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ABSTRACTOptimal program sli
ing determines for a statement S in aprogram � whether or not S a�e
ts a spe
i�ed set of state-ments, given that all 
onditionals in � are interpreted asnon-deterministi
 
hoi
es.Only re
ently, it has been shown that rea
hability of pro-gram points and hen
e also optimal sli
ing is unde
idable formulti-threaded programs with (parameterless) pro
eduresand syn
hronization [23℄. Here, we sharpen this result byproving that sli
ing remains unde
idable if syn
hronizationis abandoned|although rea
hability be
omes polynomial.Moreover, we show for multi-threaded programs withoutsyn
hronization, that sli
ing stays PSPACE-hard when pro-
edure 
alls are forbidden, and be
omes NP-hard for loop-free programs. Sin
e the latter two problems 
an be solvedin PSPACE and NP, respe
tively, even in presen
e of syn-
hronization, our new lower bounds are tight.Finally, we show that the above de
idability and lowerbound properties equally apply to other simple programanalysis problems like 
opy 
onstant propagation and trueliveness of variables. This should be 
ontrasted to the prob-lems of strong 
opy 
onstant propagation and (ordinary)liveness of variables for whi
h polynomial algorithms havebeen designed [15, 14, 24℄.
Categories and Subject DescriptorsD.3.3 [Programming Languages℄: Language Constru
tsand Features|
on
urrent programming stru
tures; F.2.2[Analysis of Algorithms and Problem Complexity℄:Nonnumeri
al Algorithms and Problems; F.3.2 [Logi
s andMeanings of Programs℄: Semanti
s of Programming Lan-guages|Program analysis; F.4.3 [Mathemati
al Logi
and Formal Languages℄: Formal Languages|
lasses de-�ned by grammars or automata, de
ision problems�The se
ond author was supported by the RTD proje
tIST-1999-20527 "DAEDALUS" of the European FP5 pro-gramme.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’01, July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007 ...$5.00.

KeywordsSli
ing, parallel programs, interpro
edural analysis, unde-
idability, 
omplexity
1. INTRODUCTIONStati
 program sli
ing [27℄ is an established program re-du
tion te
hnique that has appli
ations in program under-standing, debugging, and testing [26℄. More re
ently, it hasalso been proposed as a te
hnique for ameliorating the state-explosion problem when formally verifying software or hard-ware [13, 10, 4, 18℄. The goal of program sli
ing is to identifyand remove parts of the program that 
annot (potentially)in
uen
e 
ertain value(s) at 
ertain program point(s) of in-terest. The latter is 
alled the sli
ing 
riterion.There is a vast amount of literature on sli
ing sequentiallanguages (see the referen
es in Tip's survey [26℄). A 
ru
ialidea found in many variations is to perform sli
ing by meansof a ba
kwards rea
hability analysis on a graph modelingbasi
 dependen
es between instru
tions. This approa
h hasbeen pioneered by Ottenstein and Ottenstein [21℄ who pro-posed to use a stru
ture 
alled PDG (Program Dependen
eGraph). A PDG 
aptures two kinds of dependen
es, data de-penden
es and 
ontrol dependen
es. Intuitively, a statementS is data dependent on another statement T if T updates avariable that 
an be referen
ed by S. For example, if S isx := e and T is y := f , then S is data dependent on T ify appears in e and there is a path from T to S in the pro-gram on whi
h no statement updates y. Control dependen
e
aptures whi
h guards (of bran
hing statements or loops)may determine whether a statement is exe
uted or not. Itsformal de�nition 
an be found, e.g., in [26℄.The �rst who 
onsidered stati
 sli
ing of 
on
urrent lan-guages was J. Cheng [3℄. In re
ent years the interest in thisproblem has in
reased due to the proliferation of 
on
urrentlanguages. There has been work in 
onne
tion with sli
ingJAVA-like languages [10, 28℄, VHDL [13, 4℄, and Promela[18℄, the input language of the Spinmodel 
he
ker. All thesearti
les have in 
ommon that sli
ing is again approa
hed as aba
kwards rea
hability problem but on some extended formof PDG (
alled Pro
ess Dependen
e Net [3℄, MultithreadedDependen
e Graph [28℄, et
.). These stru
tures model fur-ther dependen
es besides data and 
ontrol dependen
es thatmay arise in 
on
urrent programs of the 
onsidered kind.One su
h dependen
e is interferen
e dependen
e [17, 10℄. Astatement S is interferen
e dependent on a statement T inanother thread if the two threads may run in parallel andthere is a variable updated by T and referen
ed by S. This
aptures the situation that in a parallel exe
ution of the two



threads, S may be exe
uted after T in su
h a way that theshared variable is not overwritten in between. Interferen
edependen
e may be interpreted as a kind of data dependen
earising from interleaved exe
ution. Other kinds of depen-den
es represent the data 
ow indu
ed by message passingand the 
ontrol 
ow indu
ed by syn
hronization operations.A program sli
ing algorithm must be sound : it must notsli
e away parts of the program that a�e
t the given sli
ing
riterion. Ideally, a sli
er should remove as mu
h of the pro-gram as possible without sa
ri�
ing soundness. Weiser [27℄showed already that the problem of determining whether ornot a sli
e is statement-minimal is unde
idable [26, p. 7℄.The problem is that it is unde
idable whether a 
onditionfound in the program may be true (or false) on some exe-
ution path. Data
ow analysis in general su�ers from thisproblem and the 
ommon remedy is to ignore 
onditions al-together when de�ning feasible paths. In other words, 
ondi-tional bran
hing is interpreted as non-deterministi
 bran
h-ing, a point of view adopted in this paper. We 
all a sli
eroptimal if it determines a statement-minimal sli
e under thisabstra
tion.In the sequential, intrapro
edural 
ase (i.e. in single pro
e-dures), PDG-based sli
ing is eÆ
ient and optimal. Optimal-ity 
an also be a
hieved in the sequential, interpro
edural
ase by solving a 
ontext-free rea
hability problem on theSystem Dependen
y Graph (SDG) of the program in ques-tion [11℄. This analysis 
an be done in polynomial time [26℄.For 
on
urrent languages with pro
edures and syn
hroniza-tion primitives even rea
hability is unde
idable by a re
entresult of Ramalingam [23℄. This implies that also optimalsli
ing 
annot be de
idable. In this paper, we 
onsider opti-mal sli
ing for 
on
urrent languages but drop the fa
ility ofsyn
hronization. As a 
onsequen
e, rea
hability as well asreverse rea
hability be
ome de
idable|even polynomial [5,6, 24℄. Our new result is that optimal sli
ing remains unde-
idable. We re�ne this new unde
idability result by provingoptimal sli
ing to be PSPACE-hard in 
ase that there areno pro
edure 
alls, and still NP-hard if also loops are aban-doned. The latter two lower 
omplexity bounds are optimal,as they mat
h the 
orresponding upper bounds.We 
on
lude that all eÆ
ient sli
ing algorithms for 
on-
urrent languages are doomed to be sub-optimal (unlessP=PSPACE). Our results are shown under very weak as-sumptions on the 
on
urrent language. Intuitively, they ex-ploit a weakness of interferen
e dependen
e only. As nosyn
hronization properties are exploited, our results pointto a more fundamental limitation for sli
ing 
on
urrent lan-guages than Ramalingam's and hen
e are appli
able to amu
h wider range of 
on
urren
y s
enarios.Finally, we 
onsider related program analysis problems,
opy 
onstant propagation and true liveness of variables,and exhibit similar unde
idability and 
omplexity results asfor sli
ing thereby strengthening re
ent results [20℄. In a 
er-tain sense, this 
omes as a surprise, as only slightly simpleranalysis questions, namely, strong 
opy 
onstant propaga-tion and (ordinary) liveness of variables 
an be optimallysolved in polynomial time [15, 14, 24℄.
2. A MOTIVATING EXAMPLEBefore we turn to the te
hni
al results, let us dis
uss asmall example that illustrates that ba
kwards rea
habilityin the dependen
e graph 
an give sub-optimal results when

