
Polynomial Constants are Deidable ?Markus M�uller-Olm1 and Helmut Seidl21 University of Dortmund, FB 4, LS5, 44221 Dortmund, Germanymmo�ls5.s.uni-dortmund.de2 Trier University, FB 4-Informatik, 54286 Trier, Germanyseidl�uni-trier.deAbstrat. Constant propagation aims at identifying expressions thatalways yield a unique onstant value at run-time. It is well-known thatonstant propagation is undeidable for programs working on integerseven if guards are ignored as in non-deterministi ow graphs. We showthat polynomial onstants are deidable in non-deterministi ow graphs.In polynomial onstant propagation, assignment statements that use theoperators +;�; � are interpreted exatly but all assignments that useother operators are onservatively interpreted as non-deterministi as-signments.We present a generi algorithm for onstant propagation via a symboliweakest preondition omputation and show how this generi algorithman be instantiated for polynomial onstant propagation by exploitingtehniques from omputable ring theory.1 IntrodutionConstant propagation is one of the most widely used optimizations in pratialoptimizing ompilers (f. [1, 9, 15℄). Its goal is to replae expressions that alwaysyield a unique onstant value at run-time by this value. This both speeds upexeution and redues ode size. Even more importantly, it an enable powerfulfurther transformations like elimination of dynamially unreahable branhes.In order to ome to grips with fundamental omputability problems oneoften abstrats guarded branhing to non-deterministi branhing in programanalysis. But even this abstration leaves onstant propagation undeidable forprograms working on integer variables. This has already been observed in theseventies independently by Heht [9℄ and by Reif and Lewis [17℄.We briey reallthe onstrution of Reif and Lewis. It is based on a redution of Hilbert's tenthproblem, whether a (multivariate) polynomial has a zero in the natural numbers,a very famous undeidable problem [12℄.Assume given a (non-zero) polynomial p(x1; : : : ; xn) in n variables x1; : : : ; xnwith integer oeÆients and onsider the (non-deterministi) program in Fig. 1.The initializations and the loops hoose arbitrary natural values for the variablesxi. If the hosen values onstitute a zero of p(x1; : : : ; xn), then p(x1; : : : ; xn)2 +? The work was supported by the RTD projet IST-1999-20527 "DAEDALUS" of theEuropean FP5 programme.



 

 xn := xn + 1 xn := 0x2 := 0r := 1 div (p(x1; : : : ; xn)2 + 1)x1 := x1 + 1 x1 := 0
Fig. 1. Undeidability of onstant detetion; the redution of Reif and Lewis [17℄.1 = 1 and r is set to 1. Otherwise, p(x1; : : : ; xn)2 + 1 � 2 suh that r is set to0. Therefore, r is a onstant (of value 0) at the end of the program if and onlyif p(x1; : : : ; xn) does not have a natural zero.On the other hand there are well-known and well-de�ned lasses of onstantsthat an be deteted, even eÆiently. In opy onstant detetion [7℄ only assign-ments of the form x := , where  is either an (integer) onstant or a programvariable are interpreted; assignments with omposite expressions on the righthand side are onservatively assumed to make a variable non-onstant. In linearonstants [18℄ also assignments of the form x := a�y+b, where a and b are integeronstants and y is a program variable, are interpreted. Another deidable lassof onstants are �nite onstants [19℄. This motivated M�uller-Olm and R�uthing[16℄ to study the omplexity of onstant propagation for lasses that derive fromrestriting the signature of interpreted integer operators.An interesting question they left open onerns the lass of onstants ob-tained by interpreting just +;�; �, i.e., all standard integer operators exept ofthe division operators. While they alled the orresponding lass of onstants+;�; �-onstants, we prefer the term polynomial onstants here, as these sig-nature allows just to write (multivariate) polynomials. The detetion problemfor polynomial onstants is PSPACE-hard [16℄ but no upper bound is known.In the urrent paper we show that polynomial onstants are deidable by ap-plying results from omputable ideal theory. This deidability result suggeststhat the division operator is the real ause for undeidability of general onstantdetetion.
