Computing Polynomial Program Invariants

Markus Muller-Olm*

FernUniversitat Hagen, LG Praktische Informatik 5
58084 Hagen, Germany
e-mail: Mmo@ s5. ¢s. uni -dort nund. de

Helmut Seidl
TU Minchen, Informatik, 12
85748 Munchen, Germany
e-mail:sei dl @ nformati k. t u- muenchen. de

Keywords:program analysis, polynomial relation, abstract given variable holds a constant value at a given program
interpretation, computable algebra, program correctness point in all executions. Clearly, constancy of a variable is
a polynomial relationx is a constant at program pointif
1. Introduction and only if the polynomial relatios — ¢ = 0 is valid atn
for somec € F. Moreover, with polynomials we can write

Invariants and intermediate assertions are the key to de—aII expressions involving addition, subtraction, and mult

. N . plication. Thus, our result allows us to find constants in
ductive verification of programs. Correspondingly, tech- o . o
. . . R, . non-deterministic flow graphs in which just these three op-
niques for automatically checking and finding invariants

and intermediate assertions have been studied (cf., e_g‘e_ra.tqrs are usedfolynomial constantyand indicates that

[4, 3]). In this paper we present analyses that check

and find valid polynomial relations in programs. A poly- agation.

The current paper extends and simplifies an earlier con-

nomial relation is a formul ...,xx) = 0 where : . .
. S B(x1, ’X."”) . 0 ference paper [12] that considered just detection of pelyno

p(x1,...,Xx) is a multi-variate polynomial in the program . . : ;

. 1 . . mial constants We improve over this paper in a number of
variablesxy, ..., x,.~ Our analyses combine techniques respects:
from abstract interpretation and computable algebra and P '
fully interpret assignment statements wjtblynomialex- e A modest generalization is that we show how to check
pressions on the right hand sides while considering other validity of arbitrary polynomial relations (Section 3),
assignments as non-deterministic. Polynomial disequalit while in [12] only particular polynomial relations of
guards are also treated precigetyhile other conditions the formx — ¢ = 0, ¢ € ¥, were checked for validity.
at branches are ignored. The first analysis automatically While checking arbitrary polynomial relations can be
checks whether a polynomial relation holds among the pro- done with essentially the same technique this was not
gram variables whenever control reaches a given target pro- ~ made explicit in [12].
gram point. Our second analysis extends this testing proce- o .
dure to compute precisely the set ofdlynomial relations * We treat polynomial disequality guards.
of an arbitrary given forme.g., all polynomial relation of o \jqs¢ importantly, we are now able not just theck
bounded degree that are valid at the target program point 6ynomial relations but tderiveall valid polynomial
among the program variables under the above abstraction. relations of some given form (Section 4). Without a

The following is known as an undecidable problem in systematic way of derivation, we must guess candidate
non-deterministic flow graphs, if the full standard sigmatu relations by some heuristic or ad-hoc method. In [12]
of arithmetic operators (addition, subtraction, multph for instance, the constantfor the candidate relation
tion, and division) is available [7, 13]: decide whether a x—c = 0 is determined in an ad-hoc way by executing

*On leave from Universitat Dortmund. a single program path.

IMore generally our analyses can handle positive Boolearbirwn
tions of polynomial relations. The main idea of our checking algorithm is to compute

2Again, positive Boolean combinations of such guards careelled. a polynomial ideal that represents the weakest preconditio

ties our analysis can handle, consider the program in Fig-

(0 ure 1. After initializingx; with 1 andxs with x3, the
x1 =1 program iteratively executes the two assignmenis:=
X9 1= X3 x1 - X3 + 1;X2 := X9 - X3 in sequence. It is not difficult
X1 :=X1-X3+1 to see that aften iterations of the loopx; holds the value
X2 1= X2 0 X3 D Srodt = 9% (computed by Horner's method) asd
x1:=x1 - (x3—1) holds the valug"t! if g is the (unknown) initial value of
x3. Therefore, after leaving the loop and multiplyisg
@ with x3 — 1 (i.e., the value; — 1), we can easily convince
ourselves that the equatior; — x2 + 1 = 0 holds at pro-
Figure 1. An example program. gram point 2.

. . _ _ _ 2. Polynomial Programs
for the validity of the given polynomial relation at the give

target program point. We rely on results from computable o

algebra in order to ensure that this computation can be done We model programs by non-deterministic flow graphs as
effectively, most notably, on Hilbert’'s Basis Theorem and n Elgure 1. LetX = {xi,...,xz} be the set of (global)
on Buchberger’s Algorithm. The polynomial relation in variables the. program operates on. We ude denote the
guestion is valid at the target program point if and only if vector of variablesc = (xi, ..., xx). We assume that the

the computed weakest precondition is valid for all states. variables _take values in a fixed field If I IS finite, we i
The latter can easily be checked. can effectively compute for each program point the possible

In the case of derivation, we compute the weakest pre-:ﬁin'ti':;errsgaifsnbx an e:fe::tlvrel f|Xﬁ0|nkt i:/olr;:jri)tutat;on.l Fr:om
condition of ageneric polynomial relatioat the target pro- s information we can clearly check vallaity of polyno-

