
What is a pure functional?

Martin Hofmann1, Aleksandr Karbyshev2, and Helmut Seidl2

1 Institut für Informatik, Universität München, Oettingenstrasse 67, 80538 München, Germany,
hofmann@ifi.lmu.de,

2 Fakultät für Informatik, Technische Universität München

Abstract. Given an ML function f : (int->int)->int how can we rig-
orously specify that f is pure, i.e., produces no side-effects other than those aris-
ing from calling its functional argument? We show that existing methods based
on preservation of invariants and relational parametricity are insufficient for this
purpose and thus define a new notion that captures purity in the sense that for
any functional F that is pure in this sense there exists a corresponding question-
answer strategy. This research is motivated by an attempt to prove algorithms
correct that take such supposedly pure functionals as input and apply them to
stateful arguments in order to inspect intensional aspects of their behaviour.

1 Introduction

Suppose we are given an unknown SML-function f : (int->int)->int as input.
How can we rigorously specify that f does not cause side-effects other than those that
might arise by applying f to a side-effecting argument? Our motivation for studying
this question stems from an attempt to rigorously verify fixpoint solvers that take such a
supposedly pure functional as input. Let us explain this application in some more detail.

Generic fixpoint solvers have successfully been used as the core algorithmic en-
gine for program analyser frameworks both for logic programming languages [5,7] and
C [16], see also [11]. Such solvers take as input an arbitrary equation system over a set
Var of variables and some complete lattice Dom. Each such system is specified as a
function from the set Var of unknowns to their respective right-hand sides where each
right-hand side is considered as a function of type (Var → Dom) → Dom which typi-
cally is implemented in some specification language. The generic local solver then starts
from a set of interesting variables and explores the variable space Var only in so far as
their values contribute to the values of the interesting variables. In order to evaluate
as few right-hand sides as possible, any efficient fixpoint algorithm takes dependencies
among variables into account. If right-hand sides, however, are just semantically given
as functions, no static preprocessing is possible to identify (a superset of) such depen-
dencies. Therefore, generic solvers such as [3, 6, 9] rely on self-observation to identify
the variable dependencies when they are encountered during fixpoint iteration. Due to
this reflective behaviour, these algorithms are quite involved and thus difficult to be
proven correct. While they are formulated as being applicable to systems of equations
using arbitrary functions as right-hand sides, they clearly can only work properly for
right-hand sides which are sufficiently well-behaved.

2 Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl

Other situations where supposedly pure functionals arise as input include Simpson’s
algorithm for exact integration [17] and the program transformations described in [10].
More distantly, we hope that our results might also contribute to the issue of purity in
object-oriented specification [15] and be of interest to the Haskell community.

In this paper, we give an extensional semantic criterion for purity and show that it
entails the existence of a strategy tree for the given functional. Thus, when trying to
verify one of the aforementioned algorithms one can assume without loss of generality
that the functional input is presented in the form of such a strategy tree which allows
for a convenient proof by induction. Alternatively, one can use our extensional criterion
directly for the verification and indeed we do so when verifying a recursive program
that extracts a strategy tree from a given semantically pure functional.

Section 3 and 4 review classical parametricity and explain its weakness in the given
context. Section 5 defines a new, stronger, notion of parametricity which by way of uni-
versal quantification yields our concept of semantic purity. Section 6 applies our notion
to identify snapback (memorising and restoring the initial state) as impure, something
that was hitherto impossible in a setting of total functions. Section 7 defines an inductive
set of strategy trees which are shown in Sections 8 and 9 to represent pure functionals.
Section 10 explains relations to Algol theory and game semantics.

The proofs except the one of Theorem 6 have been formalised in Coq. Moreover,
one of us has just completed the formal verification (also in Coq) of a generic fixpoint
algorithm using the results reported here. This will be published in a companion paper.

2 Preliminaries

For sets X and Y we denote by X × Y the Cartesian product and by X → Y the
function space. We denote pairs by (x, y) and projections by fst(x) and snd(x). We
use λ and juxtaposition for function abstraction and applications. We use the notations
f : X → Y and f ∈ X → Y interchangeably. If (Xi)i∈I is a family of sets then we
denote

∏
i∈I Xi or simply

∏
iXi its Cartesian product. If f ∈

∏
iXi then fi ∈ Xi. We

write B for the set {tt,ff} of truth values. We use ⇒ for logical implication; it binds
weaker than the other logical connectives like ∧,∨. For sets X and S we define the
state monad by

TS(X) := S → S ×X .

We have the associated operations valS : X → TS(X) and bindS : TS(X) × (X →
TS(Y))→ TS(Y) given by valS(x)(s) = (s, x) and bindS(f, g)(s) = g(x)(s1) where
f(s) = (s1, x). We tend to omit the index S whenever sensible.

If S is some set modelling global states, e.g., S = Z × Z in the case of two
global variables of integer type, then an element f of TS(X) may be viewed as a state-
dependent and state-modifying expression of type X .