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x+ y = 0x = 0xy � 6 = 00 = 0x := x2 + xy3 x := xy � 6x := x+ 1y := y � 1 y := 012x := 2 x := 3y := 3 y := 2
Fig. 2. An example ow graph.The paper is organized as follows. In the next setion we illustrate our al-gorithm at an example that annot be handled by other onstant propagationalgorithms. Afterwards we de�ne ow graphs, the onstant propagation prob-lem, and weakened versions thereof. This enables us to de�ne polynomial on-stants formally. In Setion 4 we present a generi algorithmi idea for onstantpropagation via a symboli weakest preondition omputation and disuss therequirements for making it e�etive. In Setion 5 we reall results from om-putable ring theory that are needed in our algorithm and proeed with furtherobservations on Z[x1; : : : ; xn℄, the set of multivariate polynomials with integeroeÆients. These results are exploited in Setion 7, where we show how thegeneri algorithm from Setion 4 an be instantiated for polynomial onstantpropagation. We �nish the paper with onluding remarks and diretions forfuture researh.2 An ExampleLet us illustrate the power of our algorithm. In the ow graph in Fig. 2, x is aonstant (of value 0) at node 4, but no known onstant propagation algorithmsan handle this example. Standard simple onstant propagation [1℄ propagatesvariable assignments through the program, in whih eah variable is assignedeither a de�nite value or a speial value unknown. Simple onstant propagationomputes the value unknown at program point 2 for both x and y and annot re-over from this loss of preision. More powerful onstant propagation algorithmslike the algorithm for linear onstants [18℄ or Presburger onstants [16℄ annothandle the expressions xy � 6 and x2 + xy. Even the EXPTIME algorithm ofKnoop and Ste�en for �nite onstants [19℄ annot handle this example beause



no �nite unfolding of the loop suÆes to prove onstany of x2 + xy after theloop.Before we turn to the tehnial development, we disuss informally how ouralgorithm detets onstany of x at node 4. In a �rst phase some path from node1 to 4 is exeuted, e.g., h1; 2; 3; 4i, and the value of x, viz. 0, after exeution ofthis path is omputed. This implies that x an only be a onstant of value 0 atprogram point 4 { if it is a onstant at all. In order to hek this, our algorithmpropagates the assertion A0 : x = 0 bakwards from node 4 towards the startnode whih amounts to a symboli omputation of the weakest preondition ofA0 at node 4. Propagation over statement x := x2 + xy results in the assertionA1 : x2+xy = 0. Assertion A1 is then propagated through the loop. This resultsin the assertion A2 : (x + 1)2 + (x + 1)(y � 1) = 0 that an be simpli�ed toA3 : x2 + xy + x + y = 0. Both A1 and A3 must be valid at program point 3in order to guarantee validity of A0 at program point 4. We an simplify theassertion A1^A3: beause A1 guarantees that x2+xy equals 0, we an simpli�yA3 to A4 : x + y = 0; now, as A1 an be written in the form x(x + y) = 0, wesee that A1 is indeed implied by A4. Thus, validity of A4 suÆes to guaranteeboth A1 and A3. A4 is again propagated through the loop; this results in A4again; hene no further propagation through the loop is neessary. In this waypropagation goes on and results in the assertions shown in Fig. 2. The assertionomputed for the start node, 0 = 0 is universally valid; this proves that x isindeed a onstant of value 0 at node 4.In the algorithm developed in the remainder of this paper, assertions arerepresented by Gr�obner bases of ideals in the polynomial ring Z[x1; : : : ; xn℄. AsGr�obner bases are a anoni representation this also takes are of simpli�ations.3 The FrameworkFlow Graphs. Suppose given a �nite set of variables X = fx1; : : : ; xng. LetExpr be a set of expressions overX; the preise nature of expressions is immaterialat the moment. A (deterministi) assignment is a pair onsisting of a variableand an expression written as x := t; the set of assignment statements is denotedby Asg. A non-deterministi assignment statement onsists of a variable and iswritten x :=?; the set of nondeterministi assignment statements is denoted byNAsg.A (non-deterministi) ow graph is a struture G=(N;E;A; s; e) with �nitenode set N , edge set E � N �N , a unique start node s 2 N , and a unique endnode e 2 N . We assume that eah program point u 2 N lies on a path from sto e. The mapping A : E ! Asg [ NAsg [ fskipg assoiates eah edge with adeterministi or non-deterministi assignment statement or the statement skip.Edges represent the branhing struture and the statements of a program, whilenodes represent program points. The set of suessors of program point u 2 Nis Su[u℄ = fv j (u; v) 2 Eg.A path reahing a given program point u 2 N is a sequene of edges p =he1; : : : ; eki with ei = (ui; vi) 2 E suh that u1 = s, vk = u, and vi = ui+1 for