. . ; ! Iy mial relations an rive vali lynomial relations. Térer
gram point. In this generic relation coefficients are repthc alrelations and derive valid polynomial relations. Tée

by variables. Again an ideal that represents the weakest-fore’ we assume W'FhOUt IOSS. of generality tRas infinite.
In practiceF is the field of rational numbers.

precondition can be computed effectively. We can then A stat _ | o th iables i entl
characterize the set of values of the new variables for which stateassighing vailies 1o the variables Is conveniently
modeled by a-dimensional vector: = (z1,...,z) €

the weakest precondition is universally valid by means of a . . .
P y y F*: x; is the value assigned to variabte. Note that we

linear equation system. The space of solutions of thistinea distinquish variabl d their val b ! diff t
equation system characterizes the coefficients of all poly-fo'it'ng“'s variables and their values by using a differen

nomial relations (of the given form) which are valid at the
target program point.

Looking for valid polynomial relations is a rather general p 20
guestion with many applications. First of all, many classi-
cal data flow analysis problems can be seen as problems p3#0
about polynomial relations. Some examples are: finding p2 #0

definite equalities among variabléike x = y; constant

propagation i.e., detecting variables or expressions with a

qonstant value at run-timeljscovery of symbollic constants Figure 2. Representation of guard (p; # 0 A

like x = 5y + 2 or evenx = yz? + 42; detection of com- p2 # 0) V p3 # 0 by a flow graph.

plex common sub-expressionsere even expressions are

sought which are syntactically different but have the same

value at run-time such asy + 42 = y? + 5; anddiscovery

of loop induction variables We assume that the basic statements in the program are
Polynomial relations found by an automatic analysis are either polynomial assignmentsf the formx; := p or

also useful in program verification contexts, as they previd non-deterministic assignmenté the formx; :=? where

non-trivial valid assertions about the program. Inpaféicu ~ x; € X andp is a polynomial inF[X], the polynomial

loop invariants can be discovered fully automatically. As ring over the fieldf with variables fromX. Moreover, and

polynomial relations express quite complex relationships in generalization of [12], we alloyolynomial disequality

among variables, the discovered assertions may form theguardswhich are of the fornp # 0 wherep again is a poly-

backbone of the program proof and thus significantly sim- nomial. While we allow only single negated polynomial

plify the verification task. equations as guards, positive Boolean combinations can be
As an illustration of the kind of programs and proper- treated by coding them as small flow graphs, see Figure 2

12 are also of interest in their own right. They can, for in-
stance, code Petri nets. As an example consider the Petri
O net in Fig. 3 with three places, v, w and three transitions
t1,to,t3. The coding of this net by a polynomial program
is shown in Fig. 4. In the coding there is a variable for each

3 place of the Petri net. In the initialization we store theueal
of the initial marking into these variables (transitionrfro
Figure 3. A Petri Net. program poin® to 1). For each transition in the Petri net,

there is a loop from program pointto itself; the topmost
loop in Fig. 4, for instance, corresponds to transitigrof

the net in Fig. 3. The loop for a transition first checks (by
disequality guards) that the transition is enabled and then
mirrors the effect of the transition on the marking by ap-
propriate assignments to the variables. It is easy to s¢e tha
the possible run-time states at program paicbrrespond
just to the reachable markings of the Petri net. On the re-
sulting polynomial program we can check and derive poly-
nomial invariants at program poimtwhich are valid invari-
ants for all reachable markings of the Petri net. For example
v +w = 3isvalid at program point in Fig. 4. Indeed, as
our procedures are complete for polynomial programs, they
induce complete procedures for checking or deriving poly-
nomial invariants for the reachable markings of Petri nets.
Note that disequality guards are crucial for faithful cagin
of Petri nets. If, for instance, the guand=~ 0 is ignored in

for an illustrative example. Assignments := x; have the program in Fig. 4, the invariant+ w = 3 is no longer

no effect onto the program state. They are also caléal valid at program point.

statements and omitted in pictures. Non-deterministic as- The core part of our algorithm can be understood as a
signmentsc; :=? represent a safe abstraction of statements precise abstract interpretation of a constraint system-cha
in a source program our analysis cannot handle preciselyacterizing the program executions that reach a given target
for example of assignments; := ¢ with non-polynomial program point € N. We represent program executions or
expressionsor of read statementsad(x;). Similarly, skip runsby finite sequences

statements can be used to abstract guards that are not poly-

Figure 4. Coding of the Petri Net.

nomial disequalities. Letab be the set of basic statements FPETLTm
and polynomial disequality guards. where each; is of the formp # 0 orx; := pwherex; € X

A polynomial programis given by acontrol flow graph andp € F[X]. We write Runs for the set of runs. The set
G = (N, E, A, s) that consists of: of runsreachingt from some program point € N can

be characterized as the least solution of a system of subset
constraints on run sets. We start by defining the program
e asetofedged C N x N; executions of base edgen isolation. Ife is annotated by

a guard, i.e.A(e) = p # 0, or a polynomial assignment,
i.e., A(e) = x; := p, it gives rise to a single execution:
R(e) = {A(e)}. The effect of base edgesannotated by a

e a speciakntry (or start) poin € N. non-deterministic assignmexyj :=7 is captured by all runs