We let Var and Dom be two fixed sets, for example, Var = Dom = Z. We fix
elements x0 ∈ Var, d0 ∈ Dom. We define

Func = ΠS .(Var→ TS(Dom))→ TS(Dom)

What is a pure functional? 3

where the product ΠS ranges over a suitably large universe of sets. We do not intend to
have the domain of the product to include Func itself so that we do not need to delve
into the somewhat delicate issue of modelling impredicative polymorphism.

We view an element f of the function space Var→ TS(Dom) as a stateful function
from Var to Dom: given x ∈ Var and a state s ∈ S then f(x)(s) yields a pair (s1, d)
thought of as final state (s1) and result (d). The bind-construct models the application
of such a function to a stateful expression of type Var, i.e., an element of TS(Var).

3 Purity at first order

A stateful function f : Var→ TS(Dom) may be considered “pure” (side-effect-free) if
there exists a function g : Var → Dom such that f(x)(s) = (s, g(x)), i.e., f may be
factored through valS : Dom→ TS(Dom). This intensional viewpoint can in this case
be underpinned by a more extensional yet equivalent definition as follows:

Theorem 1. Let f : Var→ TS(Dom) be given. The following are equivalent:

1. f factors through valS : Dom→ TS(Dom).
2. For all relations R ⊆ S × S and x ∈ Var and sRs′ one has v = v′ and s1Rs1

where (s1, v) = f(x)(s) and (s′1, v
′) = f(x)(s′).

Proof. The direction 1⇒ 2 is obvious. For the converse, pick s0 ∈ S (the boundary
case S = ∅ is obvious) and define g : Var → Dom by g(x) = snd(f(x)(s0)). We
claim that f = val ◦ g. To see this, fix x ∈ Var and s ∈ S and define R = {(s0, s)}.
If (s1, v) = f(x)(s0) and (s′1, v

′) = f(x)(s) then, since s0Rs we get v = v′ and
s′1 = s. ut

A functional F : (Var→ TS(Dom))→ TS(Dom) can be applied to stateful functions.
Intuitively, it should be called pure if when applied to a stateful function f then the only
side-effects that F (f) ∈ TS(Dom) will have are those caused by calls to f within F .
In particular, if f is pure as described above, then F (f) should be pure, too, i.e., of the
form valS(d) for some d ∈ Dom.

It is tempting to conjecture that such “pure” F would stem from a functional G :
(Var → Dom) → Dom. However, there is no way of applying such a G to a stateful
f : Var→ TS(Dom) and, indeed, such a G does not contain enough information to tell
how to transport the state changes and dependencies caused by calls to the argument f .

4 Relational parametricity

Let us therefore try to make progress with the relational approach. The following result
may be encouraging.

Theorem 2. Suppose that F : ({?} → TS({?})) → TS({?}) is such that for all
relations R ⊆ S × S the following is true: For all k, k′ : {?} → TS({?}) such that
for all s, s′ ∈ S sRs′ implies fst(k(?)(s))R fst(k′(?)(s′)), one has that sRs′ implies
fst(F (k)(s))R fst(F (k′)(s′)), for every s, s′ ∈ S.

Then there exists a natural number n such that F = itn where it0(k)(s) = (s, ?)
and itn+1(k)(s) = k(?)(fst(itn(k)(s))).

4 Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl

Proof. We only show the case where S = N, the general case is similar. We define
k0(?)(s) = (s + 1, ?) and n0 = fst(F (k0)(0)). Intuitively, we assume that the state
contains an integer variable which is incremented upon each call to k0.

Now pick any k and s0 and define R = {(n, fst(itn(k)(s0))) | n ∈ N}. We have
(0, s0) and whenever sRs′ then fst(k0(?)(s))R fst(k(?)(s′)). Therefore, by assumption
n0 = fst(F (k0))R fst(F (k)). The claim follows from the definition of R. ut

We remark that this result can also be obtained as a consequence of a Theorem in [18].
It is therefore tempting to generalise this approach to the type of our functionals

(and sneaking in polymorphic quantification over state types) as follows:

Definition 1. A functional F :
∏

S(Var → TS(Dom)) → TS(Dom) is relationally
parametric if the following is true for all S, S′ and relations R ⊆ S × S′.

For all k : Var→ TS(Dom) and k′ : Var→ TS′(Dom) such that for all s, s′

sRs′ ⇒ fst(k(x)(s))R fst(k′(x)(s′)) ∧ snd(k(x)(s)) = snd(k′(x)(s′))

holds, one has that the following holds for all s, s′:

sRs′ ⇒ fst(FS(k)(s))R fst(FS′(k′)(s′)) ∧ snd(FS(k)(s)) = snd(FS′(k′)(s′)) .

Definition 2 (Snapback). Define Fsnap :
∏

S(Var → TS(Dom)) → TS(Dom) by
(Fsnap)S(k)(s) = (s, d) where (s1, d) = k(x0)(s). Thus, Fsnap invokes k but discards
the resulting state and only keeps the resulting value in d. Instead, the initial state is
restored.

The following is direct.

