Polynomial Constants are Decidable *

Markus Miiller-Olm! and Helmut Seidl?

L University of Dortmund, FB 4, LS5, 44221 Dortmund, Germany
mmo@ls5.cs.uni-dortmund. de
2 Trier University, FB 4-Informatik, 54286 Trier, Germany
seidl@uni-trier.de

Abstract. Constant propagation aims at identifying expressions that
always yield a unique constant value at run-time. It is well-known that
constant propagation is undecidable for programs working on integers
even if guards are ignored as in non-deterministic flow graphs. We show
that polynomial constants are decidable in non-deterministic flow graphs.
In polynomial constant propagation, assignment statements that use the

operators +, —, x are interpreted exactly but all assignments that use
other operators are conservatively interpreted as non-deterministic as-
signments.

We present a generic algorithm for constant propagation via a symbolic
weakest precondition computation and show how this generic algorithm
can be instantiated for polynomial constant propagation by exploiting
techniques from computable ring theory.

1 Introduction

Constant propagation 1s one of the most widely used optimizations in practical
optimizing compilers (cf. [1,9, 15]). Tts goal is to replace expressions that always
yield a unique constant value at run-time by this value. This both speeds up
execution and reduces code size. Even more importantly, it can enable powerful
further transformations like elimination of dynamically unreachable branches.

In order to come to grips with fundamental computability problems one
often abstracts guarded branching to non-deterministic branching in program
analysis. But even this abstraction leaves constant propagation undecidable for
programs working on integer variables. This has already been observed in the
seventies independently by Hecht [9] and by Reif and Lewis [17]. We briefly recall
the construction of Reif and Lewis. It is based on a reduction of Hilbert’s tenth
problem, whether a (multivariate) polynomial has a zero in the natural numbers,
a very famous undecidable problem [12].

Assume given a (non-zero) polynomial p(zy, ..., 2,) in n variables z1,..., z,
with integer coefficients and consider the (non-deterministic) program in Fig. 1.
The initializations and the loops choose arbitrary natural values for the variables
z;. If the chosen values constitute a zero of p(z1,...,2,), then p(x1, ..., 2,)? +

* The work was supported by the RTD project IST-1999-20527 "DAEDALUS” of the

Furopean FP5 programme.

x, =0
Ty =x, +1

re= Ldiv (p(en,)’ 4 1)

O=<—

Fig. 1. Undecidability of constant detection; the reduction of Reif and Lewis [17].

1 =1 and r is set to 1. Otherwise, p(x1,...,2,)> +1 > 2 such that r is set to
0. Therefore, r is a constant (of value 0) at the end of the program if and only
if p(x1,...,2,) does not have a natural zero.

On the other hand there are well-known and well-defined classes of constants
that can be detected, even efficiently. In copy constant detection [7] only assign-
ments of the form z := ¢, where ¢ is either an (integer) constant or a program
variable are interpreted; assignments with composite expressions on the right
hand side are conservatively assumed to make a variable non-constant. In linear
constants [18] also assignments of the form z := a-y+b, where a and b are integer
constants and y is a program variable, are interpreted. Another decidable class
of constants are finite constants [19]. This motivated Miiller-Olm and Riithing
[16] to study the complexity of constant propagation for classes that derive from
restricting the signature of interpreted integer operators.

An interesting question they left open concerns the class of constants ob-
tained by interpreting just +, —, %, i.e., all standard integer operators except of
the division operators. While they called the corresponding class of constants
4+, —, *-constants, we prefer the term polynomial constants here, as these sig-
nature allows just to write (multivariate) polynomials. The detection problem
for polynomial constants is PSPACE-hard [16] but no upper bound is known.
In the current paper we show that polynomial constants are decidable by ap-
plying results from computable ideal theory. This decidability result suggests
that the division operator is the real cause for undecidability of general constant
detection.

0=0

=0

Fig. 2. An example flow graph.

The paper is organized as follows. In the next section we illustrate our al-
gorithm at an example that cannot be handled by other constant propagation
algorithms. Afterwards we define flow graphs, the constant propagation prob-
lem, and weakened versions thereof. This enables us to define polynomial con-
stants formally. In Section 4 we present a generic algorithmic idea for constant
propagation via a symbolic weakest precondition computation and discuss the
requirements for making it effective. In Section 5 we recall results from com-
putable ring theory that are needed in our algorithm and proceed with further
observations on Z[z1, ..., x,], the set of multivariate polynomials with integer
coefficients. These results are exploited in Section 7, where we show how the
generic algorithm from Section 4 can be instantiated for polynomial constant
propagation. We finish the paper with concluding remarks and directions for
future research.

2 An Example

Let us illustrate the power of our algorithm. In the flow graph in Fig. 2, z is a
constant (of value 0) at node 4, but no known constant propagation algorithms
can handle this example. Standard simple constant propagation [1] propagates
variable assignments through the program, in which each variable is assigned
either a definite value or a special value unknown. Simple constant propagation
computes the value unknown at program point 2 for both = and y and cannot re-
cover from this loss of precision. More powerful constant propagation algorithms
like the algorithm for linear constants [18] or Presburger constants [16] cannot
handle the expressions zy — 6 and z? 4+ zy. Even the EXPTIME algorithm of
Knoop and Steffen for finite constants [19] cannot handle this example because

no finite unfolding of the loop suffices to prove constancy of x? 4+ zy after the
loop.

