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t. Constant propagation aims at identifying expressions thatalways yield a unique 
onstant value at run-time. It is well-known that
onstant propagation is unde
idable for programs working on integerseven if guards are ignored as in non-deterministi
 
ow graphs. We showthat polynomial 
onstants are de
idable in non-deterministi
 
ow graphs.In polynomial 
onstant propagation, assignment statements that use theoperators +;�; � are interpreted exa
tly but all assignments that useother operators are 
onservatively interpreted as non-deterministi
 as-signments.We present a generi
 algorithm for 
onstant propagation via a symboli
weakest pre
ondition 
omputation and show how this generi
 algorithm
an be instantiated for polynomial 
onstant propagation by exploitingte
hniques from 
omputable ring theory.1 Introdu
tionConstant propagation is one of the most widely used optimizations in pra
ti
aloptimizing 
ompilers (
f. [1, 9, 15℄). Its goal is to repla
e expressions that alwaysyield a unique 
onstant value at run-time by this value. This both speeds upexe
ution and redu
es 
ode size. Even more importantly, it 
an enable powerfulfurther transformations like elimination of dynami
ally unrea
hable bran
hes.In order to 
ome to grips with fundamental 
omputability problems oneoften abstra
ts guarded bran
hing to non-deterministi
 bran
hing in programanalysis. But even this abstra
tion leaves 
onstant propagation unde
idable forprograms working on integer variables. This has already been observed in theseventies independently by He
ht [9℄ and by Reif and Lewis [17℄.We brie
y re
allthe 
onstru
tion of Reif and Lewis. It is based on a redu
tion of Hilbert's tenthproblem, whether a (multivariate) polynomial has a zero in the natural numbers,a very famous unde
idable problem [12℄.Assume given a (non-zero) polynomial p(x1; : : : ; xn) in n variables x1; : : : ; xnwith integer 
oeÆ
ients and 
onsider the (non-deterministi
) program in Fig. 1.The initializations and the loops 
hoose arbitrary natural values for the variablesxi. If the 
hosen values 
onstitute a zero of p(x1; : : : ; xn), then p(x1; : : : ; xn)2 +? The work was supported by the RTD proje
t IST-1999-20527 "DAEDALUS" of theEuropean FP5 programme.



 

 xn := xn + 1 xn := 0x2 := 0r := 1 div (p(x1; : : : ; xn)2 + 1)x1 := x1 + 1 x1 := 0
Fig. 1. Unde
idability of 
onstant dete
tion; the redu
tion of Reif and Lewis [17℄.1 = 1 and r is set to 1. Otherwise, p(x1; : : : ; xn)2 + 1 � 2 su
h that r is set to0. Therefore, r is a 
onstant (of value 0) at the end of the program if and onlyif p(x1; : : : ; xn) does not have a natural zero.On the other hand there are well-known and well-de�ned 
lasses of 
onstantsthat 
an be dete
ted, even eÆ
iently. In 
opy 
onstant dete
tion [7℄ only assign-ments of the form x := 
, where 
 is either an (integer) 
onstant or a programvariable are interpreted; assignments with 
omposite expressions on the righthand side are 
onservatively assumed to make a variable non-
onstant. In linear
onstants [18℄ also assignments of the form x := a�y+b, where a and b are integer
onstants and y is a program variable, are interpreted. Another de
idable 
lassof 
onstants are �nite 
onstants [19℄. This motivated M�uller-Olm and R�uthing[16℄ to study the 
omplexity of 
onstant propagation for 
lasses that derive fromrestri
ting the signature of interpreted integer operators.An interesting question they left open 
on
erns the 
lass of 
onstants ob-tained by interpreting just +;�; �, i.e., all standard integer operators ex
ept ofthe division operators. While they 
alled the 
orresponding 
lass of 
onstants+;�; �-
onstants, we prefer the term polynomial 
onstants here, as these sig-nature allows just to write (multivariate) polynomials. The dete
tion problemfor polynomial 
onstants is PSPACE-hard [16℄ but no upper bound is known.In the 
urrent paper we show that polynomial 
onstants are de
idable by ap-plying results from 
omputable ideal theory. This de
idability result suggeststhat the division operator is the real 
ause for unde
idability of general 
onstantdete
tion.
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x+ y = 0x = 0xy � 6 = 00 = 0x := x2 + xy3 x := xy � 6x := x+ 1y := y � 1 y := 012x := 2 x := 3y := 3 y := 2
Fig. 2. An example 
ow graph.The paper is organized as follows. In the next se
tion we illustrate our al-gorithm at an example that 
annot be handled by other 
onstant propagationalgorithms. Afterwards we de�ne 
ow graphs, the 
onstant propagation prob-lem, and weakened versions thereof. This enables us to de�ne polynomial 
on-stants formally. In Se
tion 4 we present a generi
 algorithmi
 idea for 
onstantpropagation via a symboli
 weakest pre
ondition 
omputation and dis
uss therequirements for making it e�e
tive. In Se
tion 5 we re
all results from 
om-putable ring theory that are needed in our algorithm and pro
eed with furtherobservations on Z[x1; : : : ; xn℄, the set of multivariate polynomials with integer
oeÆ
ients. These results are exploited in Se
tion 7, where we show how thegeneri
 algorithm from Se
tion 4 
an be instantiated for polynomial 
onstantpropagation. We �nish the paper with 
on
luding remarks and dire
tions forfuture resear
h.2 An ExampleLet us illustrate the power of our algorithm. In the 
ow graph in Fig. 2, x is a
onstant (of value 0) at node 4, but no known 
onstant propagation algorithms
an handle this example. Standard simple 
onstant propagation [1℄ propagatesvariable assignments through the program, in whi
h ea
h variable is assignedeither a de�nite value or a spe
ial value unknown. Simple 
onstant propagation
omputes the value unknown at program point 2 for both x and y and 
annot re-
over from this loss of pre
ision. More powerful 
onstant propagation algorithmslike the algorithm for linear 
onstants [18℄ or Presburger 
onstants [16℄ 
annothandle the expressions xy � 6 and x2 + xy. Even the EXPTIME algorithm ofKnoop and Ste�en for �nite 
onstants [19℄ 
annot handle this example be
ause



