
Computing Polynomial Program Invariants

Markus Müller-Olm∗

FernUniversität Hagen, LG Praktische Informatik 5

58084 Hagen, Germany
e-mail:mmo@ls5.cs.uni-dortmund.de

Helmut Seidl
TU München, Informatik, I2

85748 München, Germany
e-mail:seidl@informatik.tu-muenchen.de

Keywords:program analysis, polynomial relation, abstract
interpretation, computable algebra, program correctness

1. Introduction

Invariants and intermediate assertions are the key to de-
ductive verification of programs. Correspondingly, tech-
niques for automatically checking and finding invariants
and intermediate assertions have been studied (cf., e.g.,
[4, 3]). In this paper we present analyses that check
and find valid polynomial relations in programs. A poly-
nomial relation is a formulap(x1, . . . ,xk) = 0 where
p(x1, . . . ,xk) is a multi-variate polynomial in the program
variablesx1, . . . ,xk.1 Our analyses combine techniques
from abstract interpretation and computable algebra and
fully interpret assignment statements withpolynomialex-
pressions on the right hand sides while considering other
assignments as non-deterministic. Polynomial disequality
guards are also treated precisely2 while other conditions
at branches are ignored. The first analysis automatically
checks whether a polynomial relation holds among the pro-
gram variables whenever control reaches a given target pro-
gram point. Our second analysis extends this testing proce-
dure to compute precisely the set of allpolynomial relations
of an arbitrary given form, e.g., all polynomial relation of
bounded degree that are valid at the target program point
among the program variables under the above abstraction.

The following is known as an undecidable problem in
non-deterministic flow graphs, if the full standard signature
of arithmetic operators (addition, subtraction, multiplica-
tion, and division) is available [7, 13]: decide whether a

∗On leave from Universität Dortmund.
1More generally our analyses can handle positive Boolean combina-

tions of polynomial relations.
2Again, positive Boolean combinations of such guards can be handled.

given variable holds a constant value at a given program
point in all executions. Clearly, constancy of a variable is
a polynomial relation:x is a constant at program pointn if
and only if the polynomial relationx − c = 0 is valid atn
for somec ∈ F. Moreover, with polynomials we can write
all expressions involving addition, subtraction, and multi-
plication. Thus, our result allows us to find constants in
non-deterministic flow graphs in which just these three op-
erators are used (“polynomial constants”) and indicates that
division is the real cause of undecidability of constant prop-
agation.

The current paper extends and simplifies an earlier con-
ference paper [12] that considered just detection of polyno-
mial constants. We improve over this paper in a number of
respects:

• A modest generalization is that we show how to check
validity of arbitrary polynomial relations (Section 3),
while in [12] only particular polynomial relations of
the formx − c = 0, c ∈ F, were checked for validity.
While checking arbitrary polynomial relations can be
done with essentially the same technique this was not
made explicit in [12].

• We treat polynomial disequality guards.

• Most importantly, we are now able not just tocheck
polynomial relations but toderiveall valid polynomial
relations of some given form (Section 4). Without a
systematic way of derivation, we must guess candidate
relations by some heuristic or ad-hoc method. In [12],
for instance, the constantc for the candidate relation
x−c = 0 is determined in an ad-hoc way by executing
a single program path.

The main idea of our checking algorithm is to compute
a polynomial ideal that represents the weakest precondition
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x1 := x1 · (x3 − 1)

x1 := 1
x2 := x3

x1 := x1 · x3 + 1
x2 := x2 · x3

Figure 1. An example program.

for the validity of the given polynomial relation at the given
target program point. We rely on results from computable
algebra in order to ensure that this computation can be done
effectively, most notably, on Hilbert’s Basis Theorem and
on Buchberger’s Algorithm. The polynomial relation in
question is valid at the target program point if and only if
the computed weakest precondition is valid for all states.
The latter can easily be checked.

In the case of derivation, we compute the weakest pre-
condition of ageneric polynomial relationat the target pro-
gram point. In this generic relation coefficients are replaced
by variables. Again an ideal that represents the weakest-
precondition can be computed effectively. We can then
characterize the set of values of the new variables for which
the weakest precondition is universally valid by means of a
linear equation system. The space of solutions of this linear
equation system characterizes the coefficients of all poly-
nomial relations (of the given form) which are valid at the
target program point.