fork

join

b := a

b := 0

write(c)

a := 1

c := 0

fork

join

b := a

b := 0

write(c)

a := 1

c := 0

(a)  CFG-like representation (b)  Data and interference dependences

c := b c := bFigure 1: An illustrative example.sli
ing parallel programs. Consider the programa := 1; [(b := 1; b := 0; 
 := 0) k 
 := b℄ ; write(
) :In Fig. 1 (a) a 
ontrol 
ow graph-like representation of theprogram is shown and in (b) the data and interferen
e de-penden
es. We are interested in sli
ing w.r.t. variable 
 atthe write instru
tion. (We always use write instru
tions inthis paper to mark the sli
ing 
riterion 
learly and 
onve-niently; this is the only purpose of write instru
tions here).Clearly, the instru
tion a := 1 is ba
kwards rea
hable in thedependen
y graph. But there is no exe
ution of the programthat realizes all dependen
es in this path and therefore anoptimal sli
er must remove a := 1. In order to see this 
on-sider that in an exe
ution b := 0 must be exe
uted eitherbefore or after 
 := b in the parallel thread. If it is exe-
uted before 
 := b then it kills the propagation from b := ato 
 := b. If it is exe
uted after 
 := b then the subse-quent statement 
 := 0 kills the propagation from 
 := b towrite(
). Our unde
idability and hardness results exploitthat propagation 
an be prohibited in this way by meansof re-initializations. Krinke [17℄ also mentions that `inter-feren
e dependen
e is not transitive' and gives an examplethat is, however, of a less subtle nature than our example.He, too, does not 
onsider syn
hronization operations andpresents an optimal algorithm for the intrapro
edural paral-lel 
ase. His algorithm is worst-
ase exponential but he givesno hardness proof. Our PSPACE-hardness result explains|by all what we believe about PSPACE-hardness|why he
ould not �nd a polynomial algorithm.
3. PARALLEL PROGRAMSWe 
onsider a prototypi
 language with shared memory,atomi
 assignments and fork/join parallelism. Only assign-ments of a very simple form are needed: x := k where k iseither a 
onstant or a variable.A pro
edural parallel program 
omprises a �nite set Pro
of pro
edure names 
ontaining a distinguished name Main.Ea
h pro
edure name P is asso
iated with a statement �P ,the 
orresponding pro
edure body, 
onstru
ted a

ording tothe following grammar, in whi
h Q ranges over Pro
nfMaing



and x over some given �nite set of variables:e ::= 
 j x� ::= x := e j write(e) j skip j Q j �1 ; �2 j�1 k �2 j �1 u �2 j loop � end :We use the syntax pro
edure P ;�P end to indi
ate theasso
iation of pro
edure bodies to pro
edure names. Notethat pro
edures do not have parameters.The spe
i�
 nature of 
onstants and the domain in whi
hthey are interpreted is immaterial; we only need that 0 and1 are two 
onstants representing di�erent values, whi
h|byabuse of notation|are denoted by 0 and 1 too. In otherwords we only need Boolean variables. The atomi
 state-ments of the language are assignment statements x := e thatassign the 
urrent value of e to variable x, `do-nothing' state-ments skip, and write statements. Write statements signifythe sli
ing 
riterion. A statement of the form Q denotes a
all of pro
edure Q. The operator ; denotes sequential 
om-position and k parallel 
omposition. The operator u repre-sents non-deterministi
 bran
hing and loop � end standsfor a loop that iterates � an inde�nite number of times.Su
h 
onstru
t are 
hosen in a

ordan
e with the 
ommonabstra
tion from 
onditions mentioned in the introdu
tion.We apply the non-deterministi
 
hoi
e operator also to �nitesets of statements; uf�1; : : : ; �ng denotes �1u� � �u�n. Theambiguity inherent in this notation is harmless be
ause u is
ommutative, asso
iative, and idempotent semanti
ally.Note that there are no syn
hronization operations in thelanguage. The syn
hronization of start and termination in-herent in fork- and join-parallelism is also not essential forour results; see Se
tion 7.Parallelism is understood in an interleaving fashion; as-signments and write statements are assumed to be atomi
.A run of a program is a maximal sequen
e of atomi
 state-ments that may be exe
uted in this order in an exe
utionof the program. The program (x := 1 ; x := y) k y :=x, for example, has the three runs hx := 1; x := y; y := xi,hx := 1; y := x; x := yi, and hy := x; x := 1; x := yi. We de-note the set of runs of program � by Runs(�).
4. INTERPROCEDURAL SLICINGIn the remainder of this paper we adopt the following de�-nition of the (optimal) sli
ing problem as a de
ision problem.An instan
e 
omprises a (non-deterministi
, parallel) pro-gram �, a sli
ing 
riterion C (given by the write-instru
tionsin the program) and a statement S in �. The problem is tode
ide whether S belongs to the optimal sli
e of � with re-spe
t to C. The sli
ing problem is parameterized by the
lass of programs 
onsidered.Theorem 1. Parallel interpro
edural sli
ing is unde
id-able.It is well-known that the termination problem for two-
ounter ma
hines is unde
idable [19℄. In the remainder ofthis se
tion, we redu
e this problem to an interpro
eduralsli
ing problem thereby proving Theorem 1.
4.1 Two-Counter MachinesA two-
ounter ma
hine has two 
ounter variables 
0 and
1 that 
an be in
remented, de
remented, and tested against