1 � i < k . In addition p = ", the empty sequene, is a path reahing the startnode s. We write R[u℄ for the set of paths reahing u.Let Val be a set of values. A mapping � : X ! Val that assigns a value toeah variable is alled a state; we write � = f� j � : X ! Valg for the set ofstates. For x 2 X, d 2 Val, and � 2 � we write �[x 7! d℄ for the state thatmaps x to d and oinides for the other variables with �. We assume a �xedinterpretation for the operators used in terms and we assume that the value ofterm t in state �, whih we denote by t�, is de�ned in the standard way.In order to aommodate non-deterministi assignments we interpret state-ments by relations on � rather than funtions. The relation assoiated withassignment statement x := t is [[x := t℄℄ def= f(�; �0) j �0 = �[x 7! t�℄g; the rela-tion assoiated with non-deterministi assignment x :=? is [[x :=?℄℄ def= f(�; �0) j9d 2 Val : �0 = �[x 7! d℄g; and the relation assoiated with skip is the iden-tity: [[skip℄℄ def= f(�; �0) j � = �0g. This loal interpretation of statements isstraightforwardly extended to paths p = he1; : : : ; eki 2 E� as follows: [[p℄℄ =[[A(e1)℄℄ ; : : : ;[[A(ek)℄℄, where ; denotes relational omposition.Constant Propagation. A variable x 2 X is a onstant at program pointu 2 N if there is d 2 Val suh that �(x) = d for all p 2 R[u℄, (�0; �) 2 [[p℄℄.Arbitrary hoie of initial state �0 reets that we do not know the state inwhih the program is started.We an weaken the demands for a onstant detetion algorithm by seletinga ertain subset of expressions S � Expr that are interpreted preisely andassuming onservatively that assignments whose right hand does not belong toS assign an arbitrary value to their respetive target variable. This idea an bemade formal as follows.For a given ow graph G = (N;E;A; s; e) and subset of expressions S � Expr,let GS = (N;E;AS ; s; e) be the ow graph with the same underlying graph butwith the following weakened edge annotation:AS(u; v) = �x :=? ; if A(u; v) = (x := t) and t =2 SA(u; v) ; otherwiseA variable x 2 X is then alled an S-onstant at program point u 2 N in owgraph G if it is a onstant at u in the weakened ow graph GS. Clearly, if x isan S-onstant at u it is also a onstant at u but not vie versa. The detetionproblem for S-onstants is the problem of deiding for a given set of variablesX, ow graph G, variable x, and program point u whether x is an S-onstantat u or not.To study weakened versions of onstant detetion problems is partiularlyinteresting for programs omputing on the integers, i.e., if Expr is the set of in-teger expressions formed from integer onstants and variables with the standardoperators +;�; �; div;mod: we have seen in the introdution that the generalonstant detetion problem is undeidable in this ase.Let us disuss some examples for illustration. S-onstants with respet tothe set S = X [Z, i.e., the set of non-omposite expressions, are known as opy



onstants [7℄. S-onstants with respet to the set S = fa�x+b j a; b 2Z; x 2 Xgare known as linear onstants [18℄. In this paper we takle onstants with respetto the set S =Z[x1; : : : ; xn℄, the set of multivariate polynomials in the variablesx1; : : : ; xn with oeÆients inZ, whih we all polynomial onstants.We should emphasize two points about the above framework that make theonstrution of S-onstant detetion algorithms more hallenging. Firstly, inontrast to the setup in [16℄, we allow assignment statements, whose right handside does not belong to S. They are interpreted as non-deterministi assignments.Forbidding them is adequate for studying lower omplexity bounds for analysisquestions, whih is the main onern of [16℄. It is less adequate when we areonerned with detetion algorithms beause in pratie we want to detet S-onstants in the ontext of other ode.Seondly, a variable an be an S-onstant although its value statially de-pends on an expression that is not in S. As asimple example onsider the ow graph in Fig. 3and assume that the expressions 0 and y� y be-long to S but e does not. Beause y � y is 0 forany value y 2 Z, an S-onstant detetion algo-rithm must identify x as a onstant (of value 0),although its value statially depends on the un-interpreted expression e. Hene, S-onstant de-tetion must handle arithmeti properties of theexpressions in S. 1
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y := ex := y � yx := 0Fig. 3: An S-onstant.4 A Generi AlgorithmSuppose given a variable x 2 X and a program point w 2 N . In this hapter wedesribe a generi algorithm for deiding whether x is an S-onstant at w or not.While standard onstant propagation works by forward propagation of variableassignments, we use a three phase algorithm that employs a bakwards propa-gation of assertions. For the moment we an think of assertions as prediates onstates as in program veri�ation.Phase 1: In the �rst phase we follow an arbitrary yle-free path from s to w,for instane using depth-�rst searh, and ompute the value , referred toas the andidate value, that x holds after this path is exeuted. This impliesthat, if x is a onstant at w, it must be a onstant of value .Phase 2: In the seond phase we ompute the weakest preondition for theassertion x =  at program point w in GS by means of a bakwards dataow analysis.Phase 3: Finally, we hek whether the omputed weakest preondition for x = at w is true, i.e., is valid for all states.It is obvious that this algorithm is orret. The problem is that Phase 2 and3 are in general not e�etive. However, as only assignments of a restrited formappear in GS , the algorithm beomes e�etive for ertain sets S, if assertions