Looking for valid polynomial relations is a rather general
question with many applications. First of all, many classi-
cal data flow analysis problems can be seen as problems
about polynomial relations. Some examples are: finding
definite equalities among variableslike x = y; constant
propagation, i.e., detecting variables or expressions with a
constant value at run-time;discovery of symbolic constants
like x = 5y + 2 or evenx = yz2 + 42; detection of com-
plex common sub-expressionswhere even expressions are
sought which are syntactically different but have the same
value at run-time such asxy + 42 = y2 + 5; anddiscovery
of loop induction variables.

Polynomial relations found by an automatic analysis are
also useful in program verification contexts, as they provide
non-trivial valid assertions about the program. In particular,
loop invariants can be discovered fully automatically. As
polynomial relations express quite complex relationships
among variables, the discovered assertions may form the
backbone of the program proof and thus significantly sim-
plify the verification task.

As an illustration of the kind of programs and proper-

ties our analysis can handle, consider the program in Fig-
ure 1. After initializingx1 with 1 andx2 with x3, the
program iteratively executes the two assignmentsx1 :=
x1 · x3 + 1;x2 := x2 · x3 in sequence. It is not difficult
to see that aftern iterations of the loop,x1 holds the value
∑n

i=0 qi = qn+1
−1

q−1 (computed by Horner’s method) andx2

holds the valueqn+1 if q is the (unknown) initial value of
x3. Therefore, after leaving the loop and multiplyingx1

with x3 − 1 (i.e., the valueq − 1), we can easily convince
ourselves that the equation:x1 − x2 + 1 = 0 holds at pro-
gram point 2.

2. Polynomial Programs

We model programs by non-deterministic flow graphs as
in Figure 1. LetX = {x1, . . . ,xk} be the set of (global)
variables the program operates on. We usex to denote the
vector of variablesx = (x1, . . . ,xk). We assume that the
variables take values in a fixed fieldF. If F is finite, we
can effectively compute for each program point the possible
run-time states by an effective fixpoint computation. From
this information we can clearly check validity of polyno-
mial relations and derive valid polynomial relations. There-
fore, we assume without loss of generality thatF is infinite.
In practice,F is the field of rational numbers.

A stateassigning values to the variables is conveniently
modeled by ak-dimensional vectorx = (x1, . . . , xk) ∈
F

k; xi is the value assigned to variablexi. Note that we
distinguish variables and their values by using a different
font.

p1 6= 0

p2 6= 0

p3 6= 0

Figure 2. Representation of guard (p1 6= 0 ∧
p2 6= 0) ∨ p3 6= 0 by a flow graph.

We assume that the basic statements in the program are
either polynomial assignmentsof the form xj := p or
non-deterministic assignmentsof the formxj :=? where
xj ∈ X and p is a polynomial inF[X], the polynomial
ring over the fieldF with variables fromX. Moreover, and
in generalization of [12], we allowpolynomial disequality
guardswhich are of the formp 6= 0 wherep again is a poly-
nomial. While we allow only single negated polynomial
equations as guards, positive Boolean combinations can be
treated by coding them as small flow graphs, see Figure 2

2



u v w

t3

t1

t2

Figure 3. A Petri Net.

v := v + 1
w := w − 1

w 6= 0

v := v + 1

u 6= 0

v 6= 0
v := v − 1

w := w + 1
u := 0
v := 1
w := 2
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Figure 4. Coding of the Petri Net.

for an illustrative example. Assignmentsxj := xj have
no effect onto the program state. They are also calledskip

statements and omitted in pictures. Non-deterministic as-
signmentsxj :=? represent a safe abstraction of statements
in a source program our analysis cannot handle precisely,
for example of assignmentsxj := t with non-polynomial
expressionst or of read statementsread(xj). Similarly,skip
statements can be used to abstract guards that are not poly-
nomial disequalities. LetLab be the set of basic statements
and polynomial disequality guards.

A polynomial programis given by acontrol flow graph
G = (N, E, A, s) that consists of:

• a setN of program points;

• a set of edgesE ⊆ N × N ;

• a mappingA : E → Lab that annotates each edge with
a basic statement or polynomial disequality guard;

• a specialentry (or start) points ∈ N .