Proposition 1. Fsnap is relationally parametric. ut

Therefore, relational parametricity is not strong enough to ensure purity in the intu-
itive sense because snapback cannot be considered pure. Let us introduce the following
abbreviations:

Definition 3. – If X,X ′ are sets then Rel(X,X ′) denotes the set of binary relations
between X and X ′, i.e., P(X ×X ′);

– if X is a set then ∆X ∈ Rel(X,X) is the equality on set X;
– if R ∈ Rel(X,X ′) and S ∈ Rel(Y, Y ′) then R→S ∈ Rel(X→Y,X ′→Y ′) is given

by f R→S f ′ ⇐⇒ ∀x x′. xRx′ ⇒ f(x)Sf ′(x′);
– if R ∈ Rel(X,X ′) and S ∈ Rel(Y, Y ′) then R×S ∈ Rel(X×Y,X ′×Y ′) is given

by f R×S f ′ ⇐⇒ fst(f)R fst(f ′) ∧ snd(f)S snd(f ′);
– if R ∈ Rel(S, S′) and Q ∈ Rel(X,X ′) then Tparam

R (Q) ∈ Rel(TS(X),TS′(X ′)) is
given by Tparam

R (Q) := R→R×Q.

Now, F ∈ Func is relationally parametric if for all S, S′ and R ∈ Rel(S, S′) one has

(FS , FS′) ∈ (∆Var → Tparam
R (∆Dom))→ Tparam

R (∆Dom) .

What is a pure functional? 5

5 A new notion of parametricity

We view the problem with snapback as a deficiency of the definition Tparam
R (Q). A

stronger way of lifting a relation Q ∈ Rel(X,X ′) to Rel(TS(X),TS′(X ′)) is needed.
Rather than tinkering with specific formats (of which we see examples later on), we
jump to the most permissive notion of relation on sets of the form TS(X).

Definition 4. Fix sets S, S′. For eachX,X ′ andQ ∈ Rel(X,X ′) fix a relation Trel(Q) ∈
Rel(TS(X),TS′(X ′)). The family (X,X ′, Q) 7→ Trel(Q) is an acceptable monadic re-
lation if

– for all X,X ′, Q ∈ Rel(X,X ′), x ∈ X,x′ ∈ X ′:

xQx′ ⇒ valS(x) Trel(Q) valS′(x′) ;

– for allX,X ′, Q ∈ Rel(X,X ′), Y, Y ′, P ∈ Rel(Y, Y ′), x ∈ TS(X), x′ ∈ TS′(X ′),
f : X → TS(Y), f ′ : X ′ → TS′(Y ′):

xTrel(Q)x′ ∧ f(Q→Trel(P))f ′ ⇒ bindS(x, f) Trel(P) bindS′(x′, f ′) .

The lifting of state relations known from relational parametricity forms an example
of an acceptable monadic relation as stated in the next proposition. We will later see
examples of acceptable monadic relations that are not of this form.

Proposition 2. If R ∈ Rel(S, S′) then Q 7→ Tparam
R (Q) is an acceptable monadic

relation. ut

It is now possible to state and prove a parametricity theorem to the effect that all
functions definable from lambda calculus, bind, and val respect any acceptable monadic
relation. The precise formulation and proof sketch is elided here for lack of space and
may be found in the full paper.

Let us return to the specific example set Func. We can use the new parametricity
notion to single out the pure elements of Func as follows.

Definition 5. A functional F ∈ Func is pure if

(FS , FS′) ∈ (∆Var → Trel(∆Dom))→ Trel(∆Dom)

holds for all S, S′ and for all acceptable monadic relations Trel for S, S′.

Notice that functionals arising as denotations of lambda terms involving “parametric”
constants (i.e., those for which the parametricity theorem holds) are pure in this sense.

6 Ruling out snapback

Our aim in this section is to prove that the snapback functional from Def. 2 cannot be
pure in the following positive sense:

Theorem 3. LetF ∈ Func be pure. Put Test := B and define ktest : Var→ TTest(Dom)
by ktest(x)(s) = (tt, d0). If FTest(ktest)(ff) = (ff, d) then FS(k)(s) = (s, d), for all S,
s ∈ S and k : Var→ TS(Dom).

6 Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl

We apply F to a stateful argument ktest which — when called — sets a global boolean
variable. If this variable remains unset after the evaluation of FTest(ktest) then F did not
call its argument and must therefore be constant.

In order to prove the theorem we construct a specific monadic relation.

Definition 6. Let S be a set and Test = B. For each X,X ′ and Q ∈ Rel(X,X ′) define
Trel
1 (Q) ∈ Rel(TTest(X),TS(X ′)) by

Trel
1 (Q) = {(f, f ′) | ∀s s′ s1 s′1 x x′.f(s) = (s1, x) ∧ f ′(s′) = (s′1, x

′)⇒
(∃x′0. xQx′0) ∧ (∃x0. x0Qx′) ∧ (s1 = ff ⇒ xQx′ ∧ s′ = s′1 ∧ s = ff)} .