no �nite unfolding of the loop suÆ
es to prove 
onstan
y of x2 + xy after theloop.Before we turn to the te
hni
al development, we dis
uss informally how ouralgorithm dete
ts 
onstan
y of x at node 4. In a �rst phase some path from node1 to 4 is exe
uted, e.g., h1; 2; 3; 4i, and the value of x, viz. 0, after exe
ution ofthis path is 
omputed. This implies that x 
an only be a 
onstant of value 0 atprogram point 4 { if it is a 
onstant at all. In order to 
he
k this, our algorithmpropagates the assertion A0 : x = 0 ba
kwards from node 4 towards the startnode whi
h amounts to a symboli
 
omputation of the weakest pre
ondition ofA0 at node 4. Propagation over statement x := x2 + xy results in the assertionA1 : x2+xy = 0. Assertion A1 is then propagated through the loop. This resultsin the assertion A2 : (x + 1)2 + (x + 1)(y � 1) = 0 that 
an be simpli�ed toA3 : x2 + xy + x + y = 0. Both A1 and A3 must be valid at program point 3in order to guarantee validity of A0 at program point 4. We 
an simplify theassertion A1^A3: be
ause A1 guarantees that x2+xy equals 0, we 
an simpli�yA3 to A4 : x + y = 0; now, as A1 
an be written in the form x(x + y) = 0, wesee that A1 is indeed implied by A4. Thus, validity of A4 suÆ
es to guaranteeboth A1 and A3. A4 is again propagated through the loop; this results in A4again; hen
e no further propagation through the loop is ne
essary. In this waypropagation goes on and results in the assertions shown in Fig. 2. The assertion
omputed for the start node, 0 = 0 is universally valid; this proves that x isindeed a 
onstant of value 0 at node 4.In the algorithm developed in the remainder of this paper, assertions arerepresented by Gr�obner bases of ideals in the polynomial ring Z[x1; : : : ; xn℄. AsGr�obner bases are a 
anoni
 representation this also takes 
are of simpli�
ations.3 The FrameworkFlow Graphs. Suppose given a �nite set of variables X = fx1; : : : ; xng. LetExpr be a set of expressions overX; the pre
ise nature of expressions is immaterialat the moment. A (deterministi
) assignment is a pair 
onsisting of a variableand an expression written as x := t; the set of assignment statements is denotedby Asg. A non-deterministi
 assignment statement 
onsists of a variable and iswritten x :=?; the set of nondeterministi
 assignment statements is denoted byNAsg.A (non-deterministi
) 
ow graph is a stru
ture G=(N;E;A; s; e) with �nitenode set N , edge set E � N �N , a unique start node s 2 N , and a unique endnode e 2 N . We assume that ea
h program point u 2 N lies on a path from sto e. The mapping A : E ! Asg [ NAsg [ fskipg asso
iates ea
h edge with adeterministi
 or non-deterministi
 assignment statement or the statement skip.Edges represent the bran
hing stru
ture and the statements of a program, whilenodes represent program points. The set of su

essors of program point u 2 Nis Su

[u℄ = fv j (u; v) 2 Eg.A path rea
hing a given program point u 2 N is a sequen
e of edges p =he1; : : : ; eki with ei = (ui; vi) 2 E su
h that u1 = s, vk = u, and vi = ui+1 for



1 � i < k . In addition p = ", the empty sequen
e, is a path rea
hing the startnode s. We write R[u℄ for the set of paths rea
hing u.Let Val be a set of values. A mapping � : X ! Val that assigns a value toea
h variable is 
alled a state; we write � = f� j � : X ! Valg for the set ofstates. For x 2 X, d 2 Val, and � 2 � we write �[x 7! d℄ for the state thatmaps x to d and 
oin
ides for the other variables with �. We assume a �xedinterpretation for the operators used in terms and we assume that the value ofterm t in state �, whi
h we denote by t�, is de�ned in the standard way.In order to a