)) that assign some value frofito x;:
Note that we cannot allow polynomial equality guards

instead of (or even in addition to) disequality guards. As R(e) = {x; :=c|ceF}
shown in [15] constancy detection is undecidable alreadyTys we capture the effect of non-deterministic assign-
for flow graphs with affine assignments and affine equal- pents by collectingall constantassignments. The runs

ity guards. This clearly implies that polynomial relations reachingt from program nodes are the smallest solution of
cannot be checked or derived completely in programs with (o following constraint systeR:

polynomial assignments and polynomial equality guards.
Besides being a smooth abstraction of usual programs R1] R(t) 2{e}
for which our analyses are complete, polynomial programs [R2] R(u) 2 fe(R(v)), ife=(u,v) € E

e asetN of program points

e amappingd : £ — Lab that annotates each edge with
a basic statement or polynomial disequality guard;

where " denotes the empty run, anfl(R) = {r;t | r € The polynomial relation (denoted byholds after a sin-
R(e) At € R}. By [R1], the set of runs reaching the tar- gle runr for those initial states: € dom([r]) that satisfy
get when starting from the target contains the empty run. p([r]=) = 0. For states: ¢ dom([r]), p is trivially guaran-
By [R2], a run starting fromu is obtained by considering teed after run asr is not executable for those states. Thus,
an outgoing edge = (u, v) and concatenating a run corre-
sponding tce with a run starting from. x ¢ dom([r]) v p([r]x) =0

So far, we have furnished flow graphs with a symbolic . L
operational semantics only by describing the sets of runs'€Presents theeakest preconditioaf the validity ofp = 0
possibly reaching program points. Each of these runs glVesafter runr. Assuming that the transformation induced by
fise to apartial transformation of the underlying program (he runris represinted by the polynomiajs, .. ., gi., we
statex € FF*; for states outside the domain the run is not have for eaclr € F™:

executable, because some of the conditions in the run are 2 ¢ dom([r]) V p([r]z) = 0
not satisfied. Every guang # 0 induces a partial identity . p n
function with domain iff go(x) =0V p(ar(z),..., qr(x)) =0

iff () =0V plg1/x1,. - qr/xk](x) =0
dom([p #0]) = {z € F*| p(a) # 0} if ?20 -p[ql/xl,].) ' , qk/ka?) ~o

Polynomial assignments are always executable. Thus,
polynomial assignment; := p gives rise to the transfor-
mation with domairdom([x; := p]) = F* and

aFrom this calculation, we deduce that the weakest precon-
dition is again a polynomial relation. Even better: the map-
ping [[r]]T that assigns to each polynomial relation (repre-
[xj :=plo=(z1,...,05-1,p(2),Tj41, ..., Tk) sented by a single polynomial) its weakest precondition be-
fore runr is thetotal function defined by:
These definitions are inductively extended to rya$:=
Id, whereld is the identity function andr; a] = [a] o [r] [[r]]Tp =qo - plg1/X1s .- QK /XE] (1)
where ©” denotes composition of partial functions.
The partial transformatiorf = [r] induced by a run The only polynomial relation which is true fail program

r can always be represented by polynomigls. .., qx € statesis the relatior) = 0. Thus, a given polynomial rela-
F[X] such thatdom(f) = {x € F* | go(z) # 0} and tion p is valid after runr iff [r]" p = 0, because the ini-
f(x) = (q1(2), ..., qu(x)) for everyz € dom(f). Thisis tial state is arbitrary. Moreover, the polynomial relation
clearly true for the identity transformation induced by the p is valid at the target nodg iff it is valid after all runs
empty patle (take the polynomial$, x4, ..., xx). Itis also r € R(s). Summarizing, we have:

not hard to see that the transformatlons induced by poly-

nomial assignments or guards can be represented this way-eémmal The polynom|al relatiorp; € F[X] is valid at
Moreover, transformations of the given form are closed un- the target node iff [] p, = 0 for all r € R(s).

der composition. To see this, consider a second transforma-

tion f” which is given by polynomialj, ..., q, € F[X]. We conclude that the sét = {[r]'p; | r € R(s)} C
Then we have: F[X] of polynomials gives us a handle to solve the validity
problem for the polynomial relatiop, at the target node
x € dom(f' o f) t: py is valid att iff S C {0}. The problem is that we
it qgo(z) £0 A gh(qu(a), ..., qu(@) #£0 need a representation of this set which is finitary—and find

a way to compute it. In this place, we recall that the set

; /
iff (g0 - golar/x1s -, qu/xx])(x) # 0 F[X] of all polynomials forms @ommutative ringA non-

such thaff’o f is given by the polynomialg-q//, ¢/, . . . , ¢} empt_y_subsef of a commutative ringr satisfying the two
where theg! are obtained by substituting the polynomials conditions:
. 1 ! no_ 7
g; forx;ing;, i.e..q7" = qilqr/x1, -, qi/xu]. (i) a+ b € I whenever,b € I (closure under sum) and
3. Polynomial Relations and Weakest Precon- (i) r-a € I whenever € R anda € I (closure under
ditions product with arbitrary ring elements)

is called anideal. Ideals (in particular those in polynomial
A polynomial relatiorover a vector spadg” is an equa- rings) enjoy interesting and useful properties. For a subse
tion p = 0 for somep € F[X]. Such a relation can be ¢ c R, the least ideal containing is given by
represented as the polynomjahlone. The vectoy € F*
satisfieghe polynomial relatiom iff p(y) = 0. (GYy={rg1+...+7rmgn |n>0,1, € R, g, € G}

In this case(7 is also called a set ajeneratorsof (G). In
particular,

(G) = {0}

foreveryG C R. Thus, in our scenario, we can equivalently
check(S) = {0} instead ofS C {0}. We conclude that we
can work with ideals of polynomials instead of sets without
losing interesting information. The s&% of ideals ofF[X],
ordered by subset inclusion, forms a complete lattice. In
particular:

iff G C{0}

e The least element &fx is {0}.
e The greatest element @k equals(1) = F[X].

e The least upper bound LI I, of two ideals is defined
by[l + Iy = <Il UIQ>.