are represented appropriately. In the remainder of this setion we analyze therequirements for adequate representations. For this purpose, we �rst haraterizeweakest preonditions in ow graphs.Semantially, an assertion is a subset of states � � �. Given an assertion �and a statement s, the weakest preondition of s for �, wp(s)(�), is the largestassertion �0 suh that exeution of s from all states in �0 is guaranteed to termi-nate only in states in �.1 The following identities for the weakest preonditionof assignment and skip statements are well-known:wp(x := e)(�) def= �[e=x℄ def= f� j �[x 7! e� ℄ 2 �gwp(x :=?)(�) def= 8x(�) def= f� j 8d 2Z: �[x 7! d℄ 2 �gwp(skip)(�) def= �These identities haraterize weakest preonditions of basi statements. Letus now onsider the following more general situation in a given ow graphG=(N;E;A; s; e): we are given an assertion � � � as well as a program pointw 2 N and we are interested in the weakest preondition that guarantees validityof � whenever exeution reahes w. The latter an be haraterized as follows.Let W0[w℄ = � and W0[u℄ = � and onsider the following equation systemonsisting of one equation for eah program point u 2 N :W[u℄ = W0[u℄\ \v2Su[u℄wp(A(u; v))(W[v℄) : (1)By the Knaster-Tarski �xpoint theorem, this equation system has a largest so-lution (w.r.t. subset inlusion) beause wp(s) is well-known to be monotoni. Byabuse of notation, we denote the weakest solution by the same letter W[u℄. Foreah program point u 2 N , W[u℄ is the weakest assertion suh that exeutionstarting from u with any state inW[u℄ guarantees that � holds whenever exeu-tion reahes w. In partiular, W[s℄ is the weakest preondition for validity of �at w. The intuition underlying equation (1) is the following: �rstly, W0[u℄ mustbe implied by W[u℄ and, seondly, for all suessors v, we must guarantee thattheir assoiated ondition W[u℄ is valid after exeution of the statement A(u; v)assoiated with the edge (u; v); hene wp(A(u; v))(W[v℄) must be valid at u too.For two reasons, the above equation system annot be solved diretly ingeneral: �rstly, beause assertions may be in�nite sets of states they annot berepresented expliitly; seondly, there are in�nitely long desending hains ofassertions suh that standard �xpoint iteration does not terminate in general.In order to onstrut an algorithm that detets S-onstants we representassertions by the members of a lattie (D ;v). Let us assume that  : D ! 2�aptures how the lattie element represent assertions. First of all, we require1 In the sense of Dijkstra [6℄ this is the weakest liberal preondition as it does notguarantee termination. For simpliity we omit the qualifying pre�x \liberal" in thispaper.



L0L f gFig. 4. Situation in the transfer lemma.(a) D has no in�nite dereasing hains, i.e., there is no in�nite hain d1 w d2 wd3 w : : :.This guarantees that maximal �xpoints of monotoni funtions an e�etivelybe omputed by standard �xpoint iteration. Seondly, we suppose(b)  is universally onjuntive, i.e., (uX) = Tf(d) j d 2 Xg for all X � D .The most important reason for making this assumption is that it ensures thatwe an validly ompute on representations without loosing preision: if we pre-isely mirror the equations haraterizing weakest preonditions on representa-tions, the largest solution of the resulting equation system on representationsharaterizes the representation of the weakest preondition by the followingwell-known lemma. It appears in the literature (for the dual situation of least�xpoints) under the name Transfer Lemma [2℄ or �-Fusion Rule [11℄.Lemma 1. Suppose L;L0 are omplete latties, f : L ! L and g : L0 ! L0 aremonotoni funtions and  : L! L0 (f. Fig. 4).If  is universally onjuntive and  Æ f = g Æ  then (�f) = �g, where �fand �g are the largest �xpoints of f and g, respetively.We must mirror the elements omprising the equation system haraterizingweakest preonditions on representations preisely. Firstly, we must representthe start value,W0. Universal onjuntivity of  implies that (>) = �, i.e., thetop value of D is a preise representation of �. In addition, we require:() Assertion x =  an be represented preisely: for eah x 2 X,  2 Val we ane�etively determine dx= 2 D with (dx=) = f� 2 � j �(x) = g.Seondly, we need e�etive representations for the operators appearing inequations. Requirement (b) implies that the meet operation of D preisely ab-strats intersetion of assertions. In order to enable e�etive omputation ofintersetions, we require in addition:(d) for given d; d0 2 D , we an e�etively ompute d u d0.By indution this implies that we an ompute �nite meets d1u: : :udk e�etively.The only remaining operations on assertions are the weakest preonditiontransformers of basi statements. We must represent wp(x := t) for expressionst 2 S, whih is the substitution operator (�)[t=x℄ on assertions. As the S-onstantdetetion algorithm omputes the weakest preondition in weakened ow graphGS, assignments x := t with t =2 S do not our.