Note that we cannot allow polynomial equality guards
instead of (or even in addition to) disequality guards. As
shown in [15] constancy detection is undecidable already
for flow graphs with affine assignments and affine equal-
ity guards. This clearly implies that polynomial relations
cannot be checked or derived completely in programs with
polynomial assignments and polynomial equality guards.

Besides being a smooth abstraction of usual programs
for which our analyses are complete, polynomial programs

are also of interest in their own right. They can, for in-
stance, code Petri nets. As an example consider the Petri
net in Fig. 3 with three placesu, v, w and three transitions
t1, t2, t3. The coding of this net by a polynomial program
is shown in Fig. 4. In the coding there is a variable for each
place of the Petri net. In the initialization we store the value
of the initial marking into these variables (transition from
program point0 to 1). For each transition in the Petri net,
there is a loop from program point1 to itself; the topmost
loop in Fig. 4, for instance, corresponds to transitiont2 of
the net in Fig. 3. The loop for a transition first checks (by
disequality guards) that the transition is enabled and then
mirrors the effect of the transition on the marking by ap-
propriate assignments to the variables. It is easy to see that
the possible run-time states at program point1 correspond
just to the reachable markings of the Petri net. On the re-
sulting polynomial program we can check and derive poly-
nomial invariants at program point1 which are valid invari-
ants for all reachable markings of the Petri net. For example
v + w = 3 is valid at program point1 in Fig. 4. Indeed, as
our procedures are complete for polynomial programs, they
induce complete procedures for checking or deriving poly-
nomial invariants for the reachable markings of Petri nets.
Note that disequality guards are crucial for faithful coding
of Petri nets. If, for instance, the guardu 6= 0 is ignored in
the program in Fig. 4, the invariantv + w = 3 is no longer
valid at program point1.

The core part of our algorithm can be understood as a
precise abstract interpretation of a constraint system char-
acterizing the program executions that reach a given target
program pointt ∈ N . We represent program executions or
runsby finite sequences

r ≡ r1; . . . ; rm

where eachri is of the formp 6= 0 orxj := p wherexj ∈ X

andp ∈ F[X]. We writeRuns for the set of runs. The set
of runs reachingt from some program pointu ∈ N can
be characterized as the least solution of a system of subset
constraints on run sets. We start by defining the program
executions of base edgese in isolation. Ife is annotated by
a guard, i.e.,A(e) ≡ p 6= 0, or a polynomial assignment,
i.e., A(e) ≡ xj := p, it gives rise to a single execution:
R(e) = {A(e)}. The effect of base edgese annotated by a
non-deterministic assignmentxj :=? is captured by all runs
that assign some value fromF to xj :

R(e) = {xj := c | c ∈ F}

Thus, we capture the effect of non-deterministic assign-
ments by collectingall constantassignments. The runs
reachingt from program nodes are the smallest solution of
the following constraint systemR:

[R1] R(t) ⊇ {ε}

[R2] R(u) ⊇ fe(R(v)) , if e = (u, v) ∈ E

3



where “ε” denotes the empty run, andfe(R) = {r; t | r ∈
R(e) ∧ t ∈ R}. By [R1], the set of runs reaching the tar-
get when starting from the target contains the empty run.
By [R2], a run starting fromu is obtained by considering
an outgoing edgee = (u, v) and concatenating a run corre-
sponding toe with a run starting fromv.

So far, we have furnished flow graphs with a symbolic
operational semantics only by describing the sets of runs
possibly reaching program points. Each of these runs gives
rise to apartial transformation of the underlying program
statex ∈ F

k; for states outside the domain the run is not
executable, because some of the conditions in the run are
not satisfied. Every guardp 6= 0 induces a partial identity
function with domain

dom([[p 6= 0]]) = {x ∈ F
k | p(x) 6= 0}

Polynomial assignments are always executable. Thus, a
polynomial assignmentxj := p gives rise to the transfor-
mation with domaindom([[xj := p]]) = F

k and

[[xj := p]] x = (x1, . . . , xj−1, p(x), xj+1, . . . , xk)

These definitions are inductively extended to runs:[[ε]] =
Id, whereId is the identity function and[[r; a]] = [[a]] ◦ [[r]]
where ‘◦” denotes composition of partial functions.