Note that the relations Trel
1 (Q) are not of the usual form “related pre-states yield related

post-states and related results”. Rather, relatedness of results (x and x′) is conditional
on the final state having a specific property (here “being equal to ff”).

Lemma 1. The relations Trel
1 (Q) form an acceptable monadic relation.

Proof (Sketch). Let us abbreviate

Z(Q, s, s1, s
′, s′1, x, x

′) ≡
(∃x′0. xQx′0) ∧ (∃x0. x0Qx′) ∧ (s1 = ff ⇒ xQx′ ∧ s′ = s′1 ∧ s = ff) .

In the val-case we have s = s1 and s′ = s′1 and xQx′ by assumption. The claim
Z(Q, s, s1, s

′, s′1, x, x
′) is then trivial.

For the bind-case assume Z(Q̌, s, š, s′, š′, x̌, x̌′) and g (Q̌ → Trel
1 (Q)) g′. We put

(s1, x) = g(x̌)(š) and (s′1, x
′) = g′(x̌′)(š′). We should prove Z(Q, s, s1, s

′, s′1, x, x
′).

Choose x̌′0 such that x̌Q̌x′0. The assumption on g yields Z(Q, š, s1, š
′, ?, x, ?) thus in

particular the existence of x′0 such that xQx′0. Similarly, we show ∃x0. x0Qx′.
Now assume s1 = ff. Applying g (Q̌ → Trel

1 (Q)) g′ to x̌Q̌x′0 yields š = ff (this
step is the reason why we carry these ∃-clauses around). From Z(Q̌, s, š, s′, š′, x̌, x̌′)
and š = ff we then conclude x̌Q̌x̌′ and also s = ff. Using the assumption on g, g′ again
we then obtain the remaining bit x1Qx′1. ut

Lemma 2. Let S be a set and k : Var → TS(Dom). We have (ktest, k) ∈ ∆Var →
Trel
1 (∆Dom).

Proof. Suppose that (s1, d) = ktest(x)(s) and (s′1, d
′) = k(x)(s′). Since s1 = tt all we

have to prove is ∃x′0. d = x′0 and ∃x0. x0 = d′ which is obvious. ut

Note that the only relation R such that ktest (∆Var → R→R×∆Dom) k holds for all k is
the empty relation but that is useless since it does not relate initial states to each other.

Proof (of Theorem 3). We prove FTest(ktest) Trel
1 (∆Dom)FS(k) using purity of F to-

gether with Lemmas 1 and 2. This directly gives the desired result. ut

What is a pure functional? 7

7 Strategy trees

In this section we show that pure elements of Func are in fact first-order objects, i.e.,
define a question-answer dialogue. We first define those dialogues that can be seen as
strategies in a game leading to the computation of F (k) for any given k. We associate
with each such strategy t a pure functional tree2fun(t) in the obvious way. We then
define a functional program fun2tree (see Appendix for ML code) that can extract a
strategy from any functional whether pure or not.

However, the program might in general fail to terminate and produce “strategies”
whose continuation functions do not terminate. We will first prove that if the program
returns a proper strategy and the input functional is pure then the computed strategy
corresponds to the input functional. To do this, we axiomatise the graph Fun2tree of the
functional program restricted to proper strategies as a well-founded relation. Later in
Section 9 we show that for pure input functional the program does indeed return a proper
strategy, i.e., the well-founded relation defines a total function on pure functionals.

We focus on the set Func here since it comes from the intended applications to
fixpoint solvers.

Definition 7 (Strategies). The set Tree is inductively defined by the following clauses.

– If d ∈ Dom then answ(d) ∈ Tree.
– If x ∈ Var and f : Dom→ Tree then que(x, f) ∈ Tree.

The function tree2fun : Tree→ Func is (well-founded) recursively defined by:

– tree2fun(answ(d))(k)(s) = (s, d);
– tree2fun(que(x, f))(k)(s) = tree2fun(f(d))(k)(š) where (š, d) = k(x)(s).

In order to extract an element of Tree from a given functional we define the state set

Test = Dom∗ × Var∗ × Var × B .

As usual, (−)∗ is Kleene star. We refer to the components of s = (~d, ~x, x, b) by ~d =
s.ans, ~x = s.qns, x = s.arg, b = s.cal.

We write s[qns := ~x′] for (~d, ~x′, a, b) and use similar notation for the other compo-
nents. For ~d ∈ Dom∗ the initial state r~d is given by (~d, ε, x0,ff) (recall that x0 and d0
are the default elements of Var,Dom).

Definition 8. The function ktest : Var→ TTest(Dom) is given by:

– ktest(x)(s) = (s, d0), if s.cal = tt;
– ktest(x)(s) = (s[arg:=x, cal:=tt], d0), if s.cal = ff and s.ans = ε;
– ktest(x)(s) = (s[ans:=~d, qns:=~xx], d), if s.cal = ff, s.ans = d~d and s.qns = ~x;

where d0 ∈ Dom is the default element.

Intuitively, so long as cal is not set, ktest reproduces the prerecorded answers from ans
and stores the questions asked in qns. Once ans is empty the next question is stored in
arg and cal is set preventing any further state modifications.