(e) There is a omputable substitution operation (�)[t=x℄ : D ! D for eahx 2 X, t 2 S, whih satis�es (d[t=x℄) = (d)[t=x℄ for all d 2 D .Obviously, wp(skip), the identity, is preisely represented by the identity on R.Thus, it remains to represent wp(x :=?):(f) There is a omputable projetion operation proj i : D ! D for eah variablexi 2 X suh that (proj i(d)) = 8xi((d)) for all d 2 D .Finally, we need the following in order to make Phase 3 of the algorithm e�etive.(g) Assertion true is deidable, i.e., there is a deision proedure that deidesfor a given d 2 D , whether (d) = � or not.If, for a given set S � Expr, we an �nd a lattie satisfying requirements (a){(g), we an e�etively exeute the three phase algorithm from the beginning ofthis setion by representing assertions by elements from this lattie. This resultsin a detetion algorithm for S-onstants.In this paper we are interested in detetion of polynomial onstants. Thus,from now on, let Val =Zand S =Z[x1; : : : ; xn℄. The key idea for the detetionof polynomial onstants is to represent assertions by the zeros of ideals in thepolynomial ring Z[x1; : : : ; xn℄ and to apply tehniques from omputable ringtheory. A full introdution to this area is beyond the sope of this paper but wereall the fats needed in the next setion and make some additional observationsin Setion 6. Aessible introdutions an be found in standard textbooks onomputer algebra. The ase of polynomial rings over �elds is overed, e.g., by[5,8, 20℄, while [14℄ treats the more general ase of polynomial rings over rings,that is of relevane here, as Zis an integral domain but not a �eld.5 A Primer on Computable Ideal TheoryReall that Ztogether with addition and multipliation forms a ommutativering, i.e., a struture (R;+; �) with a non-empty set R and two inner operations+ and � suh that (R;+) is an Abelian group, � is assoiative and ommutative,and the distributive law a � (b + ) = a � b + a �  is valid for all a; b;  2 R. Onthe set of polynomials,Z[x1; : : : ; xn℄, we an de�ne addition and multipliationoperations in the standard way; this makesZ[x1; : : : ; xn℄ a ommutative ring aswell.A non-empty subset I � R of a ring R is alled an ideal if a + b 2 I andr � a 2 I for all a; b 2 I, r 2 R. The ideal generated by a subset B � R is(B) = fr1 � b1 + : : :+ rk � bk j r1; : : : ; rk 2 R; b1; : : : ; bk 2 Bg ;and B is alled a basis or generating system of I if I = (B). An ideal is alled�nitely generated if it has a �nite basis B = fb1; : : : ; bmg. Hilbert's famous basistheorem tells us that Z[x1; : : : ; xn℄ is Noetherian, sine Zis Noetherian, i.e.,that there are no in�nitely long stritly inreasing hains I1 � I2 � I3 � : : : of



ideals in Z[x1; : : : ; xn℄. This implies that every ideal of Z[x1; : : : ; xn℄ is �nitelygenerated.It is important for our algorithm that we an ompute e�etively with ide-als. While Hilbert's basis theorem ensures that we an represent every ideal ofZ[x1; : : : ; xn℄ by a �nite basis, in itself it does not give e�etive proedures for ba-si questions like membership tests or equality tests of ideals represented in thisway. Indeed, Hilbert's proof of the basis theorem was famous (and ontroversial)at its time for its non-onstrutive nature.Fortunately, the theory of Gr�obner bases and the Buhberger algorithm pro-vides a solution for some of these problems. While a omplete presentation of thistheory is way beyond the sope of this paper { the interested reader is pointed tothe books mentioned above { a few sentenes are in order here. A Gr�obner basisis a basis for an ideal that has partiularly nie properties. It an e�etively beomputed from any given �nite basis by the Buhberger algorithm. There is anatural notion of redution of a polynomial with respet to a set of polynomialssuh that redution of a polynomial p with respet to a Gr�obner basis alwaysterminates and yields a unique result. This result is the zero polynomial if andonly if p belongs to the ideal represented by the Gr�obner basis. Hene redutionwith respet to a Gr�obner basis yields an e�etive membership test, that in turnan be used to hek equality and inlusion of ideals.In the terminology of [14℄, Z[x1; : : : ; xn℄ is a strongly omputable ring.This implies that the following operations are omputable for polynomialsp 2 Z[x1; : : : ; xn℄ and ideals I; I0 � Z[x1; : : : ; xn℄ given by �nite bases B;B0,f. [14℄:Ideal membership: Given an ideal I and a polynomial p. Is p 2 I?Ideal inlusion: Given two ideals I, I 0. Is I � I0?Ideal equality: Given two ideals I, I 0. Is I = I0?Sum of ideals: Given two ideals I, I 0. Compute a basis for I + I 0 def= fp+ p0 jp 2 I; p0 2 I0g. As a matter of fat, I + I 0 = (B [B0).Intersetion of ideals: Given two ideals I, I0. Compute a basis for I \ I0.It is well-known that I + I 0 and I \ I 0 are again ideals if I and I 0 are. We anuse the above operations as basi operations in our algorithms.6 More About Z[x1; : : : ; xn℄Z[x1; : : : ; xn℄ as a Complete Lattie. Interestingly, the ideals inZ[x1; : : : ; xn℄ form also a omplete lattie under subset inlusion �. Supposegiven a set I of ideals in Z[x1; : : : ; xn℄. Then the largest ideal ontained in allideals in I obviously is TI, and the smallest ideal that ontains all ideals in I isPI := fr1 � a1 + : : :+ rk � ak j r1; : : : ; rk 2Z[x1; : : : ; xn℄; a1; : : : ; ak 2 S Ig. Theleast element of the lattie is the zero ideal f0g that onsists only of the zeropolynomial and the largest element is Z[x1; : : : ; xn℄. While this lattie does nothave �nite height it is Noetherian by Hilbert's basis theorem suh that we an ef-fetively ompute least �xpoints of monotoni funtions on ideals ofZ[x1; : : : ; xn℄by standard �xpoint iteration.