ommodate non-deterministi
 assignments we interpret state-ments by relations on � rather than fun
tions. The relation asso
iated withassignment statement x := t is [[x := t℄℄ def= f(�; �0) j �0 = �[x 7! t�℄g; the rela-tion asso
iated with non-deterministi
 assignment x :=? is [[x :=?℄℄ def= f(�; �0) j9d 2 Val : �0 = �[x 7! d℄g; and the relation asso
iated with skip is the iden-tity: [[skip℄℄ def= f(�; �0) j � = �0g. This lo
al interpretation of statements isstraightforwardly extended to paths p = he1; : : : ; eki 2 E� as follows: [[p℄℄ =[[A(e1)℄℄ ; : : : ;[[A(ek)℄℄, where ; denotes relational 
omposition.Constant Propagation. A variable x 2 X is a 
onstant at program pointu 2 N if there is d 2 Val su
h that �(x) = d for all p 2 R[u℄, (�0; �) 2 [[p℄℄.Arbitrary 
hoi
e of initial state �0 re
e
ts that we do not know the state inwhi
h the program is started.We 
an weaken the demands for a 
onstant dete
tion algorithm by sele
tinga 
ertain subset of expressions S � Expr that are interpreted pre
isely andassuming 
onservatively that assignments whose right hand does not belong toS assign an arbitrary value to their respe
tive target variable. This idea 
an bemade formal as follows.For a given 
ow graph G = (N;E;A; s; e) and subset of expressions S � Expr,let GS = (N;E;AS ; s; e) be the 
ow graph with the same underlying graph butwith the following weakened edge annotation:AS(u; v) = �x :=? ; if A(u; v) = (x := t) and t =2 SA(u; v) ; otherwiseA variable x 2 X is then 
alled an S-
onstant at program point u 2 N in 
owgraph G if it is a 
onstant at u in the weakened 
ow graph GS. Clearly, if x isan S-
onstant at u it is also a 
onstant at u but not vi
e versa. The dete
tionproblem for S-
onstants is the problem of de
iding for a given set of variablesX, 
ow graph G, variable x, and program point u whether x is an S-
onstantat u or not.To study weakened versions of 
onstant dete
tion problems is parti
ularlyinteresting for programs 
omputing on the integers, i.e., if Expr is the set of in-teger expressions formed from integer 
onstants and variables with the standardoperators +;�; �; div;mod: we have seen in the introdu
tion that the general
onstant dete
tion problem is unde
idable in this 
ase.Let us dis
uss some examples for illustration. S-
onstants with respe
t tothe set S = X [Z, i.e., the set of non-
omposite expressions, are known as 
opy




onstants [7℄. S-
onstants with respe
t to the set S = fa�x+b j a; b 2Z; x 2 Xgare known as linear 
onstants [18℄. In this paper we ta
kle 
onstants with respe
tto the set S =Z[x1; : : : ; xn℄, the set of multivariate polynomials in the variablesx1; : : : ; xn with 
oeÆ
ients inZ, whi
h we 
all polynomial 
onstants.We should emphasize two points about the above framework that make the
onstru
tion of S-
onstant dete
tion algorithms more 
hallenging. Firstly, in
ontrast to the setup in [16℄, we allow assignment statements, whose right handside does not belong to S. They are interpreted as non-deterministi
 assignments.Forbidding them is adequate for studying lower 
omplexity bounds for analysisquestions, whi
h is the main 
on
ern of [16℄. It is less adequate when we are
on
erned with dete
tion algorithms be
ause in pra
ti
e we want to dete
t S-
onstants in the 
ontext of other 
ode.Se
ondly, a variable 
an be an S-
onstant although its value stati
ally de-pends on an expression that is not in S. As asimple example 
onsider the 
ow graph in Fig. 3and assume that the expressions 0 and y� y be-long to S but e does not. Be
ause y � y is 0 forany value y 2 Z, an S-
onstant dete
tion algo-rithm must identify x as a 
onstant (of value 0),although its value stati
ally depends on the un-interpreted expression e. Hen
e, S-
onstant de-te
tion must handle arithmeti
 properties of theexpressions in S. 1

2

3

y := ex := y � yx := 0Fig. 3: An S-
onstant.4 A Generi
 AlgorithmSuppose given a variable x 2 X and a program point w 2 N . In this 
hapter wedes
ribe a generi
 algorithm for de
iding whether x is an S-
onstant at w or not.While standard 
onstant propagation works by forward propagation of variableassignments, we use a three phase algorithm that employs a ba
kwards propa-gation of assertions. For the moment we 
an think of assertions as predi
ates onstates as in program veri�
ation.Phase 1: In the �rst phase we follow an arbitrary 
y
le-free path from s to w,for instan
e using depth-�rst sear
h, and 
ompute the value 
, referred toas the 
andidate value, that x holds after this path is exe
uted. This impliesthat, if x is a 
onstant at w, it must be a 
onstant of value 
.Phase 2: In the se
ond phase we 
ompute the weakest pre
ondition for theassertion x = 
 at program point w in GS by means of a ba
kwards data
ow analysis.Phase 3: Finally, we 
he
k whether the 
omputed weakest pre
ondition for x =
 at w is true, i.e., is valid for all states.It is obvious that this algorithm is 
orre
t. The problem is that Phase 2 and3 are in general not e�e
tive. However, as only assignments of a restri
ted formappear in GS , the algorithm be
omes e�e
tive for 
ertain sets S, if assertions



are represented appropriately. In the remainder of this se
tion we analyze therequirements for adequate representations. For this purpose, we �rst 
hara
terizeweakest pre
onditions in 
ow graphs.Semanti
ally, an assertion is a subset of states � � �. Given an assertion �and a statement s, the weakest pre
ondition of s for �, wp(s)(�), is the largestassertion �0 su
h that exe
ution of s from all states in �0 is guaranteed to termi-nate only in states in �.1 The following identities for the weakest pre
onditionof assignment and skip statements are well-known:wp(x := e)(�) def= �[e=x℄ def= f� j �[x 7! e� ℄ 2 �gwp(x :=?)(�) def= 8x(�) def= f� j 8d 2Z: �[x 7! d℄ 2 �gwp(skip)(�) def= �These identities 
hara
terize weakest pre
onditions of basi
 statements. Letus now 
onsider the following more general situation in a given 
ow graphG=(N;E;A; s; e): we are given an assertion � � � as well as a program pointw 2 N and we are interested in the weakest pre
ondition that guarantees validityof � whenever exe
ution rea
hes w. The latter 
an be 
hara
terized as follows.Let W0[w℄ = � and W0[u℄ = � and 
onsider the following equation system
onsisting of one equation for ea
h program point u 2 N :W[u℄ = W0[u℄\ \v2Su