The partial transformationf = [[r]] induced by a run
r can always be represented by polynomialsq0, . . . , qk ∈
F[X] such thatdom(f) = {x ∈ F

k | q0(x) 6= 0} and
f(x) = (q1(x), . . . , qk(x)) for everyx ∈ dom(f). This is
clearly true for the identity transformation induced by the
empty pathε (take the polynomials1,x1, . . . ,xk). It is also
not hard to see that the transformations induced by poly-
nomial assignments or guards can be represented this way.
Moreover, transformations of the given form are closed un-
der composition. To see this, consider a second transforma-
tion f ′ which is given by polynomialq′0, . . . , q

′
k ∈ F[X].

Then we have:

x ∈ dom(f ′ ◦ f)

iff q0(x) 6= 0 ∧ q′0(q1(x), . . . , qk(x)) 6= 0

iff (q0 · q
′
0[q1/x1, . . . , qk/xk])(x) 6= 0

such thatf ′◦f is given by the polynomialsq0·q′′0 , q′′1 , . . . , q′′k
where theq′′i are obtained by substituting the polynomials
qj for xj in q′i, i.e.,q′′i = q′i[q1/x1, . . . , qk/xk].

3. Polynomial Relations and Weakest Precon-
ditions

A polynomial relationover a vector spaceFk is an equa-
tion p = 0 for somep ∈ F[X]. Such a relation can be
represented as the polynomialp alone. The vectory ∈ F

k

satisfiesthe polynomial relationp iff p(y) = 0.

The polynomial relation (denoted by)p holds after a sin-
gle runr for those initial statesx ∈ dom([[r]]) that satisfy
p([[r]]x) = 0. For statesx /∈ dom([[r]]), p is trivially guaran-
teed after runr asr is not executable for those states. Thus,

x /∈ dom([[r]]) ∨ p([[r]]x) = 0

represents theweakest preconditionof the validity ofp = 0
after runr. Assuming that the transformation induced by
the runr is represented by the polynomialsq0, . . . , qk, we
have for eachx ∈ F

k:

x /∈ dom([[r]]) ∨ p([[r]]x) = 0

iff q0(x) = 0 ∨ p(q1(x), . . . , qk(x)) = 0

iff q0(x) = 0 ∨ p[q1/x1, . . . , qk/xk](x) = 0

iff (q0 · p[q1/x1, . . . , qk/xk])(x) = 0

From this calculation, we deduce that the weakest precon-
dition is again a polynomial relation. Even better: the map-
ping [[r]]T that assigns to each polynomial relation (repre-
sented by a single polynomial) its weakest precondition be-
fore runr is thetotal function defined by:

[[r]]
T
p = q0 · p[q1/x1, . . . , qk/xk] (1)

The only polynomial relation which is true forall program
statesis the relation0 = 0. Thus, a given polynomial rela-
tion p is valid after runr iff [[r]]T p = 0, because the ini-
tial state is arbitrary. Moreover, the polynomial relation
p is valid at the target nodet, iff it is valid after all runs
r ∈ R(s). Summarizing, we have:

Lemma 1 The polynomial relationpt ∈ F[X] is valid at
the target nodet iff [[r]]

T
pt = 0 for all r ∈ R(s).

We conclude that the setS = {[[r]]Tpt | r ∈ R(s)} ⊆
F[X] of polynomials gives us a handle to solve the validity
problem for the polynomial relationpt at the target node
t: pt is valid at t iff S ⊆ {0}. The problem is that we
need a representation of this set which is finitary—and find
a way to compute it. In this place, we recall that the set
F[X] of all polynomials forms acommutative ring. A non-
empty subsetI of a commutative ringR satisfying the two
conditions:

(i) a + b ∈ I whenevera, b ∈ I (closure under sum) and

(ii) r · a ∈ I wheneverr ∈ R anda ∈ I (closure under
product with arbitrary ring elements)

is called anideal. Ideals (in particular those in polynomial
rings) enjoy interesting and useful properties. For a subset
G ⊆ R, the least ideal containingG is given by

〈G〉 = {r1g1 + . . . + rngn | n ≥ 0, ri ∈ R, gi ∈ G}
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In this case,G is also called a set ofgeneratorsof 〈G〉. In
particular,

〈G〉 = {0} iff G ⊆ {0}

for everyG ⊆ R. Thus, in our scenario, we can equivalently
check〈S〉 = {0} instead ofS ⊆ {0}. We conclude that we
can work with ideals of polynomials instead of sets without
losing interesting information. The setIX of ideals ofF[X],
ordered by subset inclusion, forms a complete lattice. In
particular:

• The least element ofIX is {0}.