Before we turn to the technical development, we discuss informally how our
algorithm detects constancy of z at node 4. In a first phase some path from node
1 to 4 is executed, e.g., {1,2,3,4), and the value of z, viz. 0, after execution of
this path is computed. This implies that # can only be a constant of value 0 at
program point 4 — if 1t is a constant at all. In order to check this, our algorithm
propagates the assertion Ay : @ = 0 backwards from node 4 towards the start
node which amounts to a symbolic computation of the weakest precondition of
Ag at node 4. Propagation over statement & := 22 4 zy results in the assertion
Aj i 2?4+ 2y = 0. Assertion A; is then propagated through the loop. This results
in the assertion Ay : (z +1)? + (z + 1)(y — 1) = 0 that can be simplified to
As 2?2+ xy+ x4+ y = 0. Both A; and Az must be valid at program point 3
in order to guarantee validity of Ay at program point 4. We can simplify the
assertion A; A Asz: because A; guarantees that z? 4+ zy equals 0, we can simplifiy
Az to Ay : # +y = 0; now, as A; can be written in the form z(z + y) = 0, we
see that A; is indeed implied by A4. Thus, validity of 44 suffices to guarantee
both A; and Ajz. A4 is again propagated through the loop; this results in Ay
again; hence no further propagation through the loop is necessary. In this way
propagation goes on and results in the assertions shown in Fig. 2. The assertion
computed for the start node, 0 = 0 is universally valid; this proves that z is
indeed a constant of value 0 at node 4.

In the algorithm developed in the remainder of this paper, assertions are
represented by Grobner bases of ideals in the polynomial ring Z[z1, ..., 2,]. As
Grobner bases are a canonic representation this also takes care of simplifications.

3 The Framework

Flow Graphs. Suppose given a finite set of variables X = {xy,...,2,}. Let
Expr be a set of expressions over X ; the precise nature of expressions is immaterial
at the moment. A (deterministic) assignment is a pair consisting of a variable
and an expression written as & := ¢; the set of assignment statements is denoted
by Asg. A non-deterministic assignment statement consists of a variable and is
written x :=7; the set of nondeterministic assignment statements is denoted by
NAsg.

A (non-deterministic) flow graph is a structure G= (N, E, A, s, e) with finite
node set N, edge set £ C N x N, a unique start node s € N, and a unique end
node e € N. We assume that each program point u € N lies on a path from s
to e. The mapping 4 : E — Asg U NAsg U {skip} associates each edge with a
deterministic or non-deterministic assignment statement or the statement skip.
Edges represent the branching structure and the statements of a program, while
nodes represent program points. The set of successors of program point u € N
is Succ[u] = {v | (u,v) € E}.

A path reaching a given program point u € N is a sequence of edges p =
(e1,...,ex) with e; = (u;,v;) € E such that w3 = s, vy = u, and v; = w4 for

1 <4 < k. Inaddition p = ¢, the empty sequence, is a path reaching the start
node s. We write R[u] for the set of paths reaching u.

Let Val be a set of values. A mapping ¢ : X — Val that assigns a value to
each variable is called a state; we write ¥ = {o | ¢ : X — Val} for the set of
states. For # € X, d € Val, and ¢ € X we write o[z — d] for the state that
maps ¢ to d and coincides for the other variables with 0. We assume a fixed
interpretation for the operators used in terms and we assume that the value of
term ¢ in state o, which we denote by t7, is defined in the standard way.

In order to accommodate non-deterministic assignments we interpret state-
ments by relations on X rather than functions. The relation associated with
assignment statement x := ¢ is [# := {] ! {(e,0") | 0/ = oz > t7]}; the rela-
tion associated with non-deterministic assignment ¢ :=7 is [z :=7] wf {(e,0) |
3d € Val : ¢/ = o[z — d]}; and the relation associated with skip is the iden-

tity: [skip] = {(e,0’) | ¢ = ¢'}. This local interpretation of statements is
straightforwardly extended to paths p = {e1,...,e5) € E* as follows: [p] =
[A(e1)] ;- -;[A(ex)], where ; denotes relational composition.

Constant Propagation. A variable ¥ € X is a constant at program point
u € N if there is d € Val such that o(z) = d for all p € R[u], (50,0) € [p].
Arbitrary choice of initial state oy reflects that we do not know the state in
which the program is started.

We can weaken the demands for a constant detection algorithm by selecting
a certain subset of expressions S C Expr that are interpreted precisely and
assuming conservatively that assignments whose right hand does not belong to
S assign an arbitrary value to their respective target variable. This idea can be
made formal as follows.