[u℄wp(A(u; v))(W[v℄) : (1)By the Knaster-Tarski �xpoint theorem, this equation system has a largest so-lution (w.r.t. subset in
lusion) be
ause wp(s) is well-known to be monotoni
. Byabuse of notation, we denote the weakest solution by the same letter W[u℄. Forea
h program point u 2 N , W[u℄ is the weakest assertion su
h that exe
utionstarting from u with any state inW[u℄ guarantees that � holds whenever exe
u-tion rea
hes w. In parti
ular, W[s℄ is the weakest pre
ondition for validity of �at w. The intuition underlying equation (1) is the following: �rstly, W0[u℄ mustbe implied by W[u℄ and, se
ondly, for all su

essors v, we must guarantee thattheir asso
iated 
ondition W[u℄ is valid after exe
ution of the statement A(u; v)asso
iated with the edge (u; v); hen
e wp(A(u; v))(W[v℄) must be valid at u too.For two reasons, the above equation system 
annot be solved dire
tly ingeneral: �rstly, be
ause assertions may be in�nite sets of states they 
annot berepresented expli
itly; se
ondly, there are in�nitely long des
ending 
hains ofassertions su
h that standard �xpoint iteration does not terminate in general.In order to 
onstru
t an algorithm that dete
ts S-
onstants we representassertions by the members of a latti
e (D ;v). Let us assume that 
 : D ! 2�
aptures how the latti
e element represent assertions. First of all, we require1 In the sense of Dijkstra [6℄ this is the weakest liberal pre
ondition as it does notguarantee termination. For simpli
ity we omit the qualifying pre�x \liberal" in thispaper.



L0L 
f gFig. 4. Situation in the transfer lemma.(a) D has no in�nite de
reasing 
hains, i.e., there is no in�nite 
hain d1 w d2 wd3 w : : :.This guarantees that maximal �xpoints of monotoni
 fun
tions 
an e�e
tivelybe 
omputed by standard �xpoint iteration. Se
ondly, we suppose(b) 
 is universally 
onjun
tive, i.e., 
(uX) = Tf
(d) j d 2 Xg for all X � D .The most important reason for making this assumption is that it ensures thatwe 
an validly 
ompute on representations without loosing pre
ision: if we pre-
isely mirror the equations 
hara
terizing weakest pre
onditions on representa-tions, the largest solution of the resulting equation system on representations
hara
terizes the representation of the weakest pre
ondition by the followingwell-known lemma. It appears in the literature (for the dual situation of least�xpoints) under the name Transfer Lemma [2℄ or �-Fusion Rule [11℄.Lemma 1. Suppose L;L0 are 
omplete latti
es, f : L ! L and g : L0 ! L0 aremonotoni
 fun
tions and 
 : L! L0 (
f. Fig. 4).If 
 is universally 
onjun
tive and 
 Æ f = g Æ 
 then 
(�f) = �g, where �fand �g are the largest �xpoints of f and g, respe
tively.We must mirror the elements 
omprising the equation system 
hara
terizingweakest pre
onditions on representations pre
isely. Firstly, we must representthe start value,W0. Universal 
onjun
tivity of 
 implies that 
(>) = �, i.e., thetop value of D is a pre
ise representation of �. In addition, we require:(
) Assertion x = 
 
an be represented pre
isely: for ea
h x 2 X, 
 2 Val we 
ane�e
tively determine dx=
 2 D with 
(dx=
) = f� 2 � j �(x) = 
g.Se
ondly, we need e�e
tive representations for the operators appearing inequations. Requirement (b) implies that the meet operation of D pre
isely ab-stra
ts interse
tion of assertions. In order to enable e�e
tive 
omputation ofinterse
tions, we require in addition:(d) for given d; d0 2 D , we 
an e�e
tively 
ompute d u d0.By indu
tion this implies that we 
an 
ompute �nite meets d1u: : :udk e�e
tively.The only remaining operations on assertions are the weakest pre
onditiontransformers of basi
 statements. We must represent wp(x := t) for expressionst 2 S, whi
h is the substitution operator (�)[t=x℄ on assertions. As the S-
onstantdete
tion algorithm 
omputes the weakest pre
ondition in weakened 
ow graphGS, assignments x := t with t =2 S do not o

ur.



(e) There is a 
omputable substitution operation (�)[t=x℄ : D ! D for ea
hx 2 X, t 2 S, whi
h satis�es 
(d[t=x℄) = 
(d)[t=x℄ for all d 2 D .Obviously, wp(skip), the identity, is pre
isely represented by the identity on R.Thus, it remains to represent wp(x :=?):(f) There is a 
omputable proje
tion operation proj i : D ! D for ea
h variablexi 2 X su
h that 
(proj i(d)) = 8xi(
(d)) for all d 2 D .Finally, we need the following in order to make Phase 3 of the algorithm e�e
tive.(g) Assertion true is de
idable, i.e., there is a de
ision pro
edure that de
idesfor a given d 2 D , whether 
(d) = � or not.If, for a given set S � Expr, we 
an �nd a latti
e satisfying requirements (a){(g), we 
an e�e
tively exe
ute the three phase algorithm from the beginning ofthis se
tion by representing assertions by elements from this latti
e. This resultsin a dete
tion algorithm for S-
onstants.In this paper we are interested in dete
tion of polynomial 
onstants. Thus,from now on, let Val =Zand S =Z[x1; : : : ; xn℄. The key idea for the dete
tionof polynomial 
onstants is to represent assertions by the zeros of ideals in thepolynomial ring Z[x1; : : : ; xn℄ and to apply te
hniques from 
omputable ringtheory. A full introdu
tion to this area is beyond the s
ope of this paper but were
all the fa
ts needed in the next se
tion and make some additional observationsin Se
tion 6. A