Zeros. We represent assertions by the zeros of ideals in our algorithm. A state �is alled a zero of polynomial p if p� = 0; we denote the set of zeros of polynomialp by Z(p). More generally, for a subset B �Z[x1; : : : ; xn℄, Z(B) = f� j 8p 2 B :p� = 0g. For later use, let us state some fats onerning zeros, in partiular ofthe relationship of operations on ideals with operations on their zeros.Lemma 2. Suppose B;B0 are sets of polynomials, q is a polynomial, I; I0 areideals, and I is a set of ideals in Z[x1; : : : ; xn℄.1. If B � B0 then Z(B) � Z(B0).2. Z(B) = Z((B)) = Tp2B Z(p). In partiular, Z(q) = Z((q)).3. Z(P I) = TfZ(I) j I 2 Ig. In partiular, Z(I + I 0) = Z(I) \ Z(I 0).4. Z(T I) = SfZ(I) j I 2 Ig, if I is �nite. In partiular, Z(I \ I0) = Z(I) [Z(I 0).5. Z(f0g) = � and Z(Z[x1; : : : ; xn℄) = ;.6. Z(I) = � if and only if I = f0g = (0).Substitution. Suppose given a polynomial p 2 Z[x1; : : : ; xn℄ and a variablex 2 X. We an de�ne a substitution operation on ideals I as follows: I[p=x℄ =(fq[p=x℄ j q 2 Ig), where the substitution of polynomial p for x in q, q[p=x℄,is de�ned as usual. By de�nition, I[p=x℄ is the smallest ideal that ontains allpolynomials q[p=x℄ with q 2 I. From a basis for I, a basis for I[p=x℄ is obtainedin the expeted way: if I = (B), then I[p=x℄ = (fb[p=x℄ j b 2 Bg). Thus, we aneasily obtain a �nite basis for I[p=x℄ from a �nite basis for I: if I = (b1; : : : ; bk)then I[p=x℄ = (b1[p=x℄; : : : ; bk[p=x℄). Hene we an add substitution to our listof omputable operations.The substitution operation on ideals de�ned in the previous paragraph mir-rors preisely semanti substitution in assertions whih has been de�ned in on-netion with wp(x := e).Lemma 3. Z(I)[p=x℄ = Z(I[p=x℄).We leave the proof of this equation that involves the substitution lemmaknown from logi to the reader.Projetion. In this setion we de�ne projetion operators proj i, i = 1; : : : ; n,suh that for eah ideal I, Z(proj i(I)) = 8xi(Z(I)). Semanti universal quan-ti�ation over assertions has been de�ned in onnetion with wp(x :=?).A polynomial p 2Z[x1; : : : ; xn℄ an uniquely be written as a polynomial in xiwith oeÆients inZ[x1; : : : ; xi�1; xi+1; xn℄, i.e., in the form p = kxki+: : :+0x0i ,where 0; : : : ; k 2Z[x1; : : : ; xi�1; xi+1; xn℄, and k 6= 0 if k > 0. We all 0; : : : ; kthe oeÆients of p with respet to xi and let Ci(p) = f0; : : : ; kg.Lemma 4. 8xi(Z(p)) = Z(Ci(p)).Proof. Let p = kxki + : : :+ 0x0i with Ci(p) = f0; : : : ; kg.



`�': Let � 2 Z(Ci(p)). We have �[xi 7!d℄k = �k = 0 for all d 2 Zbeause k isindependent of xi. Hene, p�[xi 7!d℄ = �[xi 7!d℄k dk + : : :+ �[xi 7!d℄0 d0 = 0dk + : : :+0d0 = 0 for all d 2Z, i.e. � 2 8xi(Z(p)).`�': Let � 2 8xi(Z(p)). We have �[xi 7!d℄k = �k for all d 2 Zbeause k isindependent of xi. Therefore, �kdk+ : : :+ �0d0 = �[xi 7!d℄k dk+ : : :+ �[xi 7!d℄0 d0 =p�[x 7!d℄ = 0 for all d 2 Zbeause of � 2 8xi(Z(p)). This means that thepolynomial �kxki + : : :+ �0x0i vanishes for all values of xi. Hene, it has morethan k zeros whih implies that it is the zero polynomial. Consequently, �j = 0for all j = 0; : : : ; k, i.e., � 2 Z(Ci(p)). utSuppose I �Z[x1; : : : ; xn℄ is an ideal with basis B.Lemma 5. 8xi(Z(I)) = Z(Sp2B Ci(p)).Proof. 8xi(Z(I)) = 8xi(Z(B)) = 8xi(Tp2B Z(p)) = Tp2B 8xi(Z(p)) =Tp2B Z(Ci(p)) = Z(Sp2B Ci(p)). utIn view of this formula, it is natural to de�ne proj i(I) = (Sp2B Ci(p)) whereB is a basis of I. It is not hard to show that this de�nition is independent of thebasis; we leave this proof to the reader. Obviously, proj i is e�etive: if I is givenby a �nite basis fb1; : : : ; bkg then proj i(I) is given by the �nite basis Skj=1 Ci(bj).Corollary 6. 8xi(Z(I)) = Z(proj i(I)).Proof. 8xi(Z(I)) = Z(Sp2B Ci(p)) = Z((Sp2B Ci(p))) = Z(proj i(I)). ut7 Detetion of Polynomial ConstantsWe represent assertions by ideals of the polynomial ring Z[x1; : : : ; xn℄ in thedetetion algorithm for polynomial onstants. Thus, let D be the set of ideals ofZ[x1; : : : ; xn℄) and v be �. The representation mapping is (I) = Z(I). Notethat the order is reverse inlusion of ideals. This is beause larger ideals havesmaller sets of zeros. Thus, the meet operation is the sum operation of idealsand the top element is the ideal f0g = (0).In a pratial algorithm, ideals are represented by �nite bases. For trans-pareny, we suppress this further representation step but ensure that only oper-ations that an e�etively be omputed on bases are used.The lattie (D ;�) satis�es requirements (a){(g) of Setion 4:(a) Z[x1; : : : ; xn℄ is Noetherian.(b) By the identity Z(P I) = TfZ(I) j I 2 Ig, Z is universally onjuntive.() Suppose x 2 X and  2Z. Certainly, a state is a zero of the ideal generatedby the polynomial x�  if and only if it maps x to . Hene, we hoose dx=as the ideal (x� ) generated by x� .(d) In Setion 5 we have seen that the sum of two ideals an e�etively beomputed on bases.(e) By Setion 6, (�)[p=x℄ is an adequate, omputable substitution operation.