For a given flow graph G = (N, F, A, s, e) and subset of expressions S C Expr,
let Gg = (N, E, Ag,s,e) be the flow graph with the same underlying graph but
with the following weakened edge annotation:

Ag(u,v):{ , ifA(u,v)=(x:=t)andt ¢ S

A(u,v), otherwise
A variable z € X 1s then called an S-constant at program point u € N in flow
graph G if it is a constant at v in the weakened flow graph Gg. Clearly, if = is
an S-constant at w it 1s also a constant at u but not vice versa. The detection
problem for S-constants is the problem of deciding for a given set of variables
X, flow graph (G, variable z, and program point u whether z is an S-constant
at u or not.

x =7

To study weakened versions of constant detection problems is particularly
interesting for programs computing on the integers, i.e., if Expr is the set of in-
teger expressions formed from integer constants and variables with the standard
operators 4, —, %, div, mod: we have seen in the introduction that the general
constant detection problem is undecidable in this case.

Let us discuss some examples for illustration. S-constants with respect to
the set S = X UZ, i.e., the set of non-composite expressions, are known as copy

constants [7]. S-constants with respect to the set S = {axx+b|a,b € Z,x € X}
are known as linear constants [18]. In this paper we tackle constants with respect
to the set S = Z[x1, ..., 2,], the set of multivariate polynomials in the variables
x1,...,x, with coefficients in Z, which we call polynomial constants.

We should emphasize two points about the above framework that make the
construction of S-constant detection algorithms more challenging. Firstly, in
contrast to the setup in [16], we allow assignment statements, whose right hand
side does not belong to S. They are interpreted as non-deterministic assignments.
Forbidding them is adequate for studying lower complexity bounds for analysis
questions, which is the main concern of [16]. It is less adequate when we are
concerned with detection algorithms because in practice we want to detect S-
constants in the context of other code.

Secondly, a variable can be an S-constant although its value statically de-
pends on an expression that is not in S. As a
simple example consider the flow graph in Fig. 3
and assume that the expressions 0 and y — y be-
long to S but e does not. Because y — y is 0 for
any value y € 7, an S-constant detection algo-
rithm must identify # as a constant (of value 0),
although its value statically depends on the un-
interpreted expression e. Hence, S-constant de-
tection must handle arithmetic properties of the
expressions in S. Fig.3: An S-constant.

4 A Generic Algorithm

Suppose given a variable € X and a program point w € N. In this chapter we
describe a generic algorithm for deciding whether z is an S-constant at w or not.
While standard constant propagation works by forward propagation of variable
assignments, we use a three phase algorithm that employs a backwards propa-
gation of assertions. For the moment we can think of assertions as predicates on
states as in program verification.

Phase 1: In the first phase we follow an arbitrary cycle-free path from s to w,
for instance using depth-first search, and compute the value ¢, referred to
as the candidate value, that x holds after this path is executed. This implies
that, if # is a constant at w, it must be a constant of value c.

Phase 2: In the second phase we compute the weakest precondition for the
assertion = ¢ at program point w in G'g by means of a backwards data
flow analysis.

Phase 3: Finally, we check whether the computed weakest precondition for x =
¢ at w 1s true, 1.e., is valid for all states.

It is obvious that this algorithm is correct. The problem is that Phase 2 and
3 are in general not effective. However, as only assignments of a restricted form
appear in (g, the algorithm becomes effective for certain sets 5, if assertions

are represented appropriately. In the remainder of this section we analyze the
requirements for adequate representations. For this purpose, we first characterize
weakest preconditions in flow graphs.

Semantically, an assertion is a subset of states ¢ C 2. Given an assertion ¢
and a statement s, the weakest precondition of s for ¢, wp(s)(¢), is the largest
assertion ¢’ such that execution of s from all states in ¢’ is guaranteed to termi-
nate only in states in ¢.! The following identities for the weakest precondition
of assignment and skip statements are well-known:

wp(z = e)(¢) = gle/z] E {o| o[z 7] € ¢}

wp(z :=7)(¢) ! Va(¢) ! {o |Vd €Z : ol — d] € ¢}

def

wp(skip)(¢) = ¢

These identities characterize weakest preconditions of basic statements. Let
us now consider the following more general situation in a given flow graph
G=(N,FE, A s,e): we are given an assertion ¢ C X as well as a program point
w € N and we are interested in the weakest precondition that guarantees validity
of ¢ whenever execution reaches w. The latter can be characterized as follows.

Let Wylw] = ¢ and Wy[u] = X and consider the following equation system
consisting of one equation for each program point u € N:

Wlu] = Woluln (] we(A(u, 0))(W[e]). (1)

v € Succlu]

By the Knaster-Tarski fixpoint theorem, this equation system has a largest so-
lution (w.r.t. subset inclusion) because wp(s) is well-known to be monotonic. By
abuse of notation, we denote the weakest solution by the same letter W [u]. For
each program point u € N, W{u] is the weakest assertion such that execution
starting from u with any state in W[u] guarantees that ¢ holds whenever execu-
tion reaches w. In particular, W[s] is the weakest precondition for validity of ¢
at w. The intuition underlying equation (1) is the following: firstly, Wp[u] must
be implied by W{u] and, secondly, for all successors v, we must guarantee that
their associated condition W{u] is valid after execution of the statement A(u,v)
associated with the edge (u,v); hence wp(A(w, v))(W{v]) must be valid at u too.
For two reasons, the above equation system cannot be solved directly in
general: firstly, because assertions may be infinite sets of states they cannot be
represented explicitly; secondly, there are infinitely long descending chains of
assertions such that standard fixpoint iteration does not terminate in general.
In order to construct an algorithm that detects S-constants we represent
assertions by the members of a lattice (ID,C). Let us assume that v : D — 2%
captures how the lattice element represent assertions. First of all, we require

