.
= a′ixh′

i
+ b′i, respectively. On the set X4 we define a partition Π4 where

variables xi,xj are put into the same equivalence class iff the following three conditions are satisfied:

(1) the variables occurring in the right-hand sides w.r.t. E1 and E2 coincide, i.e., hi = hj and
h′i = h′j ;

(2) a′
i

ai
=

a′
j

aj
;

(3) bi−b′i
ai

=
bj−b′j
aj

.

For one such class Q ∈ Π4, let again xh denote the variable with least index. As for equivalence
classes of the set X2, we obtain for every other variable xi 6= xh in Q the equality xi

.
= ai

ah
xh +

(bi − aibh
ah

). Let E′4,Q denote the conjunction
∧

xh 6=xi∈Q(xi
.
= ai

ah
xh + (bi − aibh

ah
)). Then the least

upper bound of E1 and E2 has the conjunction E′4 =
∧

Q∈Π4
E′4,Q.

This completes the enumeration of equalities both implied by E1 and E2. The remaining equalities
are not in the same equivalence class w.r.t. E1 and E2 and thus would only account for trivial
equalities xi

.
= xi in E1 t E2. Accordingly, we define the least upper bound E1 t E2 as the

conjunction

E1 t E2 = E′0 ∧ E′1 ∧ E′2 ∧ E′3 ∧ E′4
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Note that the setsX0, . . . , X4 are disjoint. The required equivalence classes can again be computed
in time O(k · log(k)). Since the remaining computation can be done in time O(k), we conclude
that the least upper bound of two reduced conjunctions can be computed in time O(k · log(k)). By
definition, the least upper bound of two conjunctions of equalitiesE1tE2 is given by the conjunction
of all equalities implied both by E1 and E2. For this purpose consider the following example:

Example A.1.
Assume given the conjunctions E1 and E2 in normal form enhanced with trivial equalities:

E1 = (x1
.
= x1) ∧ (x2

.
= x2) ∧ (x3

.
= x1) ∧ (x4

.
= 3x2 + 5) ∧ (x5

.
= 3x1 + 15)

∧ (x6
.
= x1 + 3) ∧ (x7

.
= x1 + 2) ∧ (x8

.
= 7x1 + 15) ∧ (x9

.
= 0)∧

(x10
.
= 2) ∧ (x11

.
= 1) ∧ (x12

.
= 3)

E2 = (x1
.
= x1) ∧ (x2

.
= x2) ∧ (x3

.
= x2 − 5) ∧ (x4

.
= 3x2 + 5) ∧ (x5

.
= 3x2)

∧ (x6
.
= x2 + 1) ∧ (x7

.
= x2) ∧ (x8

.
= 21x2 − 20) ∧ (x9

.
= 1)∧

(x10
.
= 4) ∧ (x11

.
= 2x1 − 3) ∧ (x12

.
= 4x1 − 5)

In order to computeE1tE2, we successively consider the setsX0, . . . , X4 of variables as constructed
by our algorithm. The first class X0 consists of the variables x1,x2,x4 since for these, the right-hand
sides are syntactically equal w.r.t. to E1 and E2. By eliminating the trivial equalities, we obtain for
E′0 the equality x4

.
= 3x2 + 5.

The second set X1, speaking about variable constant equalities only, is given by the set {x9,x10}.
According to our algorithm, the conjunction E′1 therefore only consists of the equality x10

.
= 2x9 +2.

Considering the set X2 = {x11,x12}, we obtain E′2 = x12
.
= 2x11 + 1.

The last set X4 consists of the variables x3,x5,x6,x7,x8. According to our algorithm, this set is
further partitioned into the equivalence classes Q1 = {x3,x5}, Q2 = {x6,x7}, and the singleton
class Q3 = {x8}. For the first two of these classes, we choose the new reference variables x3 and
x6, respectively, and thus obtain: E′4 = (x5

.
= 3x3 + 15) ∧ (x7

.
= x6 − 1). Since the right-hand

sides for variable x8 in E1 and E2 do not coincide they are not in the same equivalence class w.r.t. to
the least upper bound of E1 and E2. Thus, this class does not contribute any non-trivial equality.

Summarising, the least upper bound E1tE2 is given by the normalised conjunction:

(x4
.
= 3x2 + 5) ∧ (x5

.
= 3x3 + 15) ∧ (x7

.
= x6 − 1) ∧ (x10

.
= 2x9 + 2) ∧ (x12

.
= 2x11 + 1) .

B. ALGORITHMS FOR ABSTRACT TRANSFORMERS
In the following, we define the abstract effect [[s]]] for every assignment s, by providing an
implementation for the abstract transformers for equivalence relations E 6= ⊥. If the abstract
transformer [[]]] : E → E is applied to the least element ⊥ of our lattice, we obtain ⊥, denoting that
all possible equalities are valid.

1: [[xi :=?]]] E =
2: if (E(xi) 6= (xi, 0)) then
3: E(xi)← (xi, 0);
4: return E;
5: else
6: X ← {xj | E(xj) = (xi, ck), j 6= i }
7: if (X 6= ∅) then
8: choose smallest xk ∈ X
9: for all xl ∈ X with E(xl) = (xi, cl), l 6= k do

10: E(xl)← (xk, cl − ck);
11: E(xk)← (xk, 0);
12: E(xi)← (xi, 0);
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13: return E;

When a variable xi is set unknown, we have to clear all right-hand sides of equalities from xi,
having xi as reference variable.