Moreover, we recall Hilbert's famous basis theorem for
polynomial ideals over a field:

Theorem 1 (Hilbert, 1888) Every ideall C F[X] of a
commutative polynomial ring in finitely many variablXs
over a fieldF is finitely generated, i.el, = (G) for a finite
subsetz C F[X]. O

This means that each ideal can be effectively repre-

sented. For testing validity of a given polynomial relation
py at a given target node we are thus left with the task to
compute the ideal{[r] p: | » € R(s)}) (s the entry point

of the program). This ideal can be seen as an abstraction of

the setfR(s) of program executions starting inand reach-
ing t. We are going to compute it by an abstract interpreta-
tion of the constraint system f®& («) from Section 2. The

desired abstraction of run sets is described by the mapping

a: QRuns T

o(R) = ({[rT'pe | r € RY).

This definition immediately implies the following identi-
ties:

a@) = @) = {0}
a{r)) = {[rI'ph)
for a single run-. For the empty rus we get:
a({e}) = {p})

becausde]” = Id.
The mappingx is monotonic (w.r.t. subset ordering on

Lemma?2 Let G denote a set of subsets of polynomials.

Then
(NHelcegh=| (@ Geg}

In order to solve the constraint system for the run sets
R(u) over abstract domaifix, we need an abstract trans-
former f# : Tx — Ix corresponding to edges= (u,v)
which exactly abstractg., i.e., the effect of concatenating
the fixed run set of the edgewith run sets. We define:

FiI={['p|reRle)pel})
We prove:
Lemma 3 For every subset: of polynomials,
FUG) = ({[''p | r € R(e)p € GY)

Proof: SinceG C (G), we trivially have the inclusion
“D" by monotonicity. For the reverse inclusion, consider
a polynomialp € f(G). Thenp can be written as
p = 32", ¢ - p; for polynomialsp; = [r;]"p} for some

r; € R(e) andp] € (G), andg; € F[X]. Eachp} in turn
can be written ag, = Z}”:il qi; - 9i; for g;; € G and arbi-
trary polynomialsy;;. In particular,

[r:] p;

[rs]" (Zé 4ij " 9ij)

m;

.
> d Il g
i=1

for some polynomialsg;; (unfold the definition of
[[ri]]T for seeing the last step). Thereforg, €
{Ir]'p | r € R(e),p € G}) for all i. But then alsop €

{Ir]p | r € R(e),p € G}) since ideals are closed under
sums and products with arbitrary polynomials. o

pi

Using Lemma 3, we calculate:

FaR) = fH{IT e | r e RY)
AT ([pe) | 7 € Rie),r € RY)
{77 pe | 7/ € R(e),r € R})
Al pe | v € fo(R)})

ol f.(R))

sets of runs and subspaces.) Also, it commutes with ar-

bitrary unions. This is due to the following wellknown
lemma:

Therefore, f! is indeed an exact abstraction fif. It re-
mains to prove that the application ¢f can be effectively

computed. This is easy i (e) is either a guard or a poly-
nomial assignment. Then the $Rfe) consists of a single

element, namely, a guard or a polynomial assignment. For

any generating syste@ C F[X], we therefore obtain by
Lemma 3,

f§<c>:{ Up-qlqge G}y, iFA@E)=p#0

{alp/xjl [q € G}),if Ale) =x; :=p

In particular, we conclude that for every finite set of gener-

ator polynomialg, a finite generating system for the ideal
fHG) is effectively computable.

Not quite as obvious is the case where the edgela-
beled with an unknown assignmexf :=7. Then the run
setR(e) = {x; := ¢ | ¢ € F} isinfinite. Still, however,

the effect of concatenating this run set turns out to be com-

putable. To see this, recall that every polynomia F[X]
can be uniquely written as a sum

where the{x; }-coefficient polynomialg; of x; do not con-

tain occurrences at;. Then definer; : F[X] — 2F(X] as
the mapping which mapg to the set{py,...,pq} Of its
{x; }-coefficient polynomials. We prove:

Lemma4 Assumed(e) = x; :=?. Then for every se¥ of
generator polynomials,

F46) = (Uimi@) la € GY)

The lemma and its proof are similar to Lemma 8 in [11].
Proof: By definition and Lemma 3, we have:

FHG) = (Ixj=c'q|ceF.qeG)
= (ql¢/xj]|c€F,q€G)