! In the sense of Dijkstra [6] this is the weakest liberal precondition as it does not
guarantee termination. For simplicity we omit the qualifying prefix “liberal” in this
paper.

fQLi»L'Qg

Fig. 4. Situation in the transfer lemma.

(a) I has no infinite decreasing chains, i.e., there is no infinite chain dy J dy J
dsJ ...

This guarantees that maximal fixpoints of monotonic functions can effectively
be computed by standard fixpoint iteration. Secondly, we suppose

(b) ~ is universally conjunctive, i.e., ¥(MX) = ({y(d) | d € X} for all X C .

The most important reason for making this assumption is that it ensures that
we can validly compute on representations without loosing precision: if we pre-
cisely mirror the equations characterizing weakest preconditions on representa-
tions, the largest solution of the resulting equation system on representations
characterizes the representation of the weakest precondition by the following
well-known lemma. It appears in the literature (for the dual situation of least
fixpoints) under the name Transfer Lemma [2] or p-Fusion Rule [11].

Lemma 1. Suppose L, L' are complete lattices, f : L. — L and g : I’ — L' are
monotonic functions and vy : L — L' (ef. Fig. 4).

If v is universally conjunctive and yo f = go~ then v(vf) = vg, where vf
and vg are the largest fizpoints of f and g, respectively.

We must mirror the elements comprising the equation system characterizing
weakest preconditions on representations precisely. Firstly, we must represent
the start value, Wy. Universal conjunctivity of v implies that v(T) = X i.e., the
top value of D 1s a precise representation of X. In addition, we require:

(c) Assertion x = ¢ can be represented precisely: for each € X, ¢ € Val we can
effectively determine dy=. € D with y(dy=c) = {o € X | o(x) = c}.

Secondly, we need effective representations for the operators appearing in
equations. Requirement (b) implies that the meet operation of I precisely ab-
stracts intersection of assertions. In order to enable effective computation of
intersections, we require in addition:

(d) for given d,d" € D, we can effectively compute dMd’.

By induction this implies that we can compute finite meets dy M. . .Mdj effectively.

The only remaining operations on assertions are the weakest precondition
transformers of basic statements. We must represent wp(z := ¢) for expressions
t € S, which is the substitution operator (-)[¢/x] on assertions. As the S-constant
detection algorithm computes the weakest precondition in weakened flow graph
(g, assignments # :=t with ¢ ¢ S do not occur.

(¢) There is a computable substitution operation (-)[t/z] : I — D for each
r € X, t €S, which satisfies y(d[t/xz]) = v(d)[t/x] for all d € .

Obviously, wp(skip), the identity, is precisely represented by the identity on R.
Thus, it remains to represent wp(z :=7):

(f) There is a computable projection operation proj; : D — I for each variable
z; € X such that y(proj;(d)) = Va;(y(d)) for all d € .

Finally, we need the following in order to make Phase 3 of the algorithm effective.

(g) Assertion true is decidable, i.e., there is a decision procedure that decides
for a given d € I, whether v(d) = X or not.

If, for a given set S C Expr, we can find a lattice satisfying requirements (a)-
(g), we can effectively execute the three phase algorithm from the beginning of
this section by representing assertions by elements from this lattice. This results
in a detection algorithm for S-constants.

In this paper we are interested in detection of polynomial constants. Thus,
from now on, let Val = Z and S = Z[x1, ..., 2,]. The key idea for the detection
of polynomial constants 1s to represent assertions by the zeros of ideals in the
polynomial ring Z[z1,...,2,] and to apply techniques from computable ring
theory. A full introduction to this area is beyond the scope of this paper but we
recall the facts needed in the next section and make some additional observations
in Section 6. Accessible introductions can be found in standard textbooks on
computer algebra. The case of polynomial rings over fields is covered, e.g., by
[5,8,20], while [14] treats the more general case of polynomial rings over rings,
that is of relevance here, as Z is an integral domain but not a field.

5 A Primer on Computable Ideal Theory

Recall that Z together with addition and multiplication forms a commutative
ring, i.e., a structure (R, +,) with a non-empty set R and two inner operations
+ and - such that (R,+) is an Abelian group, - is associative and commutative,
and the distributive law ¢ - (b+¢) = a - b+ a - ¢ is valid for all a,b,¢c € R. On

the set of polynomials, Z[z1, ..., 2,], we can define addition and multiplication
operations in the standard way; this makes Z[z1, ..., 2,] a commutative ring as
well.