zero. It is 
ommon to use a 
ombined de
rement- and test-instru
tion in order to avoid 
ompli
ations with de
rement-ing a zero 
ounter. The basi
 idea of our redu
tion is torepresent the values of the 
ounters by the sta
k height oftwo threads of pro
edures running in parallel. In
rementinga 
ounter is represented by 
alling another pro
edure in the
orresponding thread, de
rementing by returning from the
urrent pro
edure, and the test against zero by using di�er-ent pro
edures at the �rst and the other sta
k levels thatrepresent the possible moves for zero and non-zero 
ounters,respe
tively. It simpli�es the argumentation if 
omputationsteps involving the two 
ounters alternate. This 
an alwaysbe enfor
ed by adding skip-instru
tions that do nothing ex-
ept of transferring 
ontrol.Formally, we use the following model. A two-
ounter ma-
hine M 
omprises a �nite set of (
ontrol) states S. Sis partitioned into two sets P = fp1; : : : ; png and Q =fq1; : : : ; qmg; moves involving 
ounter 
0 start from P andmoves involving 
ounter 
1 from Q. Exe
ution 
ommen
esat a distinguished start state whi
h, w.l.o.G., is p1. Thereis also a distinguished �nal state, w.l.o.G. pn, at whi
h ex-e
ution terminates. Ea
h state s 2 S ex
ept of the �nalstate pn is asso
iated with an instru
tion I(s) taken fromthe following sele
tion:� 
i := 
i + 1;goto s0 (in
rement),� if 
i = 0 then goto s0 else 
i := 
i � 1; goto s00(test-de
rement), or� goto s0 (skip),where i = 0 and s0; s00 2 Q if s 2 P , and i = 1 and s0; s00 2 Pif s 2 Q. Note that this 
ondition 
aptures that movesalternate.Exe
ution of a two-
ounter ma
hine M is represented bya transition relation !M on 
on�gurations hs; x0; x1i that
onsist of a 
urrent state s 2 S and 
urrent values x0 �0 and x1 � 0 of the 
ounters. Con�gurations with s =pn are 
alled �nal 
on�gurations. We have hs; x0; x1i !Mhs0; x00; x01i if and only if one of the following 
onditions isvalid for i = 0; 1:� I(s) = 
i := 
i + 1;goto s0, x0i = xi + 1, and x01�i =x1�i.� I(s) = if 
i = 0 then goto s0 else 
i := 
i � 1;goto s00, xi = 0, x0i = xi, and x01�i = x1�i.� I(s) = if 
i = 0 then goto s00 else 
i := 
i � 1;goto s0, xi 6= 0, x0i = xi � 1, and x01�i = x1�i.� I(s) = goto s0, x0i = xi, and x01�i = x1�i.Thus, ea
h non-�nal 
on�guration has a unique su

essor
on�guration. We denote the re
exive transitive 
losure of!M by !�M and omit the subs
ript M if it is 
lear from
ontext.Exe
ution of a two-
ounter ma
hine 
ommen
es at thestart state with the 
ounters initialized by zero, i.e. in the
on�guration hp1; 0; 0i. The two-
ounter ma
hine termi-nates if it ever rea
hes the �nal state, i.e. if hp1; 0; 0i !�hpn; x0; x1i for some x0; x1. As far as the halting behavioris 
on
erned we 
an assume without loss of generality thatboth 
ounters are zero upon termination. This 
an be en-sured by adding two loops at the �nal state that iteratively



pro
edure P0;loopufp := xk ; KillAllP ; yl := p ; P6=0 jI(pk) = 
0 := 
0 + 1;goto qlg uufp := xk ; KillAllP ; yl := p jI(pk) = if 
0 = 0 then goto ql else : : : g uufp := xk ; KillAllP ; yl := p j I(pk) = goto qlgendendpro
edure P6=0;loopufp := xk ; KillAllP ; yl := p ; P6=0 jI(pk) = 
0 := 
0 + 1;goto qlg uufp := xk ; KillAllP ; yl := p j I(pk) = goto qlgend ;ufp := xk ; KillAllP ; yl := p jI(pk) = if 
0 = 0 then : : : else : : :goto qlgendpro
edure KillAllP ;y1 := 0 ; : : : ; ym := 0 ; q := 0 ; x1 := 0 ; : : : ; xn := 0end Figure 2: De�nition of P0 and P6=0.de
rement the 
ounters until they be
ome zero. Obviously,this modi�
ation preserves the termination behavior of thetwo-
ounter ma
hine. Note that for the modi�ed ma
hinethe 
onditions \hp1; 0; 0i !� hpn; x0; x1i for some x0; x1"and \hp1; 0; 0i !� hpn; 0; 0i" are equivalent. We assume inthe following that su
h loops have been added to the givenma
hine.
4.2 Constructing a ProgramFrom a two-
ounter ma
hine as above we 
onstru
t a par-allel program, �M . For ea
h state pk 2 P the program usesa variable xk and for ea
h state ql 2 Q a variable yl. Intu-itively, xk holds the value 1 in an exe
ution of the programi� this exe
ution 
orresponds to a run of the two-
ounterma
hine rea
hing state pk , and similarly for the yl.The main pro
edure of �M reads as follows:pro
edure Main;x1 := 1 ; Init ;(P0 k Q0) ; write(xn)end pro
edure Init;x2 := 0 ; : : : ; xn := 0 ;y1 := 0 ; : : : ; ym := 0endWe will 
onsider sli
ing with respe
t to variable xn at thewrite-instru
tion (sli
ing 
riterion). The 
onstru
tion isdone su
h that the initialization x1 := 1 belongs to the opti-mal sli
e if and only ifM terminates. This shows Theorem 1.The goal of the 
onstru
tion 
an also be reformulated as fol-lows be
ause the initialization x1 := 1 is the only o

urren
eof the 
onstant 1 in the program and all other assignmentstatement only 
opy values or initialize variables by 0.M terminates if and only ifxn may hold 1 at the write-statement. (1)The initialization of all variables ex
ept x1 by 0 re
e
ts thatp1 is the initial state. For ea
h of the two 
ounters theprogram uses two pro
edures, P0 and P6=0 for 
ounter 
0

pro
edure Q0;loopufq := yk ; KillAllQ ; xl := q ; Q 6=0 jI(qk) = 
1 := 
1 + 1; goto plg uufq := yk ; KillAllQ ; xl := q jI(qk) = if 
1 = 0 then goto pl else : : : g uufq := yk ; KillAllQ ; xl := q j I(qk) = goto plgendendpro
edure Q6=0;loopufq := yk ; KillAllQ ; xl := q ; Q 6=0 jI(qk) = 
1 := 
1 + 1; goto plg uufq := yk ; KillAllQ ; xl := q j I(qk) = goto plgend ;ufq := yk ; KillAllQ ; xl := q jI(qk) = if 
1 = 0 then : : :else : : :goto plgendpro
edure KillAllQ;x1 := 0 ; : : : ; xn := 0 ; p := 0 ; y1 := 0 ; : : : ; ym := 0end Figure 3: De�nition of Q0 and Q6=0.and Q0 and Q6=0 for 
ounter 
1. Their de�nition 
an befound in Fig. 2 and 3. We des
ribe P0 and P6=0 in detail inthe following, Q0 and Q6=0 are 
ompletely analogous.Intuitively, P0 and P6=0 mirror transitions ofM indu
ed by
ounter 
0 being =0 and 6=0, respe
tively, hen
e their name.Ea
h pro
edure non-deterministi
ally guesses the next tran-sition. Su
h a transition involves two things: �rst, a state
hange and, se
ondly, an e�e
t on the 
ounter value. Thestate 
hange from some pk to some ql is represented by 
opy-ing xk to yl via an auxiliary variable p and re-initializing xkby zero as part of KillAllP . The e�e
t on the 
ounter valueis represented by how we pro
eed:� For transitions that do not 
hange the 
ounter we jumpba
k to the beginning of the pro
edure su
h that othertransitions with the same 
ounter value 
an be sim-ulated subsequently. This applies to skip-transitionsand test-de
rement transitions for a zero 
ounter, i.e.test-de
rement transitions simulated in P0.� For in
rementing transitions we 
all another instan
eof P6=0 that simulates the transitions indu
ed by thein
remented 
ounter. A return from this new instan
eof P6=0 means that the 
ounter is de
remented, i.e. hasthe old value. We therefore jump ba
k to the beginningof the pro
edure after the return from P6=0.� For test-de
rement transitions simulated in P 6=0, weleave the 
urrent pro
edure.This behavior is des
ribed in a stru
tured way by means ofloops and sequential and non-deterministi
 