essible introdu
tions 
an be found in standard textbooks on
omputer algebra. The 
ase of polynomial rings over �elds is 
overed, e.g., by[5,8, 20℄, while [14℄ treats the more general 
ase of polynomial rings over rings,that is of relevan
e here, as Zis an integral domain but not a �eld.5 A Primer on Computable Ideal TheoryRe
all that Ztogether with addition and multipli
ation forms a 
ommutativering, i.e., a stru
ture (R;+; �) with a non-empty set R and two inner operations+ and � su
h that (R;+) is an Abelian group, � is asso
iative and 
ommutative,and the distributive law a � (b + 
) = a � b + a � 
 is valid for all a; b; 
 2 R. Onthe set of polynomials,Z[x1; : : : ; xn℄, we 
an de�ne addition and multipli
ationoperations in the standard way; this makesZ[x1; : : : ; xn℄ a 
ommutative ring aswell.A non-empty subset I � R of a ring R is 
alled an ideal if a + b 2 I andr � a 2 I for all a; b 2 I, r 2 R. The ideal generated by a subset B � R is(B) = fr1 � b1 + : : :+ rk � bk j r1; : : : ; rk 2 R; b1; : : : ; bk 2 Bg ;and B is 
alled a basis or generating system of I if I = (B). An ideal is 
alled�nitely generated if it has a �nite basis B = fb1; : : : ; bmg. Hilbert's famous basistheorem tells us that Z[x1; : : : ; xn℄ is Noetherian, sin
e Zis Noetherian, i.e.,that there are no in�nitely long stri
tly in
reasing 
hains I1 � I2 � I3 � : : : of



ideals in Z[x1; : : : ; xn℄. This implies that every ideal of Z[x1; : : : ; xn℄ is �nitelygenerated.It is important for our algorithm that we 
an 
ompute e�e
tively with ide-als. While Hilbert's basis theorem ensures that we 
an represent every ideal ofZ[x1; : : : ; xn℄ by a �nite basis, in itself it does not give e�e
tive pro
edures for ba-si
 questions like membership tests or equality tests of ideals represented in thisway. Indeed, Hilbert's proof of the basis theorem was famous (and 
ontroversial)at its time for its non-
onstru
tive nature.Fortunately, the theory of Gr�obner bases and the Bu
hberger algorithm pro-vides a solution for some of these problems. While a 
omplete presentation of thistheory is way beyond the s
ope of this paper { the interested reader is pointed tothe books mentioned above { a few senten
es are in order here. A Gr�obner basisis a basis for an ideal that has parti
ularly ni
e properties. It 
an e�e
tively be
omputed from any given �nite basis by the Bu
hberger algorithm. There is anatural notion of redu
tion of a polynomial with respe
t to a set of polynomialssu
h that redu
tion of a polynomial p with respe
t to a Gr�obner basis alwaysterminates and yields a unique result. This result is the zero polynomial if andonly if p belongs to the ideal represented by the Gr�obner basis. Hen
e redu
tionwith respe
t to a Gr�obner basis yields an e�e
tive membership test, that in turn
an be used to 
he
k equality and in
lusion of ideals.In the terminology of [14℄, Z[x1; : : : ; xn℄ is a strongly 
omputable ring.This implies that the following operations are 
omputable for polynomialsp 2 Z[x1; : : : ; xn℄ and ideals I; I0 � Z[x1; : : : ; xn℄ given by �nite bases B;B0,
f. [14℄:Ideal membership: Given an ideal I and a polynomial p. Is p 2 I?Ideal in
lusion: Given two ideals I, I 0. Is I � I0?Ideal equality: Given two ideals I, I 0. Is I = I0?Sum of ideals: Given two ideals I, I 0. Compute a basis for I + I 0 def= fp+ p0 jp 2 I; p0 2 I0g. As a matter of fa
t, I + I 0 = (B [B0).Interse
tion of ideals: Given two ideals I, I0. Compute a basis for I \ I0.It is well-known that I + I 0 and I \ I 0 are again ideals if I and I 0 are. We 
anuse the above operations as basi
 operations in our algorithms.6 More About Z[x1; : : : ; xn℄Z[x1; : : : ; xn℄ as a Complete Latti
e. Interestingly, the ideals inZ[x1; : : : ; xn℄ form also a 
omplete latti
e under subset in
lusion �. Supposegiven a set I of ideals in Z[x1; : : : ; xn℄. Then the largest ideal 
ontained in allideals in I obviously is TI, and the smallest ideal that 
ontains all ideals in I isPI := fr1 � a1 + : : :+ rk � ak j r1; : : : ; rk 2Z[x1; : : : ; xn℄; a1; : : : ; ak 2 S Ig. Theleast element of the latti
e is the zero ideal f0g that 
onsists only of the zeropolynomial and the largest element is Z[x1; : : : ; xn℄. While this latti
e does nothave �nite height it is Noetherian by Hilbert's basis theorem su
h that we 
an ef-fe
tively 
ompute least �xpoints of monotoni
 fun
tions on ideals ofZ[x1; : : : ; xn℄by standard �xpoint iteration.