A non-empty subset 7 C R of a ring R is called an ideal if a + b € I and
r-a €1 forall a,be I, r € R. The ideal generated by a subset B C R is

(B):{?“1~b1—|—...—|—7°k~bk|7°1,...,7°kER,bl,...,bkEB},

and B is called a basis or generating system of I if I = (B). An ideal is called
finitely generated if it has a finite basis B = {by, ..., b, }. Hilbert’s famous basis
theorem tells us that Z[xy,...,2,] is Noetherian, since Z is Noetherian, i.e.,
that there are no infinitely long strictly increasing chains Iy C I C I3 C ... of

ideals in Z[z1,...,z,]. This implies that every ideal of Z[z1, ..., z,] is finitely
generated.

It i1s important for our algorithm that we can compute effectively with ide-
als. While Hilbert’s basis theorem ensures that we can represent every ideal of
Zla1, ..., x,] by afinite basis, in itself it does not give effective procedures for ba-
sic questions like membership tests or equality tests of 1deals represented in this
way. Indeed, Hilbert’s proof of the basis theorem was famous (and controversial)
at its time for its non-constructive nature.

Fortunately, the theory of Grobner bases and the Buchberger algorithm pro-
vides a solution for some of these problems. While a complete presentation of this
theory is way beyond the scope of this paper — the interested reader is pointed to
the books mentioned above — a few sentences are in order here. A Grobner basis
is a basis for an ideal that has particularly nice properties. It can effectively be
computed from any given finite basis by the Buchberger algorithm. There is a
natural notion of reduction of a polynomial with respect to a set of polynomials
such that reduction of a polynomial p with respect to a Grobner basis always
terminates and yields a unique result. This result is the zero polynomial if and
only if p belongs to the ideal represented by the Grobner basis. Hence reduction
with respect to a Grobner basis yields an effective membership test, that in turn
can be used to check equality and inclusion of ideals.

In the terminology of [14], Z[z1,...,z,] is a strongly computable ring.
This implies that the following operations are computable for polynomials
p € Z[x1,...,x,] and ideals I, I' C Z[x,...,x,] given by finite bases B, B,
cf. [14]:

Ideal membership: Given an ideal [and a polynomial p. Is p € I7

Ideal inclusion: Given two ideals I, I'. Is [C I'?
Ideal equality: Given two ideals I, I'. Is I = I'?

Sum of ideals: Given two ideals I, I’. Compute a basis for 7 + I def {p+p |
p €l p €I'}. As a matter of fact, I + I' = (BU B').
Intersection of ideals: Given two ideals I, I’. Compute a basis for TN I,

It is well-known that I+ I’ and I NI’ are again ideals if I and I" are. We can
use the above operations as basic operations in our algorithms.

6 More About Z[z,...,2,]

Z[#1,...,2,] as a Complete Lattice. Interestingly, the ideals in
Zla1, ..., x,] form also a complete lattice under subset inclusion C. Suppose
given a set T of ideals in Z[z1, ..., #,]. Then the largest ideal contained in all

ideals in Z obviously is [Z, and the smallest ideal that contains all ideals in 7 is
ST ={ri-a1+...4rg-ax|r,..., 7 €EZ[x1, ..., 2n],01,...,a5 € UT}. The
least element of the lattice is the zero ideal {0} that consists only of the zero
polynomial and the largest element is Z[zy, ..., z,]. While this lattice does not
have finite height it is Noetherian by Hilbert’s basis theorem such that we can ef-
fectively compute least fixpoints of monotonic functions on ideals of Z[z1, . . ., 2]
by standard fixpoint iteration.

Zeros. We represent assertions by the zeros of ideals in our algorithm. A state o
is called a zero of polynomial p if p” = 0; we denote the set of zeros of polynomial
p by Z(p). More generally, for a subset B C Z[x1,...,2,], Z(B) ={c |Vp € B :
p? = 0}. For later use, let us state some facts concerning zeros, in particular of
the relationship of operations on ideals with operations on their zeros.

Lemma 2. Suppose B, B’ are sets of polynomials, q is a polynomial, I,I' are

ideals, and T is a set of ideals in Z[xy, ..., x,].

1. If BC B then Z(B) D Z(B').

2. Z(B)=2((B)) = ﬂpEB Z(p). In particular, Z(q) = Z((q)).

3. Z0°0)=(WZWU) | I €T}. In particular, Z(I +I') = Z(I) N Z(I').

4. ZND) =2 | T €I}, ifT is finite. In particular, Z(INT") = Z(I) U
Z(I').

5. Z({0}) = X and Z(Z[zy, ..., x,]) = 0.

6. Z(I) =X if and only if I = {0} = (0).

Substitution. Suppose given a polynomial p € Z[z,...,#,] and a variable

z € X. We can define a substitution operation on ideals I as follows: I[p/x] =
({q[p/®]) | ¢ € I}), where the substitution of polynomial p for # in ¢, ¢[p/z],
is defined as usual. By definition, I[p/z] is the smallest ideal that contains all
polynomials ¢[p/«] with ¢ € I. From a basis for I, a basis for I[p/z] is obtained
in the expected way: if I = (B), then I[p/z] = ({b[p/x] | b € B}). Thus, we can
easily obtain a finite basis for I[p/#] from a finite basis for I: if I = (by,...,bs)
then I[p/x] = (bi[p/#],...,bx[p/2]). Hence we can add substitution to our list
of computable operations.