omposition andis 
onsistent with the representation of the 
ounter value bythe number of instan
es of P6=0 on the sta
k.The problem with a
hieving (1) is that a pro
edure maytry to `
heat': it may exe
ute the 
ode representing a tran-sition from pi to qj although xi does not hold the value 1. If



this is a de
rementing or in
rementing transition the 
oin-
iden
e between 
ounter values and sta
k heights may thenbe destroyed and the value 1 may subsequently be propa-gated erroneously. Su
h 
heating may thus invalidate the`if' dire
tion.This problem is solved as follows. We ensure by appropri-ate re-initialization that all variables are set to 0 if a pro
e-dure tries to 
heat. Thus, su
h exe
utions 
annot 
ontributeto the propagation of the value 1. But re-initializing a set ofvariables safely is not trivial in a 
on
urrent environment.We have only atomi
 assignments to single variables avail-able; a variable just set to 0 may well be set to another valueby instru
tions exe
uted by instan
es of the pro
edures Q0and Q6=0 running in parallel while we are initializing theother variables. Here our assumption that moves involvingthe 
ounters alternate 
omes into play. Due to this assump-tion all 
opying assignments in Q0 and Q6=0 are of the formq := yi or xj := q (q is the analog of the auxiliary variablep). Thus, we 
an safely assign 0 to the yi in P0 and P6=0 asthey are not the target of a 
opy instru
tion in Q0 or Q 6=0.After we have done so, we 
an safely assign 0 to q; a 
opyinstru
tion q := yi exe
uted by the parallel thread 
annotdestroy the value 0 as all yi 
ontain 0 already. After thatwe 
an safely assign 0 to the xi by a similar argument. Thisexplains the de�nition of KillAllP .
4.3 Correctness of the ReductionFrom the intuition underlying the de�nition of �M , the`only if' dire
tion of (1) is rather obvious: If M terminates,i.e., if it has transitions leading from hp1; 0; 0i to hpn; 0; 0i,we 
an simulate these transitions by a propagating run of�M . By explaining the de�nition of KillAllP , we justi�ed the`if' dire
tion as well. A formal proof 
an be given along thelines of the 
lassi
 Owi
ki/Gries method for proving partial
orre
tness of parallel programs [22, 8, 1℄. Although thismethod is usually presented for programs without pro
e-dures it is sound also for pro
edural programs. In the Ow-i
ki/Gries method, programs are annotated with assertionsthat represent properties valid for any exe
ution rea
hingthe program point at whi
h the assertion is written down.This annotation is subje
t to 
ertain rules that guaranteesoundness of the method.Spe
i�
ally, we prove that just before the write-instru
-tion in �M the following assertion is valid:xn = 1 ) hp1; 0; 0i !� hpn; 0; 0i :Validity of this assertion implies the `if' dire
tion of (1). Thedetails of this proof are deferred to Appendix A.Our proof should be 
ompared to unde
idability of rea
h-ability in presen
e of syn
hronization as proved by Rama-lingam [23℄, and unde
idability of LTL model-
he
king forparallel languages (even without syn
hronization) as provedby Bouajjani and Habermehl [2℄. Both proofs employ twosequential threads running in parallel. Ramalingam usesthe two re
ursion sta
ks of the threads to simulate 
ontext-free grammar derivations of two words whose equality is en-for
ed by the syn
hronization fa
ilities of the programminglanguage. Bouajjani and Habermehl use the two re
ursionsta
ks to simulate two 
ounters (as we do) whose joint oper-ation then is syn
hronized through the LTL formula. Thus,both proofs rely on some kind of \external syn
hronization"of the two threads { whi
h is not available in our s
enario.Instead, our unde
idability proof works with \internal syn-


hronization" whi
h is provided impli
itly by killing of the
ir
ulating value 1 as soon as one thread deviates from theintended syn
hronous behavior.
5. INTRAPROCEDURAL SLICINGThe unde
idability result just presented means that we
annot expe
t a program sli
er for parallel programs tobe optimal. We therefore must lower our expe
tation. Indata
ow analysis one often investigates also intrapro
eduralproblems. These 
an be viewed as problems for programswithout pro
edure 
alls. Here, we �nd:Theorem 2. Parallel intrapro
edural sli
ing is PSPACE-
omplete.In a fork/join parallel program without pro
edures, thenumber of threads potentially running in parallel is boundedby the size of the program. Therefore, every run of the pro-gram 
an be simulated by a Turing ma
hine using just apolynomial amount of spa
e. We 
on
lude that the intrapro-
edural optimal parallel sli
ing problem is in PSPACE.It remains to show that PSPACE is also a lower bound onthe 
omplexity of an optimal intrapro
edural parallel sli
er,i.e. PSPACE-hardness. This is done by a redu
tion fromthe Regular Expression Interse
tion problem. Thisproblem is 
hosen in favor of the better known interse
tionproblem for �nite automata as we are heading for stru
turedprograms and not for 
ow graphs.An instan
e of Regular Expression Interse
tion isgiven by a sequen
e r1; : : : ; rn of regular expressions oversome �nite alphabet A. The problem is to de
ide whetherL(r1) \ : : : \ L(rn) is non-empty.Lemma 1. The Regular Expression Interse
tionproblem is PSPACE-
omplete.In fa
t, PSPACE-hardness of the Regular ExpressionInterse
tion problem follows by a redu
tion from the a
-
eptan
e problem for linear spa
e bounded Turing ma
hinesalong the same lines as in the 
orresponding proof for �niteautomata [16℄. The problem remains PSPACE-
omplete ifwe 
onsider expressions without ;.Suppose now that A = fa1; : : : ; akg, and we are given nregular expressions r1; : : : ; rn. In our redu
tion we 
onstru
ta parallel program that starts n+1 threads �0; : : : ; �n aftersome initialization of the variables used in the program:pro
edure Main;KillXY0 ; : : : ; KillXYn ; xn;a1 := 1 ;[�0 k �1 k � � � k �n℄ ; write(x0;a1 )endThe threads refer to variables xi;a and yi (i 2 f0; : : : ; ng,a 2 A). Thread �0 is de�ned as follows.�0 = loopufy0 := xn;a ; KillAll0 ; x0;b := y0 j a; b 2 AgendThe statement KillAll0 that is de�ned below ensures that allvariables ex
ept y0 are re-initialized by 0 irrespe
tive of thebehavior of the other threads as shown below.For i = 1; : : : ; n, the thread �i is indu
ed by the regularexpression ri. It is given by �i = �i(ri), where �i(r) is