Obviously, each polynomiaf[c/x;] is contained in the
ideal generated from théx; }-coefficient polynomials of
q. Therefore, a generator set of the left-hand sigigr) is
included in the right-hand sidé J{~;(q) | ¢ € G}) of the

wherexy, ..., x4 € F ared + 1 distinct elements. It is not
hard to see that

q0 Q[xo/xj]
Al 1] = :
qd qlza/x;]
The determinant of A is an instance of what is

known as Vandermonde’s determinant and has the value
[lo<icme<q(@m — ;). As the valuesr, ...,z are dis-
tinct, the determinant is different frot Therefore, matrix
A is invertible and for the inverse matrix, we have
qo0 qlwo/x;]
. _ A—l .
qd qlza/x;]
Thus, the coefficient polynomials gfare even linear com-
binations of the polynomialgz,/x;], . .., glxa/x;] which
shows thatr;(¢) = {qo,...,qa} is contained in the ideal
generated by the polynomiaj:/x;], c € F.]

Since for every polynomiap, the set of its{x;}-
coefficient polynomials is effectively computable, we con-
clude that also the generator $¢{7;(q) | ¢ € G} of the
ideal f#(G) is effectively computable—given only that the
setG is finite.

For a given target nodec N and polynomial relation
py € F[X] let Rf)t denote the following abstracted con-
straint system over the complete lattiCg:

R1F RE() 2 ({pe})
R2)* Rf(u) D fHRI(v)), ife= (u,0) € E
We find:

Lemma5 The constraint systeiﬁigt has a unique least so-
lution R¥(u), u € N, with the following properties:

1. R¥(u),u € N, is effectively computable.
2. R¥(u) = a(R(u)) for everyu € N.

equation, and hence also the generated ideal. This proves

the inclusion ‘C”.

For the reverse inclusion, it suffices to prove for
an arbitrary polynomialy € G, that the setr;(q)
of {x;}-coefficient polynomials ofg is contained in
(qle/x;] | ¢ € F). Assume that = 3% ¢ - x’, where the
polynomialsg; do not contain occurrences ®f. Consider
the square matri¥ defined by:

2 d

1 =z 25 ... =z

A 1 xy 22 z¢
1 : : :

2 d

1 zqg 23 g

Proof: SinceZx is a complete lattice and all transfer func-
tions f# on right-hand sides of constraints are monotonic,
the constraint systeﬁf}t has a unique least solution. More-
over, recall that Hilbert’s basis Theorem 1 implies thatrgve
ascending sequence of ideals:

IyC...CIL,C...

is ultimately stable, i.el,,, = I,,, for somem € N and all
m’ > m. We conclude that the least solution can be com-
puted by a finite number of fixpoint iterations. Since each
intermediately occurring ideal is finitely generated, eiaeh
dividual fixpoint iteration is computable. By Buchberger’s

algorithm (cf., e.g.,[2]) itis decidable whether or notdypo Example 1 Consider the example program from Figure 1.

nomial p is contained in the idealG) for a finite set of ~ We want to verify that the relation given by the polynomial

generatorgs. It follows that it is also decidable whether p; = x; — x2 + 1 holds at program point = 2. Starting

an ideall; is included in another idedh—given only fi- from the ideak{p:}) for program point 2, we obtain a set of

nite generator sets; for the involved ideald; [2, Theorem generators for the idedR*(1) of preconditions at program

5.55]. Thus, we can effectively decide when fixpoint itera- point 1 by first computing:

tion for ngt reaches the least fixpoint. This completes the -

proof of Assertion 1 @ = [xi=x1-(xs—1)]'p
For the second assertion, we apply the Transfer Lemma = pfx1-(x3—1)/x1]

of general fixpoint theory (see, e.g., [1, 5]): = X X3—X — X3 +1

Lemma 6 (Transfer lemma) SupposeL, L* are complete and then iteratively adding to the ideaj;) further precon-

lattices, f : L — L andg : L* — L* are monotonic func- itions for the loop until stabilization is reached. We have
tions andy : L — LF is a completely distributive function.

If yof=go~ytheny(uf) = pg, wherepf andpg are [x1:=x1-x3+ 1;x2 := X 'X3]]T(Z1
the least fixpoints of and g, respectively, that exist by the = qi[x1 %3+ 1/%1, %2 - X3/X0]
Knaster-Tarski fixpoint theorem. = (x1-x3+1)-x3—(x1-X34+1) —x3-x3+1
_ _ = Xj-X3— X1 X3— X X3+ X3

In our case/ is the| N|-fold Cartesian product afRuns = x3-q1
(one component for each varialR(u), u € N, in con- € q)
straint systenR) and L.* is the| N|-fold Cartesian product
of Zx (one component for each variadR¥(u), u € N, Thus, the value of the fixpoint for program point 1 is given

in constraint systean,t). The mappingsf andg are in- by R¥(1) = ({q1}). For the entry point 0 of the program
duced from the right side the constraintsRnandR?, in we then calculate the set of preconditions for the{get:
the standard way, such that their least fixpoints correspond -
to the least solutions of the constraint systdfandR?, . [xi=Lxoi=x3]q1 = 1-x3—-1-x3+1
The mappingy maps a vector frond. to the vector of the =0
a-images of its components.