Zeros. We represent assertions by the zeros of ideals in our algorithm. A state �is 
alled a zero of polynomial p if p� = 0; we denote the set of zeros of polynomialp by Z(p). More generally, for a subset B �Z[x1; : : : ; xn℄, Z(B) = f� j 8p 2 B :p� = 0g. For later use, let us state some fa
ts 
on
erning zeros, in parti
ular ofthe relationship of operations on ideals with operations on their zeros.Lemma 2. Suppose B;B0 are sets of polynomials, q is a polynomial, I; I0 areideals, and I is a set of ideals in Z[x1; : : : ; xn℄.1. If B � B0 then Z(B) � Z(B0).2. Z(B) = Z((B)) = Tp2B Z(p). In parti
ular, Z(q) = Z((q)).3. Z(P I) = TfZ(I) j I 2 Ig. In parti
ular, Z(I + I 0) = Z(I) \ Z(I 0).4. Z(T I) = SfZ(I) j I 2 Ig, if I is �nite. In parti
ular, Z(I \ I0) = Z(I) [Z(I 0).5. Z(f0g) = � and Z(Z[x1; : : : ; xn℄) = ;.6. Z(I) = � if and only if I = f0g = (0).Substitution. Suppose given a polynomial p 2 Z[x1; : : : ; xn℄ and a variablex 2 X. We 
an de�ne a substitution operation on ideals I as follows: I[p=x℄ =(fq[p=x℄ j q 2 Ig), where the substitution of polynomial p for x in q, q[p=x℄,is de�ned as usual. By de�nition, I[p=x℄ is the smallest ideal that 
ontains allpolynomials q[p=x℄ with q 2 I. From a basis for I, a basis for I[p=x℄ is obtainedin the expe
ted way: if I = (B), then I[p=x℄ = (fb[p=x℄ j b 2 Bg). Thus, we 
aneasily obtain a �nite basis for I[p=x℄ from a �nite basis for I: if I = (b1; : : : ; bk)then I[p=x℄ = (b1[p=x℄; : : : ; bk[p=x℄). Hen
e we 
an add substitution to our listof 
omputable operations.The substitution operation on ideals de�ned in the previous paragraph mir-rors pre
isely semanti
 substitution in assertions whi
h has been de�ned in 
on-ne
tion with wp(x := e).Lemma 3. Z(I)[p=x℄ = Z(I[p=x℄).We leave the proof of this equation that involves the substitution lemmaknown from logi
 to the reader.Proje
tion. In this se
tion we de�ne proje
tion operators proj i, i = 1; : : : ; n,su
h that for ea
h ideal I, Z(proj i(I)) = 8xi(Z(I)). Semanti
 universal quan-ti�
ation over assertions has been de�ned in 
onne
tion with wp(x :=?).A polynomial p 2Z[x1; : : : ; xn℄ 
an uniquely be written as a polynomial in xiwith 
oeÆ
ients inZ[x1; : : : ; xi�1; xi+1; xn℄, i.e., in the form p = 
kxki+: : :+
0x0i ,where 
0; : : : ; 
k 2Z[x1; : : : ; xi�1; xi+1; xn℄, and 
k 6= 0 if k > 0. We 
all 
0; : : : ; 
kthe 
oeÆ
ients of p with respe
t to xi and let Ci(p) = f
0; : : : ; 
kg.Lemma 4. 8xi(Z(p)) = Z(Ci(p)).Proof. Let p = 
kxki + : : :+ 
0x0i with Ci(p) = f
0; : : : ; 
kg.



`�': Let � 2 Z(Ci(p)). We have 
�[xi 7!d℄k = 
�k = 0 for all d 2 Zbe
ause 
k isindependent of xi. Hen
e, p�[xi 7!d℄ = 
�[xi 7!d℄k dk + : : :+ 
�[xi 7!d℄0 d0 = 0dk + : : :+0d0 = 0 for all d 2Z, i.e. � 2 8xi(Z(p)).`�': Let � 2 8xi(Z(p)). We have 
�[xi 7!d℄k = 
�k for all d 2 Zbe
ause 
k isindependent of xi. Therefore, 
�kdk+ : : :+ 
�0d0 = 
�[xi 7!d℄k dk+ : : :+ 
�[xi 7!d℄0 d0 =p�[x 7!d℄ = 0 for all d 2 Zbe
ause of � 2 8xi(Z(p)). This means that thepolynomial 
�kxki + : : :+ 
�0x0i vanishes for all values of xi. Hen
e, it has morethan k zeros whi
h implies that it is the zero polynomial. Consequently, 
�j = 0for all j = 0; : : : ; k, i.e., � 2 Z(Ci(p)). utSuppose I �Z[x1; : : : ; xn℄ is an ideal with basis B.Lemma 5. 8xi(Z(I)) = Z(Sp2B Ci(p)).Proof. 8xi(Z(I)) = 8xi(Z(B)) = 8xi(Tp2B Z(p)) = Tp2B 8xi(Z(p)) =Tp2B Z(Ci(p)) = Z(Sp2B Ci(p)). utIn view of this formula, it is natural to de�ne proj i(I) = (Sp2B Ci(p)) whereB is a basis of I. It is not hard to show that this de�nition is independent of thebasis; we leave this proof to the reader. Obviously, proj i is e�e
tive: if I is givenby a �nite basis fb1; : : : ; bkg then proj i(I) is given by the �nite basis Skj=1 Ci(bj).Corollary 6. 8xi(Z(I)) = Z(proj i(I)).Proof. 8xi(Z(I)) = Z(Sp2B Ci(p)) = Z((Sp2B Ci(p))) = Z(proj i(I)). ut7 Dete
tion of Polynomial ConstantsWe represent assertions by ideals of the polynomial ring Z[x1; : : : ; xn℄ in thedete
tion algorithm for polynomial 
onstants. Thus, let D be the set of ideals ofZ[x1; : : : ; xn℄) and v be �. The representation mapping is 
(I) = Z(I). Notethat the order is reverse in
lusion of ideals. This is be
ause larger ideals havesmaller sets of zeros. Thus, the meet operation is the sum operation of idealsand the top element is the ideal f0g = (0).In a pra
ti
al algorithm, ideals are represented by �nite bases. For trans-paren
y, we suppress this further representation step but ensure that only oper-ations that 
an e�e
tively be 
omputed on bases are used.The latti
e (D ;�) satis�es requirements (a){(g) of Se
tion 4:(a) Z[x1; : : : ; xn℄ is Noetherian.(b) By the identity Z(P I) = TfZ(I) j I 2 Ig, Z is universally 
onjun
tive.(
) Suppose x 2 X and 
 2Z. Certainly, a state is a zero of the ideal generatedby the polynomial x� 
 if and only if it maps x to 
. Hen
e, we 
hoose dx=
as the ideal (x� 
) generated by x� 
.(d) In Se
tion 5 we have seen that the sum of two ideals 
an e�e
tively be
omputed on bases.(e) By Se
tion 6, (�)[p=x℄ is an adequate, 
omputable substitution operation.