de�ned by indu
tion on r as follows.�i(") = skip�i(a) = yi := xi�1;a ; KillAlli ; xi;a := yi�i(r1 � r2) = �i(r1) ; �i(r2)�i(r1 + r2) = �i(r1) u �i(r2)�i(r�) = loop �i(r) endThe statement KillAlli re-initializes all variables ex
ept yi.This statement as well as statements KillXj and KillXYj onwhi
h its de�nition is based are de�ned as follows.KillXj = xj;a1 := 0; : : : ;xj;ak := 0KillXYj = yj := 0;KillXjKillAlli = KillXi;KillXYi+1; : : : ;KillXYn;KillXY0; : : : ;KillXYi�1Again it is not obvious that thread �i 
an safely re-initializethe variables be
ause the other threads may arbitrarily in-terleave. But by exploiting that only 
opy instru
tions ofthe form yj := xj�1;a and xj;a := yj with j 6= i are presentin the other threads this 
an be done by performing there-initializations in the order spe
i�ed above.1 Two 
ru
ialproperties are exploited for this. First, whenever a := bis a 
opying assignments in a parallel thread, variable b isre-initialized before a. Therefore, exe
ution of a := b afterthe re-initialization of b just 
opies the initialization value 0from b to a but 
annot destroy the initialization of a. Se
-ondly, in all 
onstant assignments a := k in parallel threadsk equals 0 su
h that no other values 
an be generated.Altogether, the threads are 
onstru
ted in su
h a way thatthe following is valid.L(r1) \ : : : \ L(rn) 6= ; if and only ifxn;a1 := 1 belongs to the optimal sli
e. (2)In the following, we des
ribe the intuition underlying the
onstru
tion and at the same time prove (2).The threads 
an be 
onsidered to form a ring of pro
essesin whi
h pro
ess �i has pro
esses �i�1 as left neighbor and�i+1 as right neighbor. Ea
h thread �i (i = 1; : : : ; n) guessesa word in L(ri); thread �0 guesses some word in A�. Thespe
ial form of the threads ensures that they 
an propagatethe initialization value 1 for xn;a1 if and only if all of themagree on the guessed word and interleave the 
orrespondingruns in a dis
iplined fashion. Obviously, the latter is possiblei� L(r1) \ : : : \ L(rn) 6= ;.Let w = 
1 � : : : � 
l be a word in L(r1) \ : : : \ L(rn) andlet 
0 = a1, the �rst letter in alphabet A. In the run in-du
ed by w that su

essfully propagates the value 1, thethreads 
ir
ulate the value 1 around the ring of pro
esses inthe variables xi;
i for ea
h letter 
i of w. We 
all this thepropagation game in the following. At the beginning of thej-th round, j = 1; : : : ; l, pro
ess �0 `proposes' the letter 
jby 
opying the value 1 from the variable xn;
j�1 to x0;
j inwhi
h it was left by the previous round or by the initial-ization, respe
tively. For te
hni
al reasons this 
opying isdone via the `lo
al' variable2 y0. Afterwards the pro
esses�i (i = 1; : : : ; n) su

essively 
opy the value from xi�1;
j to1Here and in the following, addition and subtra
tion in sub-s
ripts of variables and pro
esses is understood modulo n+1.2Variable yi is not lo
al to �i in a stri
t sense. But theother threads do not use it as target or sour
e of a 
opyingassignment; they only re-initialize it.

xi;
j via their `lo
al' variables yi. From xn;
j it is 
opiedby �0 in the next round to x0;
j+1 and so on. After the lastround (j = l) �0 �nally 
opies the value 1 from xn;
l to x0;a1and all pro
esses terminate. Writing|by a little abuse ofnotation|�i(a) for the single run of �i(a) and �0(a; b) forthe single run of y0 := xn;a ; KillAll0 ; x0;b := y0, we 
ansummarize above dis
ussion by saying that�0(a1; 
1) � �1(
1) � : : : � �n(
1)��0(
1; 
2) � �1(
2) � : : : � �n(
2)�...�0(
l�1; 
l) � �1(
l) � : : : � �n(
l)��0(
l; a1)is a run of �0 k : : : k �n that witnesses that the initializationof xn;a1 belongs to the optimal sli
e. This implies the 'onlyif' dire
tion of (2).Next we show that the 
onstru
tion of the threads ensuresthat runs that do not follow the propagation game 
annotpropagate value 1 to the write-instru
tion. In parti
ular, ifL(r1) \ : : : \ L(rn) = ;, no propagating run exists, whi
himplies the `if' dire
tion of (2).Note �rst that all runs of �i are 
omposed of pie
es of theform �i(a) and all runs of �0 of pie
es of the form �0(a; b)whi
h is easily shown by indu
tion. A run 
an now deviatefrom the propagation game in two ways. First, it 
an followthe rules but terminate in the middle of a round:�0(a1; 
1) � �1(
1) � : : : � �i(
1) � : : : � �n(
1)��0(
1; 
2) � �1(
2) � : : : � �i(
2) � : : : � �n(
2)�...�0(
m�1; 
m) � �1(
m) � : : : � �i(
m)Su
h a run does not propagate the value 1 to the write-instru
tion as KillAlli in �i(
m) re-initializes x0;a1 .Se
ondly, a run might 
ease following the rules of thepropagation game after some initial (possibly empty) part.Consider then the �rst 
ode pie
e �i(a) or �0(a; b) that isstarted in negligen
e of the propagation game rules. It isnot hard to see that the �rst statement in this 
ode pie
e,yi := xi�1;a or y0 := xn;a, respe
tively, then sets the lo
alvariable yi or y0 to zero. The reason is that the propaga-tion game ensures that variable xi�1;a or xn;a holds 0 unlessthe next statement to be exe
uted a

ording to the rules ofthe propagation game 
omes from �i(a) or some �0(a; b), re-spe
tively. The subsequent statement KillAlli or KillAll0 thenirrevo
ably re-initializes all the other variables irrespe
tiveof the behavior of the other threads as we have shown above.Thus su
h a run also 
annot propagate the value 1 to thewrite-instru
tion.An Owi
ki/Gries style proof that 
on�rms this fa
t is 
on-tained in the full paper.
6. SLICING LOOP-FREE PROGRAMSWe may lower our expe
tation even more, and ban inaddition to pro
edures also loops from the programs thatwe expe
t to sli
e optimally. But even then, the problemremains intra
table, unless P=NP.Theorem 3. Parallel intrapro
edural sli
ing of loop-freeprograms is NP-
omplete.That the problem is in NP is easy to see. For ea
h state-ment in the optimal sli
e we 
an guess a run that witnesses



that the statement 
an a�e
t the sli
ing 
riterion. This run
an involve ea
h statement in the program at most on
e asthe program is loop-free. Hen
e its length and 
onsequentlythe time that is ne
essary for guessing the run is linear inthe size of the given program.NP-hardness 
an be proved by spe
ializing the 
onstru
-tion from Se
tion 5 to star-free regular expressions. Theinterse
tion problem for su
h expressions is NP-
omplete.An alternative redu
tion from the well-known SAT prob-lem was given in [20℄. In 
ontrast to the 
onstru
tion of the
urrent paper, the redu
tion there relies only on propaga-tion along 
opying assignments but not on \quasi-syn
hro-nization" through well-dire
ted re-initialization of variables.However, this te
hnique does not seem to generalize to thegeneral intrapro
edural and the interpro
edural 
ase.
7. EXTENSIONS