The substitution operation on ideals defined in the previous paragraph mir-
rors precisely semantic substitution in assertions which has been defined in con-
nection with wp(z :=e).

Lemma 3. Z(I)[p/x] = Z(I[p/x]).

We leave the proof of this equation that involves the substitution lemma
known from logic to the reader.

Projection. In this section we define projection operators proj;, ¢ = 1,...,n,
such that for each ideal I, Z(proj,(I)) = Va;(Z(])). Semantic universal quan-
tification over assertions has been defined in connection with wp(z :=7).

A polynomial p € Z[z1, ..., x,] can uniquely be written as a polynomial in a;
with coefficients in Z[z1, ..., ®;_1,®i11, Tpn), i.e.,in the form p = exxf+. . 4coz?,
where co, ..., cx € Z[x1, ..., xi_1, Tip1, &), and ¢ £ 0ifk > 0. Wecalleg, ..., ¢

the coefficients of p with respect to x; and let C;(p) = {co,..., ¢k}
Lemma 4. Vz;(Z(p)) = Z(Ci(p)).

Proof. Let p = cipaf + ...+ coz? with C;(p) = {co,...,cx}.

D’ Let o € Z(Ci(p)). We have cz[x’Hd] =¢] = 0 for all d € Z because ¢ is
independent of z;. Hence, pol#i=rd = cz[x’Hd]dk +...+ cg[x’Hd]do =0d*+.. .+
0d° =0 for all d € Z, i.e. o € Yo;(Z(p)).

‘C’: Let o € Va;(Z(p)). We have cz[x’Hd] = ¢f for all d € 7Z because ¢ is
independent of ;. Therefore, chk +...4egd® = cz[x'Hd]dk 4.+ cg[x’Hd]do =
p’le=d = 0 for all d € Z because of ¢ € Va;(Z(p)). This means that the
polynomial chf + ...+ c3x? vanishes for all values of x;. Hence, it has more
than k zeros which implies that 1t is the zero polynomial. Consequently, ¢ = 0

forall j =0,...,k, i.e, 0 € Z(Ci(p)). O
Suppose I C Z[z1, ..., x,] is an ideal with basis B.
Lemma 5. Vz;(Z(])) = Z(UpEB Ci(p)).

Proof. Vai(Z2(1)) = Vai(Z(B)) = Vai(yep 2(p) = MyepVai(2(p)) =
mpEB Z(Ci(p)) = Z(UpeB Ci(p))- U

In view of this formula, it is natural to define proj;(I) = (UpEB Ci(p)) where
B is a basis of I. It is not hard to show that this definition is independent of the
basis; we leave this proof to the reader. Obviously, proj; is effective: if I is given
by a finite basis {b1, ..., bx} then proj;(I) is given by the finite basis Ule C;i(by).

Corollary 6. Vz;(Z(1)) = Z(proj;(1)).

Proof. Vai(Z2(1)) = Z2(U,ep Ci(p)) = Z(U,ep Ci(p))) = Z(proj;(1)). O

7 Detection of Polynomial Constants

We represent assertions by ideals of the polynomial ring Z[z1, ..., 2,] in the
detection algorithm for polynomial constants. Thus, let ID be the set of ideals of
Zlx1,...,2,]) and C be D. The representation mapping is y(I) = Z(I). Note
that the order is reverse inclusion of ideals. This is because larger ideals have
smaller sets of zeros. Thus, the meet operation i1s the sum operation of ideals
and the top element is the ideal {0} = (0).

In a practical algorithm, ideals are represented by finite bases. For trans-
parency, we suppress this further representation step but ensure that only oper-
ations that can effectively be computed on bases are used.

The lattice (I, D) satisfies requirements (a)—(g) of Section 4:

(a) Z[#xq,..., 2] is Noetherian.

(b) By the identity Z(3°Z) = ({Z(I) | I € T}, Z is universally conjunctive.

(c) Suppose € X and ¢ € Z. Certainly, a state is a zero of the ideal generated
by the polynomial x — ¢ if and only if it maps # to ¢. Hence, we choose d;—.
as the ideal (# — ¢) generated by = — c.

(d) In Section 5 we have seen that the sum of two ideals can effectively be
computed on bases.

(e) By Section 6, (-)[p/«] is an adequate, computable substitution operation.

(f) Again by Section 6, proj, is an adequate, computable projection operation.

(g) We know that Z(I) = X if and only if 7 = {0}. Moreover, the only basis of
the ideal {0} is {0} itself. Hence, in order to decide whether an ideal I given
by a basis B represents X, we only need to check whether B = {0}.

We can thus apply the generic algorithm from Section 4 for the detection of
polynomial constants. In order to make this more specific, we put the pieces
together, and describe the resulting algorithm in more detail.