By Lemma 2 the abstraction functian is completely ~ ThereforeR?(0) = (0) = {0} — implying that the relation
distributive which implies that is completely distributive X1 — x2 + 1 = 0 indeed holds at program point2. O
as well. By Lemma 3, the transfer functions are exact which

together with the fact that is completely distributive im- . _ . . .
pliesy o f — g o~. Hence, the Transfer Lemma ensures The considerations of this section can easily be extended

that the least solution of the abstracted constraint sys,tem,tO checking finite sets of polynomials. A sét C [F[X]

R} is the abstraction of the least solution of the concrete '3 valid for a statey € F* iff ply) = Oforallp € G.
constraint systerR. This is Assertion 2. Thus, the proofis 1 1US: & set represents the conjunction of its members. We
complete. O can clearly (_:heck vaI|d|ty of a given finite st at a given
program point by applying the above procedure for each
relation inG,. We can do better, however, by checking all

We can now put the pieces together and prove the main)
of them at once. Clearly, we obtain from Lemma 1:

theorem of this section.

Corollary 1 The set of polynomial relatiors, C F[X] is
valid at the target node iff []"p = {0} for all » € R(s),
pE Gt.

Theorem 2 There is an effective procedure to decide
whether a polynomial relatiomp, is valid at a given pro-
gram pointt or not.

Accordingly, we work with the abstraction mapping:

Proof: The polynomial relatiomn is valid att if and only oRuns

if «(R(s)) = {0}, wheres is the entry point of the pro-
gram. By Lemma 5 we can effectively compute a generat- "(R) — T R a

ing system fora(R(s)) by computing the least solution of o!(B)={lrlp|reRpel}).
constraint systenif, . As the idea{0} has only the two s jeads to the a slightly modified constrafiftl)*:
sets of generatofsand{0} it is easy to check, whether the

set of generators computed fBf (s) generateg0} or not. [Rl]ﬁ RE(t) D (Gy)

> =

— Ix:

The rest works as before. We conclude:

Theorem 3 There is an effective procedure to decide
whether a (finite) set of polynomial relatiots is valid at
a given program point or not.

Note that we can represedisjunctionsof polynomial
relations by productgy = 0 v p’ = 0 is valid for a state,
iff p-p’ = 0isvalid fory. Thus, by considering sets of poly-

Where[[r]]T on the left-hand side of the equation is computed
over F[X] whereas on the right-hand side it is computed
overFIX UAp].

Proof: By Equation (1), there are polynomiafs . . ., qx €
F[X] such thafr] p’ = qo-p'[q1 /X1, - - ., qu/xx] for every
polynomialp’. Therefore,

nomials and using products, we can indeed handle arbitrary

positive Boolean combinatioms polynomial relations.

4. Inferring Valid Polynomial Relations

It seems that the algorithm of testing whether a certain
given polynomial relatiop, = 0 is valid at some program
point contains no clue on how to infer so far unknown valid
polynomial relations. This, however, is not quite true. We
show in this section how to determine all polynomial rela-
tions of some arbitrary given form that are valid at a given
program point of interest. The form of a polynomial is given
by a selection of monomials that may occur in the polyno-
mial.

Let D C N§ be a finite set of exponent tuples for the
variableszy, ..., z;. Then a polynomiap is called aD-
polynomial if it contains only monomialbs- x' - ... - x}*,

b e F, with (i1,...,i) € D, i.e., if it can be written as
p= Z aa-x?-...-x;’“
o=(lk,...,ik)ED
If, for instance, we choos® = {(i1,...,ix) | 41 +

...+ 1, < d} for a fixed maximal degreé < N, then
the D-polynomials are all the polynomials up to degree
Here thedegreeof a polynomial is the maximal degree of
a monomial occurring ip where the degree of a monomial
b-xi'-...-x¥,beTF, equalsiy + ... +i.

We introduce a new set of variablds, given by:

Ap ={a,| o€ D}

Then we introduce thgenericD-polynomial as

>

U:(ik,...7ik)ED

— i1 Tk
pp = as - X{' .. X

The polynomialpp is an element of the polynomial ring
F[X U Ap]. Note that every concret®-polynomialp €
F[X] can be obtained from the genediz-polynomialpp
simply by substituting concrete values € F, o € D, for
the variables,. If ¢ : 0 — a, anda : o — a,, we write
ppla/a] for this substitution. We have:

Lemma7 Letp=3",_ i jep@oxXi. X € F[X]
denote aD-polynomial with coefficients : o — a,. Then
for every runr,

[r]'p = ('] pp)la/a]

[[T]]Tp qo - plar/x1, - -, qr/Xk]
= qO'pD[a’/a][(h/xlv"'7q]€/xk]
= (9o -pola/x1,...,q1/xx])[a/a]

(Ir]"pp)le/a]

which proves the asserted equality.]

Lemma 7 tells us that instead of computing the weak-
est precondition of eacl-polynomial separately, we as
well may compute the weakest precondition of the single
generic D-polynomialpp once and for all and substitute
the concrete coefficients, of the polynomialg into the
precondition ofpp later. In particular, we conclude that the
following statements are equivalent:

1. pis valid at the target program poitjt

2. [r]'p = 0forallr € R(s);

3. (r]"pp)la/al = 0forallr € R(s);

4. glaja] = 0forallq € {[r] pp | r € R(s)};

5. gla/a] = 0forallg € ({[r] pp | € R(s)}).