7.1 Beyond Fork/Join ParallelismAweak form of syn
hronization is inherent in the fork/joinparallelism used in this paper as start and termination ofthreads is syn
hronized. The hardness results in this paper,however, are not restri
ted to su
h settings but 
an also beshown without assuming syn
hronous start and termination.Therefore, they also apply to languages like JAVA.The PSPACE-hardness proof in Se
tion 5, for instan
e,
an be modi�ed as follows. Let 
; d be two new distin
tletters and B = A[ f
; dg. Now �i is de�ned as �i(
 � ri � d)and the initialization and the �nal write-instru
tion is movedto thread �0. More spe
i�
ally, �0 is rede�ned as follows:�0 = KillAll0 ; x0;
 := 1 ;loopufy0 := xn;a ; KillAll0 ; x0;b := y0 j a; b 2 Bgend ;write(xn;d)(Of 
ourse the statements KillXi have to re-initialize alsothe new variables xi;
 and xi;d.) Essentially this modi�-
ation amounts to requiring that the propagation game isplayed with a �rst round for letter 
|this ensures a quasi-syn
hronous start of the threads|and a �nal round for letterd|this ensures a quasi-syn
hronous termination. Thus,L(r1) \ : : : \ L(rn) 6= ; if and only ifx0;
 := 1 belongs to the optimal sli
e of �0 k : : : k �n.Similar modi�
ations work for the redu
tions in Se
tion 4and 6.
7.2 Further Dataflow Analysis ProblemsOur te
hniques here 
an be used to obtain similar resultsalso for other optimal program analysis problems, in par-ti
ular, the dete
tion of truly life variables and 
opy 
on-stants thereby strengthening re
ent 
omplexity results forthese problems [20℄.A variable x is live at a program point p if there is arun from p to the end of the program on whi
h x is usedbefore it is overwritten. By referring to [9℄, Horwitz et. al.[12℄ de�ne a variable x as truly live at a program point p ifthere is a run from p to the end of the program on whi
hx is used in a truly life 
ontext before being de�ned, wherea truly live 
ontext means: in a predi
ate, or in a 
all to alibrary routine, or in an expression whose value is assignedto a truly life variable.

Thus, true liveness 
an be seen as a re�nement of the or-dinary liveness property. For the programs 
onsidered inthis paper, the variable initialized in the 
ru
ial initializa-tion statement is truly live at that program point if and onlyif that statement belongs to the optimal sli
e. Therefore, thelower bounds provided in Theorem 1, 2 and 3 immediatelytranslate to 
orresponding bounds also for the truly live vari-able problem. Sin
e the upper bounds PSPACE and NP forintrapro
edural and loop-free intrapro
edural programs also
an be easily veri�ed, we obtain the same 
omplexity 
har-a
terizations as in Theorem 2 and 3. Indeed, these resultsare in sharp 
ontrast to the dete
tion of ordinary liveness ofa variable at a program point whi
h has been shown to besolvable even in polynomial time [15, 5, 24℄.Constant propagation is a standard analysis in 
ompil-ers. It aims at dete
ting expressions that are guaranteedto evaluate to the same value in any run of the program,information that 
an be exploited e.g. for expression simpli-�
ation or bran
h elimination. Copy 
onstant dete
tion [7,pp. 660℄ is a parti
ularly simple variant of this problem insequential programs. In this problem only assignment state-ments of the simple forms x := 
 (
onstant assignment) andx := y (
opying assignment), where 
 is a 
onstant and x; yare variables, are 
onsidered, a restri
tion obeyed by all pro-grams in this paper. Here, we obtain:Theorem 4. 1. The interpro
edural 
opy 
onstant de-te
tion problem is unde
idable for parallel programs.2. The intrapro
edural 
opy 
onstant dete
tion problem isPSPACE-
omplete for parallel programs.3. The intrapro
edural 
opy 
onstant dete
tion problem is
o-NP-
omplete for loop-free parallel programs.Only a small modi�
ation is ne
essary to apply the re-du
tions in this paper to 
opy 
onstant dete
tion in parallelprograms: the statement z := 0 u skip must be added justbefore ea
h write-statement, where z is the written variable.Obviously, this statement prohibits z from being a 
opy 
on-stant of value 1 at the write statement. After this modi�
a-tion z is a 
opy 
onstant at the write statement (ne
essarilyof value 0) i� the write-statement 
annot output the value1. The latter is the 
ase i� the 
ru
ial initialization state-ment in question does not belong to the optimal sli
e. Thisproves the lower bounds in the above theorem. The upperbounds are easily a
hieved by non-deterministi
 algorithmsthat guess paths that witness non-
onstan
y.Theorem 4 essentially states that optimal dete
tion of
opy 
onstants in parallel programs is intra
table. This re-sult should be 
ontrasted to the dete
tion problem for strong
opy 
onstants. Strong 
opy 
onstants di�er from (full) 
opy
onstants in that only 
onstant assignments are taken intoa

ount by the analysis. In parti
ular, ea
h variable that isa strong 
opy 
onstant at a program point p is also a 
opy
onstant. The dete
tion of strong 
opy 
onstants turns outto be a mu
h simpler problem as it 
an be solved in polyno-mial time [14, 24℄.
8. CONCLUSIONIn this paper we have studied the 
omplexity of syn
hro-nization-independent program sli
ing and related data
owproblems for parallel languages. By means of a redu
tionfrom the halting problem for two-
ounter ma
hines, we have



shown that the interpro
edural problem is unde
idable. Ifwe 
onsider programs without pro
edure 
alls (intrapro
e-dural problem) the sli
ing problem be
omes de
idable butis still intra
table. More spe
i�
ally, we have shown it to bePSPACE-hard by means of a redu
tion from the interse
tionproblem for regular expressions. Finally, even if we restri
tattention to parallel straight-line programs, the problem re-mains NP-hard. These lower bounds are tight as mat
hingupper bounds are easy to establish.Previous 
omplexity and unde
idability results for data-
ow problems for 
on
urrent languages [25, 23℄ exploit inan essential way syn
hronization primitives of the 
onsideredlanguages. In 
ontrast our results hold independently of anysyn
hronization. They only exploit interleaving of atomi
statements and are thus appli
able to a mu
h wider 
lass of
on
urrent languages.
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APPENDIX

A. THE OWICKI/GRIES-STYLE PROOFIn this appendix we prove the `if' dire
tion of (1) by meansof an Owi
ki/Gries style program proof [22, 8, 1℄, a proofthat was omitted from the main body of this paper. Weassume all notations and de�nitions of Se
tion 4.As mentioned, we prove that just before the write instru
-tion in �M the following assertion is valid in the sense of par-tial 
orre
tness, i.e., that any exe
ution rea
hing this pro-gram point satis�es this property:xn = 1 ) hp0; 0; 0i !� hpn; 0; 0i : (3)Validity of this assertion 
orresponds dire
tly to the `if' di-re
tion of (1).