(f) Again by Se
tion 6, proj i is an adequate, 
omputable proje
tion operation.(g) We know that Z(I) = � if and only if I = f0g. Moreover, the only basis ofthe ideal f0g is f0g itself. Hen
e, in order to de
ide whether an ideal I givenby a basis B represents �, we only need to 
he
k whether B = f0g.We 
an thus apply the generi
 algorithm from Se
tion 4 for the dete
tion ofpolynomial 
onstants. In order to make this more spe
i�
, we put the pie
estogether, and des
ribe the resulting algorithm in more detail.Suppose given a variable x 2 X and a program point w 2 N in a 
owgraph G = (N;E;A; s; e). Then the following algorithm de
ides whether x is apolynomial 
onstant at w or not:Phase 1: Determine a 
andidate value 
 2Zfor x at w by exe
uting an arbi-trary (
y
le-free) path from s to w.Phase 2: Asso
iate with ea
h edge (u; v) 2 E a transfer fun
tion f(u;v) : D ! Dthat represents wp(AS (u; v)):f(u;v)(I) =8>><>>: I if A(u; v) = skipI[p=x℄ if A(u; v) = (x := p) with p 2Z[x1; : : : ; xn℄proj x(I) if A(u; v) = (x := t) with t =2Z[x1; : : : ; xn℄proj x(I) if A(u; v) = (x :=?)Set A0[w℄ = (x � 
) and A0[u℄ = (0) for all u 2 Nnfwg and 
ompute thelargest solution (w.r.t. v=�) of the equation systemA[u℄ = A0[u℄ + Xv2Su

[u℄ f(u;v)(A[v℄) for ea
h u 2 N :We 
an do this as follows. Starting from A0[u℄ we iteratively 
ompute, si-multaneously for all program points u 2 N , the following sequen
es of idealsAi+1[u℄ = Ai[u℄ + Xv2Su

[u℄ f(u;v)(Ai[v℄) :We stop upon stabilization, i.e., when we en
ounter an index is withAis+1[u℄ = Ais [u℄ for all u 2 N . Obviously,A0[u℄ � A1[u℄ � A2[u℄ � : : :, su
hthat 
omputationmust terminate eventually be
auseZ[x1; : : : ; xn℄ is Noethe-rian. In this 
omputation we represent ideals by �nite bases and performGr�obner basis 
omputations in order to 
he
k whether Ai+1[u℄ = Ai[u℄.2Phase 3: Che
k if the ideal 
omputed for the start node, Ais [s℄, is (0). If so, xis a polynomial 
onstant of value v at w; otherwise, x is not a polynomial
onstant at w.Phase 2 
an be seen as a ba
kwards data 
ow analysis in a framework inwhi
h ideals of Z[x1; : : : ; xn℄ 
onstitute data 
ow fa
ts, the transfer fun
tions2 As Ai+1[u℄ � Ai[u℄ by 
onstru
tion, it suÆ
es to 
he
k Ai+1[u℄ � Ai[u℄.



are the fun
tions f(u;v) spe
i�ed above, and the start value is A0. Of 
ourse, we
an use any evaluation strategy instead of naive iteration.We do not know any 
omplexity bound for our algorithm. Our terminationproof relies on Hilbert's basis theorem and its standard proof is non-
onstru
tiveand does not provide an upper bound for the maximal length of stri
tly in-
reasing 
hains of ideals. Therefore, we 
annot bound the number of iterationsperformed by our algorithm.8 Con
lusionIn this paper we have shown that polynomial 
onstants are de
idable. Our al-gorithm 
an easily be extended to handle 
onditions of the form p 6= 0 withp 2 Z[x1; : : : ; xn℄. The weakest pre
ondition is wp(p 6= 0)(�) = (p 6= 0 ) �) =(p = 0 _ �) and if � is represented by an ideal I, the assertion p = 0 _ � isrepresented by the ideal I \ (p) a