8 Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl

Definition 9. The relation

Fun2treeAux ⊆ ((Var→TTest(Dom))→TTest(Dom)) × Dom∗ × Tree

is inductively defined by the following clauses.

– If F (ktest)(r~d) = (r1, d) and r1.cal = ff then Fun2treeAux(F, ~d, answ(d)).
– If F (ktest)(r~d) = (r1, d) and r1.cal = tt and r1.arg = x and f : Dom → Tree is

such that Fun2treeAux(F, ~db, f(b)), b ∈ Dom, holds then Fun2treeAux(F, ~d, que(x, f)).

We also define
Fun2tree(F, t) ⇐⇒ Fun2treeAux(F, ε, t) .

8 Strategy trees for pure functionals

We will argue later in section 9 that for any pure F there always exists t such that
Fun2tree(F, t). Here, we merely show that if Fun2tree(F, t) then F = tree2fun(t),
thus F is induced by a strategy tree.

Theorem 4. Suppose that F ∈ Func is pure and that Fun2tree(FTest, t) holds. Then
F = tree2fun(t).

We prove a more general statement involving the auxiliary relation Fun2treeAux. For
that, we relate sequences of questions to sequences of answers w.r.t. a given k : Var→
TS(Dom).

Definition 10. Suppose S is a set and k : Var → TS(Dom). We define MatS(k) ⊆
Var∗ × Dom∗ × S × S inductively by:

– MatS(k)(ε, ε, s, s) for all s ∈ S.
– If MatS(k)(~x, ~d, s, š) and (s1, d) = k(x)(š) then MatS(k)(~xx, ~dd, s, s1).

Basically, MatS(k)(~x, ~d, s, s1) asserts that if we apply k successively to the arguments
in ~x beginning in state s then (threading intermediate states through) we end up in state
s1 and the results we obtain along the way are recorded in ~d.

Theorem 4 is a direct consequence of the following characterisation of Fun2treeAux.

Theorem 5. Suppose that F ∈ Func is pure and that Fun2treeAux(FTest, ~d, t) holds.
Suppose furthermore that FTest(ktest)(r~d) = (r,) and MatS(k)(r.qns, ~d, s, š) holds. If
FS(k)(s) = (s1, d1) and tree2fun(t, k, š) = (s2, d2) then s1 = s2 and d1 = d2.

The proof of Theorem 4 is by induction on Fun2treeAux and breaks down into the
following two lemmas covering base case and inductive case.

Lemma 3 (Base case). Let F be a pure functional. If FTest(ktest)(r~d) = (r, v) and
MatS(k)(r.qns, ~d, s, s1) and r.cal = ff then FS(k)(s) = (s1, v).

What is a pure functional? 9

This lemma is similar to Theorem 3 but is complicated by the fact that ktest only sets
cal to tt after having worked off the pre-recorded answers ~d. Accordingly, the Lemma
requires that k match these prerecorded answers w.r.t. the questions asked on the way
(r.qns). The proof uses an acceptable monadic relation in the following general format.

Definition 11. Let S, S′ be sets. Let Tr ∈ Rel(S, S) and Re,Gu ∈ Rel(S × S′, S × S′)
and Q ∈ Rel(X,X ′). The relation Trel

Tr ,Re,Gu(Q) ∈ Rel(TS(X),TS′(X ′)) is defined
by

f Trel
Tr ,Re,Gu(Q) f ′ ⇐⇒ ∀s s′ s1 s′1 x x′.
f(s) = (s1, x) ∧ f ′(s′) = (s′1, x

′)⇒ (∃x′0. xQx′0) ∧ (∃x0. x0Qx′)∧
Tr(s, s1) ∧ (Re((s, s′), (s1, s

′
1))⇒ xQx′ ∧ Gu((s, s′), (s1, s

′
1)) .

Lemma 4. If Tr,Gu are reflexive and transitive and furthermore

Re((s, s′), (s1, s
′
1)) ∧ Tr(s, š) ∧ Tr(š, s1)⇒

Re((s, s′), (š, š′)) ∧ (Gu((s, s′), (š, š′))⇒ Re((š, š′), (s1, s
′
1)))

holds then Q 7→ Trel
Tr ,Re,Gu(Q) is an acceptable monadic relation. ut

We could have a more general format that also maintains a transition relation corre-
sponding to Tr on the S′-component, but this is not needed for our present purpose.

Proof (of Lemma 3, Sketch). We instantiate Lemma 4 w.r.t. the state sets Test and S:

Tr(r, r1) ≡ ∃~x ~d.TrP(r, r1, ~x, ~d) ,

Re((r, s), (r1, s1)) ≡ r1.cal = ff ∧ ∀~x ~d.TrP(r, r1, ~x, ~d)⇒ ∃š.MatS(k)(~x, ~d, s, š) ,

Gu((r, s), (r1, s1)) ≡ ∃~x ~d.TrP(r, r1, ~x, ~d) ∧MatS(k)(~x, ~d, s, s1) ,

TrP(r, r1, ~x, ~d) ≡ r1.cal = ff ⇒ r.cal = ff ∧ r1.arg = r.arg ∧ |~x| = |~d|∧
r1.qns = r.qns ~x ∧ r.ans = ~d r1.ans .