The Owi
ki/Gries method relies on proof outlines whi
hare programs annotated with assertions. Assertions are for-mulas that represent properties valid for any exe
ution thatrea
hes the program point where the assertion is writtendown. As usual we write assertions in bra
es. The annota-tion is subje
t to the rules well-known from sequential pro-gram proofs. For example if an assignment statement x := eis pre
eded by an assertion f�g and followed by an assertionf g, then � must imply  [e=x℄, where  [e=x℄ denotes theassertion obtained by substituting e for x in  . We assumethat the reader is familiar with this style of program proofs(for details see e.g. [22, 8, 1℄).The rule for parallel program looks as follows [1, Rule 19℄:The standard proof outlines fpigS�i fqig,i 2 f1; : : : ; ng, are interferen
e freefVni=1 pig[S1 k : : : k Sn℄fVni=1 qigIn this rule S�i stands for an annotated version of parallel
omponent Si and the requirement that the proof outlinesfor the 
omponent programs are `standard' means in our
ontext that every atomi
 statement is surrounded by asser-tions.The 
ru
ial additional premise for parallel programs isinterferen
e freedom. The following must be true in an in-terferen
e free proof outline for a parallel program: Supposef�g is an assertion in one parallel 
omponent and S is anatomi
 statement in another parallel 
omponent that is pre-
eded by the assertion pre(S). Then f�^pre(S)gSf�g mustbe valid in the usual sense of partial 
orre
tness. Intuitively,inferen
e freedom guarantees that validity of an assertion isnot destroyed by a thread running in parallel.
A.1 Enriching the ProgramBefore we dis
uss the proof outlines, we enri
h the pro-gram �M by two variables 
0 and 
1 that re
e
t the values ofthe 
ounters. Initialization statements 
0 := 0 and 
1 := 0are added to the Init pro
edure. Furthermore, 
0 and 
1are in
remented and de
remented at appropriate pla
es inP0, P6=0, Q0, and Q6=0. (For the purpose of performing theproof we allow more general expressions in assignment state-ments.) Spe
i�
ally, the 
ode pie
es of the formp := xk ; KillAllP ; yl := p ; P6=0that represent in
rementing transitions in P0 and P6=0 arerepla
ed byp := xk ; KillAllP ; 
0 := 
0 + 1 ; yl := p ; P6=0and the 
ode pie
es after the loop in P6=0 that representde
rementing transitions are repla
ed byp := xk ; KillAllP ; 
0 := 
0 � 1 ; yl := p :Analogous modi�
ations are made in Q0 and Q6=0 for
ounter 
1. It is obvious that Assertion (3) holds in the mod-i�ed program if and only if it holds in the original programas 
0 and 
1 are only used in assignments to themselves.(
0 and 
1 are auxiliary variables in the formal sense of theterm used in 
onne
tion with the Owi
ki/Gries method. Itis well-known that the Owi
ki/Gries method is in
ompletewithout auxiliary variables [8℄.)
A.2 The Proof OutlinesThe assertions in the proof ensure that 
ertain 
on�gura-tions are rea
hable in M if a 
ertain variable in �M holds

value 1. We introdu
e an abbreviation for the formula ex-pressing this fa
t:OK(x; s; 
0; 
1) :, x = 1 ) hp1; 0; 0i !� hs; 
0; 
1iHere x is a variable of the 
onstru
ted program, s is a state ofthe two-
ounter ma
hine and 
0; 
1 are expressions involvingthe auxiliary variables from above. Note that Assertion (3)is simply OK(xn; pn; 0; 0).The global part of the proof outline looks as follows. For
larity, we use a 
omma to denote 
onjun
tion in assertions.[ 1 ℄ ftrueg[ 2 ℄ x1 := 1 ;[ 3 ℄ fx1 = 1g[ 4 ℄ Init[ 5 ℄ fx1 = 1; 
0 = 0; 
1 = 0;Vni=2 xi = 0; Vmi=1 yi = 0g[ 6 ℄ f
0 = 0; 
1 = 0;Vni=1 OK(xi; pi; 
0; 
1); Vmi=1 OK(yi; qi; 
0; 
1)g[ 7 ℄ (P0 k Q0) ;[ 8 ℄ f
0 = 0; 
1 = 0;Vni=1 OK(xi; pi; 
0; 
1); Vmi=1 OK(yi; qi; 
0; 
1)g[ 9 ℄ fOK(xn; pn; 0;0)g[10℄ write(xn)The obvious proof outline for Init is omitted. It is easy tosee that [5℄ implies the assertion in line [6℄ as OK(x; s; 0; 0)trivially holds if x holds 0 or if s is p1. It is also obviousthat the assertion in line [8℄ implies the assertion in line [9℄.For demonstrating validity of Assertion [8℄ we prove|byinterferen
e free proof outlines|that P0 and Q0 satisfy thefollowing spe
i�
ations and apply the parallel rule of theOwi
ki/Gries method:f
0 = 0;Vni=1 OK(xi; pi; 
0; 
1)gP0f
0 = 0;Vni=1 OK(xi; pi; 
0; 
1)g f
1 = 0;Vmi=1 OK(yi; qi; 
0; 
1)gQ0f
1 = 0;Vmi=1 OK(yi; pi; 
0; 
1)gSimultaneously, we prove similar spe
i�
ations for P6=0 andQ6=0 that are parameterized by a 
onstant k > 0:f
0 = k;Vni=1 OK(xi; pi; 
0; 
1)gP 6=0f
0 = k � 1;Vni=1 OK(xi; pi; 
0; 
1)g f
1 = k;Vmi=1 OK(yi; qi; 
0; 
1)gQ 6=0f
1 = k � 1;Vmi=1 OK(yi; qi; 
0; 
1)gAs we are 
on
erned with partial 
orre
tness, it suÆ
es toshow that the body of the pro
edures satisfy these spe
i�-
ation, under the assumption that re
ursive 
alls do.In the following we present the proof outlines for P0 andP6=0 in detail; the proofs forQ0 andQ6=0 are 
ompletely anal-ogous. Afterwards we show interferen
e freedom, a proofthat re
e
ts 
ru
ial properties of our 
onstru
tion.The �rst goal is to show that the pre
ondition of ea
hpro
edure is an invariant of the loop in the body of thatpro
edure. This amounts to proving that ea
h path throughthe loop preserves the pre
ondition. Let k = 0 for the proofin P0 and k > 0 for the proof in P6=0.This is the proof for the paths indu
ed by skip-transitionsin both pro
edures or test-de
rement transitions in P0 :