1: [[xi := xj + c]]] E =
2: let (xj′ , c

′) = E(xj) in
3: if ((i == j) ∧ (i == j′)) then
4: for all xk with E(xk) = (xi, ck), k 6= i do
5: E(xk)← (xi, ck − c);
6: return E;
7: else if ((i == j) ∧ (i 6= j′)) then
8: let (xi′ , ci) = E(xi) in
9: E(xi)← (xi′ , ci + c);

10: return E;
11: else
12: E ← [[xi :=?]]] E
13: if (i > j′) then
14: E(xi)← (xj′ , c

′ + c);
15: return E;
16: else
17: for all xk with E(xk) = (xj′ , ck), k 6= j′ do
18: E(xk)← (xi, ck − c− c′);
19: E(xj′)← (xi,−c− c′);
20: return E;

The effect of xi := xj + c is implemented by simply assigning the term xj + c to variable xj .
Subsequently, the variable order has to be restored such that the reference variables are of a smaller
number than the variables on the left-hand side. In the worst case all of the maximally k equalities
have to be adjusted. For the special case of describing the effect of xi := xi + c in our domain of
normalised equality relations, all those right-hand sides with reference variable xi have to be adjusted
by c.

[[xi := c]]] E = [[xi := x0 + c]]] E

[[xi := xj ]]
] E = [[xi := xj + 0]]] E

[[xi := xj + xk]]] E =


[[xi := xj + ck ]]] E if E(xk) = (x0, ck)

[[xi := xk + cj ]]] E if E(xj) = (x0, cj)

[[xi :=? ]]] E otherwise

The algorithm for normalising a given conjunction E =
∧
ei of equalities ei is obtained via the

following algorithm:
1: given: E =

∧
ei

2: E′ = ∅
3: for all e ∈ E do
4: if (e ≡ xi

.
= b) then

5: if (E′(xi) == (x0, b
′)) then

6: if (b 6= b′) then
7: return false;
8: else
9: let E′(xi) = (xh, b

′) in
10: E′(xh)← (x0, b− b′); E′[xh/b− b′];
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11: else
12: let e = xi

.
= xj + b in

13: if (E′(xi) == (x0, b1)) then
14: E′(xj)← (x0, b1 − b); E′[xj/b1 − b];
15: else if (E′(xj) == (x0, b2)) then
16: E′(xi)← (x0, b2 + b); E′[xi/b2 + b];
17: else
18: let E′(xi) = xh1 + b1 ∧ E′(xj) = xh2 + b2 in
19: if ((h1 == h2) ∧ (b1 6= b2 + b)) then
20: return false;
21: else if (h1 6= h2) then
22: if (h1 < h2) then
23: E′(xh1

)← (xh2
, b+ (b2 − b1)); E′[xh2

/xh1
+ b1 − (b+ b2)];

24: else
25: E′(xh2

)← (xh1
, b1 − (b+ b2)); E′[xh1

/xh2
+ b+ (b2 − b1)];

26: return E′;
Here, E[xi/t] denotes that in the conjunction of equalities E, all occurrences of variable xi in

right-hand sides of equalities are substituted by the term t.
Next, we present the algorithm for computing the least upper bound for two given normalised

conjunctions of equalities E1, E2, i.e., E1tE2. The function partition partitions the variables
of tow conjunctions of equalities such that the properties from the proof of Lemma 4.4 hold. The
partition is of type 22X×Z, computing a set of tuples. Each tuple consist of a set of registers and a
number d from Z denoting the difference between two equalities.
In particular:

partition =
⋃

(X, d) | ∀xi ∈ X.E1(xi) = (xh1
, ci1);E2(xi) = (xh2

, ci2) :
d = ci1 − ci2

∀xi,xj ∈ X | |X| > 1.E1(xi) = (xh1
, ci1);E1(xj) = (xh1

, cj1);
E2(xi) = (xh2

, ci2);E2(xj) = (xh2
, cj2) :

d = ci1 − ci2 = cj1 − cj2
Accordingly, the function δ : X 7→ Z computes the difference of two variables w.r.t. two

conjunctions E1, E2.
1: given: E1, E2

2: E = ∅
3: Π = partition(E1, E2)
4: for all Q ∈ Π | Q = (X, d) do
5: if (|Q| == 1 | Q = ({xi}, )) then
6: if ((E1(xi) == E2(xi)) ∧ E1(xi) == (x0, b)) then
7: E(xi)← (x0, b)
8: else
9: E(xi) = (xi, 0)

10: else
11: if (∀xj ∈ X : (E1(xj) == (x0, b)) ∧ (E2(xj) == (x0, b

′))) then
12: if (d == 0) then
13: ∀xj ∈ X : E(xj)← E1(xj)
14: else
15: choose smallest xh ∈ X
16: ∀xj ∈ X; j 6= h :
17: let E1(xj) = ( , bj); E1(xh) = ( , bh) in
18: E(xj)← (xh, bj − bh)
19: else
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20: let E1(xj) = (xh1 , bj); E2(xj) = (xh2 , bj);
21: choose smallest xh ∈ X
22: E(xj)← (xh, bj − bh)
23: return E;
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