One must now show that these definitions meet the conditions of Lemma 4 and that the
resulting monadic relation relates ktest(x) to k(x) for all x. Note that via MatS(k) the
definition of the monadic relation is dependent on the k in question. This was not the
case in the proof of Theorem 3. The result then follows. ut

Lemma 5 (Inductive Case). Let F be a pure functional. If FTest(ktest)(r~d) = (r, v)
and FTest(ktest)(r~d d) = (t′, v′) and r.cal = tt then r′.qns = r.qns r.arg.

Notice that the inductive case no longer involves the state set S and k but operates
entirely on the specific state set Test.

We use an acceptable monadic relation obeying the following generic format that
does not seem to be an instance of the previous one used for the base case.

Definition 12. Let S, S′ be sets. Let Tr ∈ Rel(S, S), Tr′ ∈ Rel(S′, S′) and St1, St2 ∈
Rel(S, S′). The relation Trel

Tr ,Tr ′,St1 ,St2 (Q) ∈ Rel(TS(X),TS′(X ′)) is defined by

f Trel
Tr ,Tr ′,St1 ,St2 (Q) f ′ ⇐⇒ ∀s s′ s1 s′1 x x′.
f(s) = (s1, x) ∧ f ′(s′) = (s′1, x

′)⇒ (∃x′0. xQx′0) ∧ (∃x0. x0Qx′)∧
Tr(s, s1) ∧ Tr′(s′, s′1) ∧ (St1(s, s′)⇒ St1(s1, s

′
1) ∧ xQx′ ∨ St2(s1, s

′
1)) .

10 Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl

Lemma 6. If Tr,Tr′ are reflexive and transitive and furthermore

St2(s, s′) ∧ Tr(s, s1) ∧ Tr′(s′, s′1)⇒ St2(s1, s
′
1)

then Q 7→ Trel
Tr ,Tr ′,St1 ,St2 (Q) is an acceptable monadic relation. ut

Proof (of Lemma 5 (Sketch)). We instantiate the framework with state sets S := Test
and S′ := Test and

Tr(r, r1) ≡ Tr′(r, r1) ≡
(r1.cal = ff ⇒ r.cal = ff) ∧ (r.cal = tt⇒ r = r1)∧
(r.ans = ε⇒ r = r1 ∨ r1.ans = ε ∧ r1.cal = tt ∧ r1.qns = r.qns) ,

St1(r, r′) ≡ r.cal = ff ∧ r′.cal = ff ∧ r′.ans = r.ans d ∧ r′.qns = r.qns ,
St2(r, r′) ≡ r.cal = tt ∧ r.ans = ε ∧ r′.ans = ε ∧ r′.qns = r.qns r.arg .

The main result is then a fairly direct consequence. ut

Theorem 4 is proved by induction on Fun2treeAux employing Lemmas 3 and 5. ut

9 Existence of strategy trees

We will now show that for any pure functional one can indeed find a corresponding
strategy tree in the sense of Fun2tree. By the results of the previous section this then
implies that any pure functional can be represented by or seen as a strategy tree.

Admittedly, this result came as a certain surprise to us: we believed for a long time
that existence of strategy trees could only be guaranteed under some additional conti-
nuity assumptions. For example, the minimum functional Min : (N → N) → N given
by Min(f) = min{f(n) | n} is not continuous and cannot be represented by a strategy
tree. However, there is no pure functional (with Var = Dom = N) because it would
have to make infinitely many calls to its argument which could be tracked by a suitable
set S: consider, for instance, the application of such putative pure functional F to a
k : N→ TN(N) that increments a global variable upon each call.

Theorem 6. Let F ∈ Func be pure. There exists t such that Fun2tree(FTest, t).

Proof (Sketch). Assume for a contradiction that no such t exists. By studying an unsuc-
cessful attempt at constructing such a t (formally this involves the use of the axiom of
choice) we can construct an infinite sequence d1, d2, d3, . . . of elements of Dom such
that fst(FTest(ktest)(s~dn

)).cal = tt for all n where ~dn = d1d2d3 . . . dn−1.
Now let Test∞ be defined like Test except that the ans-component may contain fi-

nite as well as infinite lists over Dom. Let k∞test be the extension of ktest to Test∞. By
a simulation argument using Proposition 2 one finds FTest∞(k∞test)(s) = FTest(ktest)(s)
whenever s ∈ Test ⊆ Test∞. The following facts are proved using a mild generalisa-
tion of the acceptable monadic relation used in the proof of Lemma 3:

– FTest∞(k∞test)(r~d) = (r1, d) ∧ r1.cal = tt⇒ r1.ans = ε;
– FTest∞(k∞test)(r~d) = (r1, d)⇒ ∃ans ∈ Dom∗.~d = ans r1.ans;

What is a pure functional? 11

– FTest∞(k∞test)(r~d) = (r1, d) ∧ r1.cal = ff ⇒ fst(FTest(ktest)(r~d�)).cal = ff where
~d � comprises the first |r1.qns| elements of ~d.