[11℄ f
0 = k; Vni=1 OK(xi; pi; 
0; 
1)g[12℄ p := xk ;[13℄ f
0 = k; OK(p; pk; 
0; 
1)g[14℄ KillAllP[15℄ f
0 = k; OK(p; pk; 
0; 
1);Vmi=1 yi = 0; q = 0; Vni=1 xi = 0g[16℄ yl := p[17℄ f
0 = k; Vni=1 OK(xi; pi; 
0; 
1)gInstru
tion [16℄ leaves all variables xi untou
hed. Hen
e, itestablishes its post
ondition [17℄, be
ause all xi are ensuredto be zero in [15℄ and OK(xi; pi; 
0; 
1) holds trivially if xi =0. It may be surprising that the 
onjun
t OK(p; pk; 
0; 
1) isnot needed in this proof be
ause, intuitively, it 
aptures a
ru
ial property of the 
onstru
tion. The reason is that theproofs of P0 and P6=0 establish only a property about thexi. The 
onjun
t OK(p; pk ; 
0; 
1) is, however, important toensure interferen
e freedom of [16℄ with the proof outlinesfor Q0 and Q6=0 that 
on
ern the variables yi.The spe
i�
ation of KillAllP , viz. f[13℄gKillAllP f[15℄g, isagain parameterized by a 
onstant k � 0 and is also usedin the proof outlines that follow. It is straightforward to
onstru
t a proof outline witnessing this spe
i�
ation: thevariables that have already been re-initialized are 
olle
tedin an in
reasingly larger 
onjun
tion.The proof outline for the paths through the loop bod-ies indu
ed by in
rementing transitions is similar but has tore
e
t the 
hange of the 
ounter. It also applies the assump-tion about re
ursive 
alls of P6=0 (for knew := k + 1):[18℄ f
0 = k; Vni=1 OK(xi; pi; 
0; 
1)g[19℄ p := xk ;[20℄ f
0 = k; OK(p; pk; 
0 ; 
1)g[21℄ KillAllP[22℄ f
0 = k; OK(p; pk; 
0 ; 
1);Vmi=1 yi = 0; q = 0; Vni=1 xi = 0g[23℄ 
0 := 
0 + 1[24℄ f
0 = k + 1; OK(p; pk; 
0 � 1; 
1);Vmi=1 yi = 0; q = 0; Vni=1 xi = 0g[25℄ yl := p[26℄ f
0 = k + 1; Vni=1 OK(xi; pi; 
0; 
1)g[27℄ P 6=0[28℄ f
0 = k; Vni=1 OK(xi; pi; 
0; 
1)gThis 
ompletes the proof that the pre
onditions of P0 andP6=0 are loop invariants and also �nishes the proof outlinefor P0, as its pre- and post
ondition 
oin
ide and its bodyjust 
onsists of the loop.It remains to show that the paths from the loop exit to thepro
edure exit in P6=0 indu
ed by de
rementing transitionsestablish the post
ondition from the loop invariant, i.e. thepre
ondition of P6=0:[29℄ f
0 = k; Vni=1 OK(xi; pi; 
0; 
1)g[30℄ p := xk ;[31℄ f
0 = k; OK(p; pk; 
0 ; 
1)g[32℄ KillAllP[33℄ f
0 = k; OK(p; pk; 
0 ; 
1);Vmi=1 yi = 0; q = 0; Vni=1 xi = 0g[34℄ 
0 := 
0 � 1 ;[35℄ f
0 = k � 1; OK(p; pk; 
0 + 1; 
1);Vmi=1 yi = 0; q = 0; Vni=1 xi = 0g[36℄ yl := p[37℄ f
0 = k � 1; Vni=1 OK(xi; pi; 
0; 
1)g

A.3 Interference FreedomLet us now 
he
k interferen
e freedom. We look at ea
htype of assignment found in Q0 and Q6=0. It is 
lear thatan assignment to a variable z 
annot invalidate 
onjun
ts inassertions that do not mention z. Therefore, we only needto 
onsider 
onjun
ts in assertions mentioning the variableto whi
h the statement in question assigns.� xi := 0, yi := 0, p := 0: these re-initializing assign-ment statements 
annot invalidate any assertion in theproof outlines be
ause all 
onjun
ts that mention theleft-hand-side variable trivially hold if the variable iszero. This holds in parti
ular for 
onjun
ts of the formOK(x; s; 
0; 
1).� 
1 := 
1 + 1 and 
1 := 
1 � 1: all 
onjun
ts of theform OK(p; pk; 
0; 
1) or OK(xi; pi; 
0; 
1) 
ould poten-tially be invalidated by these statements. The in
re-mentations and de
rementations of 
1 are however|inanalogy to [22℄ and [33℄|guarded by a pre
onditionthat ensures that p as well as all variables xi hold zero,whi
h make OK(p; pk; 
0; 
1) or OK(xi; pi; 
0; 
1) truefor trivial reasons.Note that this argument exploits that the variables arere-initialized in order to avoid `
heating'.� q := yk: su
h a statement 
ould potentially invalidate a
onjun
t of the form q = 0. However, the 
onjun
t q =0 appears in assertions only together with the 
onjun
tVmi=1 yi = 0. In parti
ular this holds in the (omitted)proof outline for KillAllp be
ause the variables yi are re-initialized before q. Therefore, q := yk 
annot destroyvalidity of the assertion.Note that it is essential for this argument to work, thatthe re-initializations in KillAllP are done in the 
orre
torder as dis
ussed in Se
tion 4.2.� xl := q: su
h a statement 
ould potentially invalidate
onjun
ts of the form xl = 0 or OK(xl; pl; 
0; 
1).All assertions that 
ontain xl = 0 also 
ontain a 
on-jun
t q = 0. Thus we 
an argue as for instru
tions ofthe form q := yk.For 
onjun
ts of the form OK(xl; pl; 
0; 
1) the argu-ment is more subtle. Similarly to [15℄, [24℄, and [35℄,xl := q is pre
eded by an assertion that ensures inparti
ular that OK(q; qk; 
0; 
1 + �) holds, where � 2f�1; 0; 1g. By the 
onstru
tion of �M , � = �1, 1,or 0 i� there is a transition from qk to pl that in
re-ments, de
rements, or leaves the 
ounter 
1 un
hanged,respe
tively. Now suppose that xl is assigned the value1 by xl := q, otherwise OK(xl; pl; 
0; 
1) holds triv-ially. Then 
learly q = 1 whi
h implies hp1; 0; 0i !�hqk; 
0; 
1 + xi by OK(q; qk; 
0; 
1 + x). By the transi-tion from qk to pl, this transition sequen
e 
an now beextended to a sequen
e hp1; 0; 0i !� hpl; 
0; 
1i. Hen
e,OK(xl; pl; 
0; 
1) holds.It is interesting to observe that the 
ru
ial properties of the
onstru
tion are re
e
ted in the interferen
e freedom proofrather than the lo
al proofs. Note, however, that the inter-feren
e freedom proof massively relies on the pre
onditionsof the interleaving statements that are established by thelo
al proofs.