6. gla/a] = 0 for all ¢ € G in a (finite) generatot; of

the ideal({[r] pp | r € R(s)}).

Now it should be clear how an algorithm may find all poly-
nomial relationgp = 0 with a D-polynomialp which are
valid at program point: first, we construct the abstract con-
straint systean,D, now overZxua ,, which for each pro-
gram pointu computes (a finite generator set of) the ideal
R(u) = {[r]"pp | » € R(u)}). Then it remains to de-
termine the set of all coefficient maps D — F such that
qla/a] = 0 forall ¢ € Rf(s). Recall that each such polyno-
mial ¢[a/a] is a polynomial inF[X]. Any such polynomial
equals 0 iff each coefficiertof each occurring monomial
b-x{"...x}* equals 0. The polynomial€ F[X U Ap], on
the other hand, can uniquely be written as a finite sum

> 2)

=11, 0yik)

i i
q = EED SHENNES 31

where eachX-coefficientq, is in F[Ap], i.e., may only
contain occurrences of variables frol,. Thus,g[a/a] =

0iff g,[a/a] = 0 forall index tuplesr occurring in the sum.
Summarizing our considerations so far, we have shown:

Lemma8 Let G denote any finite generator set for the the idealRf(1) of preconditions at program point 1. First,
ideal R¥(s). The set of coefficient maps: D — T of the we compute:
D-polynomials which are valid at program poihtequals

the set of solutions of the equation system having an equa- ¢1 = [X1:=x1-(x3 — 1)]]Tp1
tion: = pifx1-(x3—1)/x1]

4o =0 = ap—a;- X +as Xy+as- X3+a;-X;X3
for eachX-coefficienty, of a polynomialy € G. |

Next, we add the preconditions for the body of the loop:

. . T
We are not yet done, since in general we are notable to [X1 := X1 - X3 + 1;x2 1= X2 - x3] @1

determine the precise set of solutions of an arbitrary pmlyn = qi[x1-x3+1/x1,X2 - X3/x2]
mial equation system algorithmically. Therefore, we need = agp—a; +a;-X3+az- X3
the following extra observation: —aj - X1X3 + a2 - XoX3 + & - X1X3
= X3-q+
Lemma9 Every idealR*(u), u € N, of the least solution (ag — a1 + (—ag + a1 + a3) - x3 — ag - x3)

of the abstract constraint systeﬁfm has a finite generator
setG consisting of polynomialg whoseX-coefficients are ~ The polynomial, = ap —a; + (—ag+a; +a3) - x3 —as -

of degree at most 1, i.e., are of the form: x3 is independent of; andx,. Thus, the ideal{q:, ¢2})
remains stable under further iteration and therefore egual
Z by - ay R%(1). A generator set foR?(0) is obtained by computing:
oeD T
for b, € F. Moreover, such a generator set can be effec- [o= Ly XBHT(h 30 —aL+ (@ +az+ay) X
tively computed. [x1:=Lx:=x3]'¢2 = @
= ap — ap —+

Proof: The polynomialpp hasX-coefficients which triv-
ially have degree 1, since these consist of individual vari-
ablesa,. Also, applications of the least upper bound opera- The {x,, x,, x3}-coefficients of these two polynomials now

tion as well as of the abstract transformgfsvhen applied must equal 0. This gives us the following linear equations:
to (ideals represented through) finite sets of generatdbs wi

(—ap + aj + a3) - x3 — a3 - X3

X-coefficients of degree at most 1 again result in finite sets ay — a; = 0 ag — ay = 0

of generators with this property. Therefore, the assedion ajt+ay+as = 0 —agt+a;+a3 = 0

the lemma follows by fixpoint induction. O —ag = 0
Together Lemma 8 and Lemma 9 show that the set of Thus,az = 0, a; = ag, anday = —ag. We conclude

(coefficient maps) of)-polynomials which are valid at our thatl 4+ x; — x» = 0 is (up to constant multiples) the only
target program pointcan be characterized as the set of so- polynomial relation of degree at most 1 which is valid at
lutions of alinear equation system. Such equation systems program point 2. U
can be algorithmically solved, i.e., finite representagioh

their sets of solutions can be constructed explicitly. We-co

clude our second main theorem: 5 Conclusion

Theorem 4 The set of allD-polynomials which are valid

at some target program pointcan be effectively computed. ~ We have presented two analysis algorithms. The first
O analysis determines for a given program point of a polyno-

mial program with polynomial disequality guards whether a

given polynomial relation is valid or not. The second anal-
Example 2 Consider again the example program from Fig- ysis generalizes this algorithm to infer all polynomiakrel
ure 1. We want to determine for program point 2, all valid tions of an arbitrary given form, e.g., all polynomial rela-
polynomial relations up to degree 1, i.e., all valid polyno- tions up to a given degreé

mial relations of the fornag + a1 - x1 +a2-x2 4 a3 -x3 = 0. We do not know any upper complexity bound for our
Letp; = ag+a; - X1 +as - Xo + ag - x3 denote the generic algorithms. The termination proof relies on Hilbert’s ba-
D-polynomial forD = D;. Starting from the idea{{p1 }) sis theorem whose standard proof is non-constructive and

for program point 2, we determine a set of generators for does not provide an upper bound for the maximal length

of strictly increasing chains of ideals. Therefore, we can- References

not bound the number of iterations performed by the algo-
rithms. A first lower bound for the problems in question is
provided in [10] where the problem of must-constant prop-
agation for{+, —, « }-constants for polynomial constants is
proven to be already PSPACE-hard.