ording to Lemma 2. This observation 
an beused to handle su
h 
onditions in our algorithm. We 
an extend this easily toan arbitrary mixture of disjun
tions and 
onjun
tions of 
onditions of the formp 6= 0. Of 
ourse, we 
annot handle the dual form of 
onditions, p = 0: with bothtypes of 
onditions we 
an obviously simulate two-
ounter ma
hines.The idea to dete
t 
onstants with a symboli
 weakest pre
ondition 
ompu-tation has previously been used in a polynomial-time algorithm for dete
tion ofPresburger 
onstants [16℄. In Presburger 
onstant dete
tion only the integer op-erators + and � are interpreted and assertions are represented by aÆne ve
torspa
es over Q. In 
ontrast to our algorithm, the Presburger 
onstant dete
tionalgorithm 
annot easily be extended to 
onditions as aÆne spa
es are not 
losedunder union.Standard 
onstant propagation relies on forward propagation while we useba
kwards propagation of assertions. Interestingly, Presburger 
onstants 
an alsobe dete
ted by forward propagation of aÆne spa
es. Karr [10℄ des
ribes su
h analgorithm but does not address 
ompleteness issues. In forward propagation ofassertions we e�e
tively 
ompute strongest post
onditions rather than weakestpre
ondition and this 
omputation involves union of assertions rather than inter-se
tion. Be
ause aÆne spa
es are not 
losed under union, Karr de�nes a (
ompli-
ated) union operator of aÆne spa
es that over-approximates their a
tual unionby an aÆne spa
e. One is tempted to 
onsider forward propagation of ideals ofZ[x1; : : : ; xn℄. At �rst glan
e, this idea looks promising, be
ause ideals are 
losedunder interse
tion and interse
tion of ideals 
orresponds to union of their sets ofzeros, su
h that we 
an even pre
isely represent the union of assertions. Thereis, however, another problem:Z[x1; : : : ; xn℄ is not `
o-Noetherian', i.e., there arein�nitely long stri
tly de
reasing 
hains of ideals, e.g., (x) � (x2) � (x3) � : : :.Therefore, strongest post
ondition 
omputations with ideals 
annot be guaran-teed to terminate in general.Our approa
h to 
ompute weakest pre
onditions symboli
ally with e�e
tiverepresentations is 
losely related to abstra
t interpretation [3, 4℄. Requirement(b) of the generi
 algorithm, universal 
onjun
tivity of the representation map-



ping 
 : D ! 2�, implies that 
 has a lower adjoint, i.e., that there is a monotoni
mapping� : 2� ! D su
h that (�; 
) is a Galois 
onne
tion [13℄. In the standardabstra
t interpretation framework, we are interested in 
omputation of least �x-points and the lower adjoint, �, is the abstra
tion mapping. Here, we are in thedual situation: we are interested in 
omputation of greatest �xpoints. Thus, therole of the abstra
tion is played by the upper adjoint, 
 : D ! 2�. Funnily,this means that in a te
hni
al sense the members of D provide more 
on
reteinformation than the members of 2� and that we 
ompute on the 
on
rete sideof the abstra
t interpretation. Thus, we interpret the latti
e D as an exa
t par-tial representation rather than an abstra
t interpretation. The representationvia D is partial be
ause it does not represent all assertions exa
tly; this is indis-pensable due to 
ountability reasons be
ause we 
annot represent all assertionse�e
tively. It is an exa
t representation be
ause it allows us to infer the weakestpre
onditions arising in the S-
onstant algorithms pre
isely, whi
h is a
hieved byensuring that the initial value of the �xpoint 
omputation is represented exa
tlyand that the o

urring operations on representations mirror the 
orrespondingoperations on assertions pre
isely.By the very nature of Galois 
onne
tions, the representation mapping 
 andits lower adjoint � satisfy the two inequalities �Æ
 v IdD and Id2� � 
Æ�, whereIdD and Id2� are the identities on D and 2�, respe
tively. Interestingly, none ofthese inequalities degenerates to an equality when we represent assertions byideals ofZ[x1; : : : ; xn℄ as in our algorithm for dete
tion of polynomial 
onstants.On the one hand, 
 Æ� 6= Id2� be
ause the representation is ne
essarily partial.On the other hand, � Æ 
 6= IdD be
ause the representation of assertions is notunique. For example, if p 2 Z[x1; : : : ; xn℄ does not have a zero in the integers,we have Z((p)) = ; su
h that Z((p)) = Z((1)) = Z(Z[x1; : : : ; xn℄). But byunde
idability of Hilbert's tenth problem, we 
annot de
ide whether we are fa
edwith su
h a polynomial p and thus 
annot e�e
tively identify (p) and (1). Thisfor
es us to work with a non-unique representation. While we 
annot de
idewhether the set of zeros of an ideal I given by a basis B is empty, we 
an de
idewhether it equals � be
ause this only holds for I = (0). Fortunately, this is theonly question that needs to be answered for the weakest pre
ondition.As a 
onsequen
e of non-uniqueness, the weakest pre
ondition 
omputationon ideals does not ne
essarily stop on
e it has found a 
olle
tion of ideals thatrepresents the largest �xpoint on assertions but may pro
eed to larger idealsthat represent the same assertions. Fortunately, we 
an still prove terminationby arguing on ideals dire
tly.Let us dis
uss some possible dire
tions for future work. Firstly, it is interestingto implement the dete
tion algorithm for polynomial 
onstants and evaluate howit performs in pra
ti
e. Se
ondly, we 
an look for other appli
ations of the generi
algorithm. Of 
ourse, we 
an ta
kle, e.g, polynomial 
onstants over Q ratherthan Z, where we 
an use essentially the same algorithm be
ause Q[x1; : : : ; xn℄is also a strongly 
omputable ring. But we may also identify other 
lasses whereassertions 
an be represented symboli
ally. On the theoreti
al side, there is the
hallenge to diminish the gap between the upper and lower 
omplexity bound forthe dete
tion problem of polynomial 
onstants. Currently, we have de
idability



as an upper bound, as witnessed by the algorithm in this paper, and PSPACE-hardness as a lower bound [16℄.A
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