(f) Again by Setion 6, proj i is an adequate, omputable projetion operation.(g) We know that Z(I) = � if and only if I = f0g. Moreover, the only basis ofthe ideal f0g is f0g itself. Hene, in order to deide whether an ideal I givenby a basis B represents �, we only need to hek whether B = f0g.We an thus apply the generi algorithm from Setion 4 for the detetion ofpolynomial onstants. In order to make this more spei�, we put the pieestogether, and desribe the resulting algorithm in more detail.Suppose given a variable x 2 X and a program point w 2 N in a owgraph G = (N;E;A; s; e). Then the following algorithm deides whether x is apolynomial onstant at w or not:Phase 1: Determine a andidate value  2Zfor x at w by exeuting an arbi-trary (yle-free) path from s to w.Phase 2: Assoiate with eah edge (u; v) 2 E a transfer funtion f(u;v) : D ! Dthat represents wp(AS (u; v)):f(u;v)(I) =8>><>>: I if A(u; v) = skipI[p=x℄ if A(u; v) = (x := p) with p 2Z[x1; : : : ; xn℄proj x(I) if A(u; v) = (x := t) with t =2Z[x1; : : : ; xn℄proj x(I) if A(u; v) = (x :=?)Set A0[w℄ = (x � ) and A0[u℄ = (0) for all u 2 Nnfwg and ompute thelargest solution (w.r.t. v=�) of the equation systemA[u℄ = A0[u℄ + Xv2Su[u℄ f(u;v)(A[v℄) for eah u 2 N :We an do this as follows. Starting from A0[u℄ we iteratively ompute, si-multaneously for all program points u 2 N , the following sequenes of idealsAi+1[u℄ = Ai[u℄ + Xv2Su[u℄ f(u;v)(Ai[v℄) :We stop upon stabilization, i.e., when we enounter an index is withAis+1[u℄ = Ais [u℄ for all u 2 N . Obviously,A0[u℄ � A1[u℄ � A2[u℄ � : : :, suhthat omputationmust terminate eventually beauseZ[x1; : : : ; xn℄ is Noethe-rian. In this omputation we represent ideals by �nite bases and performGr�obner basis omputations in order to hek whether Ai+1[u℄ = Ai[u℄.2Phase 3: Chek if the ideal omputed for the start node, Ais [s℄, is (0). If so, xis a polynomial onstant of value v at w; otherwise, x is not a polynomialonstant at w.Phase 2 an be seen as a bakwards data ow analysis in a framework inwhih ideals of Z[x1; : : : ; xn℄ onstitute data ow fats, the transfer funtions2 As Ai+1[u℄ � Ai[u℄ by onstrution, it suÆes to hek Ai+1[u℄ � Ai[u℄.