Linear algebratechniques have been used in program
analysis for a long time. In his seminal paper [8], Karr
presents an analysis that determines vafiithe relationgy
a forward propagation of affine spaces. His analysis is pre-
cise foraffine programsi.e., it interprets assignments with
affine right-hand sides precisely. In [10] we observe that
checkinga given affine relation for validity at a program
point can be performed by a simpleackward propagating
algorithm. This idea of backward propagation has lead to
an interprocedural generalization of Karr's result [11flan
also underlies the current paper. In comparison with Karr’s
result, we have a more general space of properties, namely
polynomial relations instead of affine relations. Secondly
our analysis is precise for a larger class of programs, namel
polynomial programs instead of affine programs. Finally,
we leave the realm of linear algebra and rely on results from
computable algebra instead.

We are not aware of much work on using techniques
from computablealgebrain program analysis, like we do
here. In the work of Michel le Borgne et. al. (cf., e.g., [9])

and Gunnarsson et. al. (cf., e.g., [6]) polynomials over a fi- [10]

nite field are used for representing state spaces in a forward
reachability analysis of polynomial dynamical systems or
discrete event dynamical systems, respectively. However,
they actually work in a finite factorization of a polynomial
ring over a finite field and use polynomials for represent-
ing state spaces of finite systems and not for treating arith-
metic properties. Thus, they use polynomials as a conve-
nient data structure but not to gain new decidability intsgh
Recently, Sankaranarayanan et. al. [14] proposed a method

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]
(9]

[11]

[12]

for generating non-linear loop invariants using techngue [13]

from computable algebra. In contrast to our technique their
method is approximate: there is no guarantee of complete-
ness for a well-specified class of programs. On the other

hand, they provide a non-trivial (but incomplete) treatmen [14]

of positive polynomial guards. Therefore, the results ob-
tained with these two techniques are incomparable.

It is a challenging open problem whether or not the set [15]

of all valid polynomial relations can be computed not just
the ones of some given form. It is not hard to see that this
set is an ideal oF[X]. Hence, by Hilbert's basis theorem

it can be represented by a finite set of generators such that
this is a well-posed problem. Another challenge is to treat
the inter-procedural case, i.e., to detect or even infey-pol
nomial relations in programs with polynomial assignments
and procedures.

10

K. R. Apt and G. D. Plotkin. Countable Nondeterminism
and Random Assignmengournal of the ACM33(4):724—
767, 1986.

T. Becker and V. WeispfennigGrobner Bases. A Computa-
tional Approach to commutative Algebr&pringer Verlag,
New York, second edition, 1998.

S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful tech-
niques for the automatic generation of invariants. Pho-
ceedings of the Eighth International Conference on Com-
puter Aided Verification (CAV)volume 1102 ofLecture
Notes in Computer Sciencgpringer, 1996.

N. Bjgrner, A. Browne, and Z. Manna. Automatic genera-
tion of invariants and intermediate assertionEheoretical
Computer Science 73(1):49-87—, 1997.

P. Cousot. Constructive Design of a Hierarchy of Sentanti
of a Transition System by Abstract Interpretati@tectronic
Notes in Theoretical Computer Sciendg 1997. URL:
www. el sevi er.nl/ | ocate/entcs/vol ume6. ht m .
J. Gunnarsson, J. Plantin, and R. Germundsson. Verditat
of a large discrete system using algebraic method®rd.

of the IEE WODES’961996.

M. S. Hecht.Flow analysis of computer programglsevier
North-Holland, 1977.

M. Karr. Affine Relationships Among Variables of a Pro-
gram. Acta Informatica 6:133-151, 1976.

H. Marchand and M. le Borgne. The supervisory control
problem of discrete event systems using polynomial meth-
ods. Technical Report 3790, INRIA Rennes, October 1999.
M. Miller-Olm and O. Rithing. The Complexity of Con-
stant Propagation. 140th European Symposium on Pro-
gramming (ESOR)pages 190-205. LNCS 2028, Springer-
Verlag, 2001.

M. Miller-Olm and H. Seidl. Precise interprocedural
analysis through linear algebra. Accepted &irst ACM
SIGPLAN-SIGACT Symp. on Principles of Programming
Languages (POPL.R004.

M. Muller-Olm and H. Seidl. Polynomial Constants are-D
cidable. In9th Static Analysis Symposium (SASges 4—
19. LNCS 2477, Springer-Verlag, 2002.

J. R. Reif and H. R. Lewis. Symbolic evaluation and the
global value graph. IrConf. Rec. 4th ACM Symposium
on Principles of Programming Languages POPL pages
104-118, Los Angeles, CA, January 1977.

S. Sankaranarayanan, H. Sipma, and Z. Manna. Nonklinea
loop invariant generation using grobner basesAGM SIG-
PLAN Principles of Programming Languages (POPL 2004)
2004.

M. M. Uller Olm and H. Seidl. A note on karr’s algorithm.
In Proceedings of ICALP 200£2004. to appear.