Suppose given a variable x € X and a program point w € N in a flow
graph G = (N, E, A, s,e). Then the following algorithm decides whether z is a
polynomial constant at w or not:

Phase 1: Determine a candidate value ¢ € Z for x at w by executing an arbi-
trary (cycle-free) path from s to w.

Phase 2: Associate with each edge (u,v) € E a transfer function f, .y : D — D
that represents wp(Ag (u, v)):

I if A(u,v

Ip/x] if A(u,v
I} = proj (I if A(u,

proj (I if A(u,v

p) with p € Z[aq, ..., a,]
=1) with t ¢ Z[xy, ..., 2]
7)

Set Ag[w] = (2 — ¢) and Agu] = (0) for all v € N\{w} and compute the

largest solution (w.r.t. C=D) of the equation system

’
v

AA/-\ U7

)
)
)
)

Afu] = Ao[u] + Z fuw)(Alv]) for each w € N.

v € Succlu]

We can do this as follows. Starting from Ag[u] we iteratively compute, si-
multaneously for all program points u € N, the following sequences of ideals

Ai-l-l[u] Z fuv]) .

vE Qucc u

We stop upon stabilization, i.e., when we encounter an index i3 with
Aiy1[u] = A; Ju] for all uw € N. Obviously, Ag[u] C Aj[u] C Asu] C ..., such
that computation must terminate eventually because Z[z1, . . ., ¢,] is Noethe-
rian. In this computation we represent ideals by finite bases and perform
Grobner basis computations in order to check whether A;y1[u] = A;[u].?

Phase 3: Check if the ideal computed for the start node, A;_[s], is (0). If so, »
is a polynomial constant of value v at w; otherwise, # is not a polynomial
constant at w.

Phase 2 can be seen as a backwards data flow analysis in a framework in
which ideals of Z[z1, ..., x,] constitute data flow facts, the transfer functions

2 As A;11[u] D Ai[u] by construction, it suffices to check A;41[u] C A;fu].

are the functions f, ,) specified above, and the start value is Ag. Of course, we
can use any evaluation strategy instead of naive iteration.

We do not know any complexity bound for our algorithm. Qur termination
proof relies on Hilbert’s basis theorem and its standard proof 1s non-constructive
and does not provide an upper bound for the maximal length of strictly in-
creasing chains of ideals. Therefore, we cannot bound the number of iterations
performed by our algorithm.

8 Conclusion

In this paper we have shown that polynomial constants are decidable. OQur al-
gorithm can easily be extended to handle conditions of the form p # 0 with
p € Z[z1, ..., xy]. The weakest precondition is wp(p # 0)(¢) = (p #0 = ¢) =
(p = 0V ¢) and if ¢ is represented by an ideal I, the assertion p = 0V ¢ is
represented by the ideal I N (p) according to Lemma 2. This observation can be
used to handle such conditions in our algorithm. We can extend this easily to
an arbitrary mixture of disjunctions and conjunctions of conditions of the form
p # 0. Of course, we cannot handle the dual form of conditions, p = 0: with both
types of conditions we can obviously simulate two-counter machines.

The idea to detect constants with a symbolic weakest precondition compu-
tation has previously been used in a polynomial-time algorithm for detection of
Presburger constants [16]. In Presburger constant detection only the integer op-
erators + and — are interpreted and assertions are represented by affine vector
spaces over (. In contrast to our algorithm, the Presburger constant detection
algorithm cannot easily be extended to conditions as affine spaces are not closed
under union.

Standard constant propagation relies on forward propagation while we use
backwards propagation of assertions. Interestingly, Presburger constants can also
be detected by forward propagation of affine spaces. Karr [10] describes such an
algorithm but does not address completeness issues. In forward propagation of
assertions we effectively compute strongest postconditions rather than weakest
precondition and this computation involves union of assertions rather than inter-
section. Because affine spaces are not closed under union, Karr defines a (compli-
cated) union operator of affine spaces that over-approximates their actual union
by an affine space. One is tempted to consider forward propagation of ideals of
Zlaq, ..., x,)]. At first glance, this idea looks promising, because ideals are closed
under intersection and intersection of ideals corresponds to union of their sets of
zeros, such that we can even precisely represent the union of assertions. There
is, however, another problem: Z[z1, ..., 2,] is not ‘co-Noetherian’, i.e., there are
infinitely long strictly decreasing chains of ideals, e.g., (z) D (%) D (23) D ...
Therefore, strongest postcondition computations with ideals cannot be guaran-
teed to terminate in general.