Let ~d be the infinite list of the di and write (r1, d) = FTest∞(k∞test)(r~d). By the first and
second fact we must have r1.cal = ff. Thus, by the third fact, there exists n (namely
|r1.qns|) with fst(FTest(ktest)(s~dn

)).cal = ff, a contradiction. ut

10 Related work

Relational parametricity has been introduced by Reynolds [13, 14] as a means for re-
stricting the range of polymorphic type quantification. Wadler then popularised Rey-
nolds’ results in his famous [18].

Relational parametricity has also been used in order to justify program equivalences
in Idealized Algol a higher-order call-by-name language with local variables and stateful
integer expressions. The equivalences of interest rely on the fact that a procedure cannot
modify or read a local variable declared in a disjoint scope. In this context, an alterna-
tive extension of relational parametricity has been developed which can also rule out
snapback functionals: strict logical relations [12]. It works in the setting of monotone
continuous functions on Scott domains and relies crucially on the following “built-in”
parametricity property of such functions: if F (λx.⊥) = x 6= ⊥ then F (k) = x for all
k. Loc. cit. also relates certain functionals to strategy trees (there called resumptions).

The differences to our work are twofold: (1) we address all types of computational
lambda calculus in particular allow to return functions as results; (2) we work in a total,
set-theoretic framework whereas strict logical relations can only operate in the presence
of ⊥ and monotonicity.

The strategy trees are reminiscent of game semantics [1,2,8] and can be traced back
even further to Berry-Curiens sequential algorithms [4] and even to Kleene’s. The new
aspect here is the construction of a strategy tree for any set-theoretic functional that is
pure in an extensional sense defined by preservation of structure rather than by exis-
tence of intensional representations. It would be very interesting to investigate to what
extent our notion of purity which makes sense at all types of the computational lambda
calculus entails existence of strategies in the sense of game semantics or sequential
algorithms also at those higher types.

References

1. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF (extended abstract).
In M. Hagiya and J. C. Mitchell, editors, Theoretical Aspects of Computer Software, pages
1–15. Springer-Verlag, 1994. 10

2. Samson Abramsky and Guy McCusker. Linearity, sharing and state: a fully abstract game
semantics for idealized algol with active expressions. Electr. Notes Theor. Comput. Sci., 3,
1996. 10

3. Baudouin Le Charlier and Pascal Van Hentenryck. A Universal Top-Down Fixpoint Algo-
rithm. Technical Report CS-92-25, Brown University, Providence, RI 02912, 1992. 1

4. G. Berry and Pierre-Louis Curien. Sequential algorithms on concrete data structures. Theor.
Comput. Sci., 20:265–321, 1982. 10

12 Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl

5. Christian Fecht. GENA - A Tool for Generating Prolog Analyzers from Specifications. In
2nd Static Analysis Symposium (SAS), pages 418–419. LNCS 983, 1995. 1

6. Christian Fecht and Helmut Seidl. A faster solver for general systems of equations. Sci.
Comput. Program., 35(2):137–161, 1999. 1

7. Manuel V. Hermenegildo, Germán Puebla, Kim Marriott, and Peter J. Stuckey. Incremental
analysis of constraint logic programs. ACM Trans. Program. Lang. Syst., 22(2):187–223,
2000. 1

8. J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for pcf: I, ii, and iii. Inf. Comput.,
163(2):285–408, 2000. 10

9. Niels Jorgensen. Finding Fixpoints in Finite Function Spaces Using Neededness Analysis
and Chaotic Iteration. In 1st Static Analysis Symposium (SAS), pages 329–345. LNCS 864,
Springer Verlag, 1994. 1

10. John Longley. When is a functional program not a functional program? In ICFP, pages 1–7,
1999. 1

11. Hanne Riis Nielson and Flemming Nielson. Flow logics for constraint based analysis. In
Compiler Construction, 7th International Conference (CC), pages 109–127. LNCS 1383,
springer Verlag, 1998. 1

12. Peter W. O’Hearn and John C. Reynolds. From algol to polymorphic linear lambda-calculus.
J. ACM, 47(1):167–223, 2000. 10

13. John Reynolds. Types, abstraction and parametric polymorphism. In Information Processing.
IFIP, North-Holland, 1983. 10

14. John C. Reynolds and Gordon D. Plotkin. On functors expressible in the polymorphic typed
lambda calculus. Technical Report ECS-LFCS-88-53, University of Edinburgh, May 1988.
10

15. Arsenii Rudich, Ádám Darvas, and Peter Müller. Checking well-formedness of pure-method
specifications. In Proc. FM, LNCS 5014, pages 68–83, 2008. 1

16. Helmut Seidl and Vesal Vojdani. Region analysis for race detection. In Static Analysis, 16th
Int. Symposium, (SAS), pages 171–187. LNCS 5673, Springer Verlag, 2009. 1

17. Alex K. Simpson. Lazy functional algorithms for exact real functionals. In Lubos Brim,
Jozef Gruska, and Jirı́ Zlatuska, editors, Proc. MFCS, LNCS 1450, volume 1450 of Lecture
Notes in Computer Science, pages 456–464. Springer, 1998. 1

18. Philip Wadler. Theorems for free! In FPCA, pages 347–359, 1989. 4, 10

What is a pure functional? 13

A Parametricity theorem

In the following, we introduce the call by value lambda calculus. Define simple types
over some set of base types ranged over by o through the grammar

τ ::= o | τ1 × τ2 | τ1 → τ2 .