are the funtions f(u;v) spei�ed above, and the start value is A0. Of ourse, wean use any evaluation strategy instead of naive iteration.We do not know any omplexity bound for our algorithm. Our terminationproof relies on Hilbert's basis theorem and its standard proof is non-onstrutiveand does not provide an upper bound for the maximal length of stritly in-reasing hains of ideals. Therefore, we annot bound the number of iterationsperformed by our algorithm.8 ConlusionIn this paper we have shown that polynomial onstants are deidable. Our al-gorithm an easily be extended to handle onditions of the form p 6= 0 withp 2 Z[x1; : : : ; xn℄. The weakest preondition is wp(p 6= 0)(�) = (p 6= 0 ) �) =(p = 0 _ �) and if � is represented by an ideal I, the assertion p = 0 _ � isrepresented by the ideal I \ (p) aording to Lemma 2. This observation an beused to handle suh onditions in our algorithm. We an extend this easily toan arbitrary mixture of disjuntions and onjuntions of onditions of the formp 6= 0. Of ourse, we annot handle the dual form of onditions, p = 0: with bothtypes of onditions we an obviously simulate two-ounter mahines.The idea to detet onstants with a symboli weakest preondition ompu-tation has previously been used in a polynomial-time algorithm for detetion ofPresburger onstants [16℄. In Presburger onstant detetion only the integer op-erators + and � are interpreted and assertions are represented by aÆne vetorspaes over Q. In ontrast to our algorithm, the Presburger onstant detetionalgorithm annot easily be extended to onditions as aÆne spaes are not losedunder union.Standard onstant propagation relies on forward propagation while we usebakwards propagation of assertions. Interestingly, Presburger onstants an alsobe deteted by forward propagation of aÆne spaes. Karr [10℄ desribes suh analgorithm but does not address ompleteness issues. In forward propagation ofassertions we e�etively ompute strongest postonditions rather than weakestpreondition and this omputation involves union of assertions rather than inter-setion. Beause aÆne spaes are not losed under union, Karr de�nes a (ompli-ated) union operator of aÆne spaes that over-approximates their atual unionby an aÆne spae. One is tempted to onsider forward propagation of ideals ofZ[x1; : : : ; xn℄. At �rst glane, this idea looks promising, beause ideals are losedunder intersetion and intersetion of ideals orresponds to union of their sets ofzeros, suh that we an even preisely represent the union of assertions. Thereis, however, another problem:Z[x1; : : : ; xn℄ is not `o-Noetherian', i.e., there arein�nitely long stritly dereasing hains of ideals, e.g., (x) � (x2) � (x3) � : : :.Therefore, strongest postondition omputations with ideals annot be guaran-teed to terminate in general.Our approah to ompute weakest preonditions symbolially with e�etiverepresentations is losely related to abstrat interpretation [3, 4℄. Requirement(b) of the generi algorithm, universal onjuntivity of the representation map-



ping  : D ! 2�, implies that  has a lower adjoint, i.e., that there is a monotonimapping� : 2� ! D suh that (�; ) is a Galois onnetion [13℄. In the standardabstrat interpretation framework, we are interested in omputation of least �x-points and the lower adjoint, �, is the abstration mapping. Here, we are in thedual situation: we are interested in omputation of greatest �xpoints. Thus, therole of the abstration is played by the upper adjoint,  : D ! 2�. Funnily,this means that in a tehnial sense the members of D provide more onreteinformation than the members of 2� and that we ompute on the onrete sideof the abstrat interpretation. Thus, we interpret the lattie D as an exat par-tial representation rather than an abstrat interpretation. The representationvia D is partial beause it does not represent all assertions exatly; this is indis-pensable due to ountability reasons beause we annot represent all assertionse�etively. It is an exat representation beause it allows us to infer the weakestpreonditions arising in the S-onstant algorithms preisely, whih is ahieved byensuring that the initial value of the �xpoint omputation is represented exatlyand that the ourring operations on representations mirror the orrespondingoperations on assertions preisely.By the very nature of Galois onnetions, the representation mapping  andits lower adjoint � satisfy the two inequalities �Æ v IdD and Id2� � Æ�, whereIdD and Id2� are the identities on D and 2�, respetively. Interestingly, none ofthese inequalities degenerates to an equality when we represent assertions byideals ofZ[x1; : : : ; xn℄ as in our algorithm for detetion of polynomial onstants.On the one hand,  Æ� 6= Id2� beause the representation is neessarily partial.On the other hand, � Æ  6= IdD beause the representation of assertions is notunique. For example, if p 2 Z[x1; : : : ; xn℄ does not have a zero in the integers,we have Z((p)) = ; suh that Z((p)) = Z((1)) = Z(Z[x1; : : : ; xn℄). But byundeidability of Hilbert's tenth problem, we annot deide whether we are faedwith suh a polynomial p and thus annot e�etively identify (p) and (1). Thisfores us to work with a non-unique representation. While we annot deidewhether the set of zeros of an ideal I given by a basis B is empty, we an deidewhether it equals � beause this only holds for I = (0). Fortunately, this is theonly question that needs to be answered for the weakest preondition.As a onsequene of non-uniqueness, the weakest preondition omputationon ideals does not neessarily stop one it has found a olletion of ideals thatrepresents the largest �xpoint on assertions but may proeed to larger idealsthat represent the same assertions. Fortunately, we an still prove terminationby arguing on ideals diretly.Let us disuss some possible diretions for future work. Firstly, it is interestingto implement the detetion algorithm for polynomial onstants and evaluate howit performs in pratie. Seondly, we an look for other appliations of the generialgorithm. Of ourse, we an takle, e.g, polynomial onstants over Q ratherthan Z, where we an use essentially the same algorithm beause Q[x1; : : : ; xn℄is also a strongly omputable ring. But we may also identify other lasses whereassertions an be represented symbolially. On the theoretial side, there is thehallenge to diminish the gap between the upper and lower omplexity bound forthe detetion problem of polynomial onstants. Currently, we have deidability
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