Our approach to compute weakest preconditions symbolically with effective
representations is closely related to abstract interpretation [3,4]. Requirement
(b) of the generic algorithm, universal conjunctivity of the representation map-

ping v : D — 2% implies that ~ has a lower adjoint, i.e., that there is a monotonic
mapping « : 2% — I such that (o,) is a Galois connection [13]. In the standard
abstract interpretation framework, we are interested in computation of least fix-
points and the lower adjoint, a, is the abstraction mapping. Here, we are in the
dual situation: we are interested in computation of greatest fixpoints. Thus, the
role of the abstraction is played by the upper adjoint, v : D — 2%. Funnily,
this means that in a technical sense the members of D provide more concrete
information than the members of 2¥ and that we compute on the concrete side
of the abstract interpretation. Thus, we interpret the lattice ID as an exact par-
tial representation rather than an abstract interpretation. The representation
via [is partial because it does not represent all assertions exactly; this is indis-
pensable due to countability reasons because we cannot represent all assertions
effectively. It is an exact representation because it allows us to infer the weakest
preconditions arising in the S-constant algorithms precisely, which 1s achieved by
ensuring that the initial value of the fixpoint computation is represented exactly
and that the occurring operations on representations mirror the corresponding
operations on assertions precisely.

By the very nature of Galois connections, the representation mapping v and
its lower adjoint « satisfy the two inequalities aoy C Idp and lds= C yoa, where
Ildp and Id,= are the identities on ID and 2%, respectively. Interestingly, none of
these inequalities degenerates to an equality when we represent assertions by
ideals of Z[x1, ..., x,] as in our algorithm for detection of polynomial constants.
On the one hand, v o & # ldys because the representation is necessarily partial.
On the other hand, o o v # Idp because the representation of assertions is not
unique. For example, if p € Z[x1, ..., 2,] does not have a zero in the integers,
we have Z((p)) = 0 such that Z((p)) = Z((1)) = Z(Z[z1,...,z,]). But by
undecidability of Hilbert’s tenth problem, we cannot decide whether we are faced
with such a polynomial p and thus cannot effectively identify (p) and (1). This
forces us to work with a non-unique representation. While we cannot decide
whether the set of zeros of an ideal I given by a basis B is empty, we can decide
whether it equals X because this only holds for I = (0). Fortunately, this is the
only question that needs to be answered for the weakest precondition.

As a consequence of non-uniqueness, the weakest precondition computation
on ideals does not necessarily stop once 1t has found a collection of ideals that
represents the largest fixpoint on assertions but may proceed to larger ideals
that represent the same assertions. Fortunately, we can still prove termination
by arguing on ideals directly.

Let us discuss some possible directions for future work. Firstly, it is interesting
to implement the detection algorithm for polynomial constants and evaluate how
it performs in practice. Secondly, we can look for other applications of the generic
algorithm. Of course, we can tackle, e.g, polynomial constants over () rather
than Z, where we can use essentially the same algorithm because Q[a1, ..., #,]
is also a strongly computable ring. But we may also identify other classes where
assertions can be represented symbolically. On the theoretical side, there is the
challenge to diminish the gap between the upper and lower complexity bound for
the detection problem of polynomial constants. Currently, we have decidability

as an upper bound, as witnessed by the algorithm in this paper, and PSPACE-
hardness as a lower bound [16].

Acknowledgment. We thank the anonymous referees for their comments that
helped to improve the submitted version.

References

1.

2.

10.

11.

12.
13.

14.
15.

16.

17.

18.

19.

20

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

K. R. Apt and G. D. Plotkin. Countable nondeterminism and random assignment.
Journal of the ACM, 33(4):724-767, 1986.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
4th POPL, Los Angeles, California, 1977.

P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic Computat.,
4(2):511-547, 1992.

. J. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra: Systems and Algo-

rithms for Algebraic Computation. Academic Press, 1988.

E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

C. Fischer and R. LeBlanc. Crafting a Compiler. Benjamin/Cummings Publishing
Co., Inc., Menlo Park, CA, 1988.

K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra.
Kluwer, 1992.

M. S. Hecht. Flow analysis of computer programs. Elsevier North-Holland, 1977.

M. Karr. Affine relationships among variables of a program. Acta Informatica,
6:133-151, 1976.

Mathematics of Program Construction Group. Fixed-point calculus. Information
Processing Letters, 53(3):131-136, 1995.

Y. V. Matiyasevich. Hilbert’s Tenth Problem. The MIT Press, 1993.

A. Melton, D. A. Schmidt, and G. E. Strecker. Galois connections and computer
science applications. In D. Pitt, S. Abramsky, A. Poigné, and D. Rydeheard,
editors, Category Theory and Computer Programming, LNCS 240, pages 299-312.
Springer-Verlag, 1985.

B. Mishra. Algorithmic Algebra. Springer-Verlag, 1993.

S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann
Publishers, San Francisco, California, 1997.

M. Miiller-Olm and O. Riithing. The complexity of constant propagation. In
D. Sands, editor, ESOP 2001, LNCS 2028, pages 190-205. Springer, 2001.

J. R. Reif and H. R. Lewis. Symbolic evaluation and the global value
graph. In Conf. Rec. 4th ACM Symposium on Principles of Programming Lan-
guages POPL’77, pages 104-118, Los Angeles, CA, January 1977.

M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Computer Science, 167(1-2):131-
170, 1996.

B. Steffen and J. Knoop. Finite constants: Characterizations of a new decidable
set of constants. Theoretical Computer Science, 80(2):303-318, 1991.

F. Winkler. Polynomial Algorithms. Springer-Verlag, 1996.