Fix an assignment of a set JoKS for each base type o and set S; we extend J−K to all
types by putting

Jτ1 × τ2KS = Jτ1KS × Jτ2KS ,
Jτ1 → τ2KS = Jτ1KS → TS(Jτ2KS) .

Given a set of constants (ranged over by c) with their types τ c and variables ranged over
by x we define the lambda terms by

e ::= x | c | λx.e | e1 e2 | e.1 | e.2 | 〈e1, e2〉 .

A typing context Γ is a finite map from variables to types. The typing judgement Γ `
e : τ is defined by the usual rules:

x ∈ dom(Γ)

Γ ` x : Γ (x) Γ ` c : τ c
Γ, x : τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

Γ ` e : τ1 × τ2
Γ ` e.1 : τ1

Γ ` e : τ1 × τ2
Γ ` e.2 : τ2

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` 〈e1, e2〉 : τ1 × τ2

For each S and c fix an interpretation JcKS ∈ Jτ cKS .
An environment for a context Γ and S is a mapping η such that x ∈ dom(Γ)

implies η(x) ∈ JΓ (x)KS . If Γ ` e : τ and η is such an environment then we define
JeKS(η) ∈ TS(JτKS) by the following clauses:

JxKS(η) = valS(η(x)) ,
JcKS(η) = valS(JcKS) ,
Jλx.eKS(η) = valS(λv.JeKS(η[x 7→v])) ,
Je1 e2KS(η) = bindS(Je1KS(η), λf.bindS(Je2KS(η), f)) .

We omit semantic equations for pairing and projections.

Definition 13. Fix sets S, S′ and an acceptable monadic relation Trel for S, S′. Given
a binary relation JoKrel ∈ Rel(JoKS , JoKS′) for each base type o, we can associate a
relation JτKrelTrel ∈ Rel(JτKS , JτKS′) with each type τ by the following clauses:

JoKrelTrel = JoKrel , Jτ1 × τ2KrelTrel = Jτ1KrelTrel × Jτ2KrelTrel ,

Jτ1 → τ2KrelTrel = Jτ1KrelTrel → Trel(Jτ2KrelTrel) .

The following parametricity theorem is immediate from the definition of acceptable
monadic relation and the previous one.

Theorem 7. Fix S, S′ and an acceptable monadic relation Trel for S, S′. Suppose that
JcKS Jτ cKrelTrel JcKS′ holds for all constants c. If ∅ ` e : τ then JeKS Trel(JτKrelTrel) JeKS′ .

14 Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl

Proof. One proves the following stronger statement by induction on typing derivations.
If Γ ` e : τ and η is an environment for Γ and S and η′ is an environment for Γ and
S′ then ∀x. η(x) JΓ (x)KrelTrel η

′(x) implies JeKS(η) Trel(JτKrelTrel) JeKS′(η′). ut

As for base types and constants we can for example include a type of natural numbersN
with zero, successor function, and a recursor as in Gödel’s system T. One takes JNKS =
N and JNKrelTrel = ∆N. Parametricity of the recursor is easily proved by induction. We
can also include other datatypes like lists or trees. The relation on such types would
insist on equal shapes and componentwise relatedness of the entries.

Note that since we model computations as total functions (no domains etc) we do
not interpret nontermination and hence do not accommodate general recursion.

B OCAML Code

The function tree2fun corresponds to the following OCAML-program where Var,Dom
are represented by int:

type tree =
Answer of int

| Question of int * (int -> tree)
let rec tree2fun t k =
match t with
Answer c -> c

| Question (a,f) -> tree2fun (f (k a)) k

The inductive definition Fun2treeAux represents the well-founded part of the graph
of the following OCAML program.

let called = ref false
let arg = ref 0
let questions = ref []
let answers = ref []
let init ds = called:=false; arg:=0; questions:=[]; answers:=ds

let ktest a =
if !called then 0
else
match !answers with
| [] -> (called:=true; arg:=a; 0)
| x::r -> questions:=!questions@[a]; answers:=r; x

let rec fun2tree_aux ff ds =
init ds;
let result = ff ktest in
if not (!called) then Answer result
else let a0 = !arg in
Question (a0,fun b -> fun2tree_aux ff (ds@[b]))

let fun2tree ff = fun2tree_aux ff []

Applying fun2tree to fun k -> 1 + k 0 correctly yields Question(0,f)where
f n = Answer(n+ 1).

	What is a pure functional?