• The greatest element ofIX equals〈1〉 = F[X].

• The least upper boundI1 ⊔ I2 of two ideals is defined
by I1 + I2 = 〈I1 ∪ I2〉.

Moreover, we recall Hilbert’s famous basis theorem for
polynomial ideals over a field:

Theorem 1 (Hilbert, 1888) Every idealI ⊆ F[X] of a
commutative polynomial ring in finitely many variablesX

over a fieldF is finitely generated, i.e.,I = 〈G〉 for a finite
subsetG ⊆ F[X]. 2

This means that each ideal can be effectively repre-
sented. For testing validity of a given polynomial relation
pt at a given target nodet, we are thus left with the task to
compute the ideal〈{[[r]]Tpt | r ∈ R(s)}〉 (s the entry point
of the program). This ideal can be seen as an abstraction of
the setR(s) of program executions starting ins and reach-
ing t. We are going to compute it by an abstract interpreta-
tion of the constraint system forR(u) from Section 2. The
desired abstraction of run sets is described by the mapping
α : 2Runs → IX:

α(R) = 〈{[[r]]Tpt | r ∈ R}〉 .

This definition immediately implies the following identi-
ties:

α(∅) = 〈∅〉 = {0}

α({r}) = 〈{[[r]]Tpt}〉

for a single runr. For the empty runε we get:

α({ε}) = 〈{pt}〉

because[[ε]]T = Id.
The mappingα is monotonic (w.r.t. subset ordering on

sets of runs and subspaces.) Also, it commutes with ar-
bitrary unions. This is due to the following wellknown
lemma:

Lemma 2 Let G denote a set of subsets of polynomials.
Then

〈
⋃

{G | G ∈ G}〉 =
⊔

{〈G〉 | G ∈ G}

2

In order to solve the constraint system for the run sets
R(u) over abstract domainIX, we need an abstract trans-
formerf ♯

e : IX → IX corresponding to edgese = (u, v)
which exactly abstractsfe, i.e., the effect of concatenating
the fixed run set of the edgee with run sets. We define:

f ♯
e I = 〈{[[r]]Tp | r ∈ R(e), p ∈ I}〉

We prove:

Lemma 3 For every subsetG of polynomials,

f ♯
e〈G〉 = 〈{[[r]]Tp | r ∈ R(e), p ∈ G}〉

Proof: SinceG ⊆ 〈G〉, we trivially have the inclusion
“⊇” by monotonicity. For the reverse inclusion, consider
a polynomialp ∈ f ♯

e〈G〉. Then p can be written as
p =

∑m
i=1 qi · pi for polynomialspi = [[ri]]

Tp′i for some
ri ∈ R(e) andp′i ∈ 〈G〉, andqi ∈ F[X]. Eachp′i in turn
can be written asp′i =

∑mi

j=1 qij · gij for gij ∈ G and arbi-
trary polynomialsqij . In particular,

pi = [[ri]]
T
p′i

= [[ri]]
T
(

mi
∑

j=1

qij · gij)

=

mi
∑

j=1

q′ij · [[ri]]
T
gij

for some polynomialsq′ij (unfold the definition of

[[ri]]
T for seeing the last step). Therefore,pi ∈

〈{[[r]]Tp | r ∈ R(e), p ∈ G}〉 for all i. But then alsop ∈

〈{[[r]]Tp | r ∈ R(e), p ∈ G}〉 since ideals are closed under
sums and products with arbitrary polynomials. 2

Using Lemma 3, we calculate:

f ♯
e(α(R)) = f ♯

e〈{[[r]]
T
pt | r ∈ R}〉

= 〈{[[r′]]
T
([[r]]

T
pt) | r′ ∈ R(e), r ∈ R}〉

= 〈{[[r′; r]]
T
pt | r′ ∈ R(e), r ∈ R}〉

= 〈{[[r]]Tpt | r ∈ fe(R)}〉

= α(fe(R))

Therefore,f ♯
e is indeed an exact abstraction offe. It re-

mains to prove that the application off ♯
e can be effectively
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computed. This is easy ifA(e) is either a guard or a poly-
nomial assignment. Then the setR(e) consists of a single
element, namely, a guard or a polynomial assignment. For
any generating systemG ⊆ F[X], we therefore obtain by
Lemma 3,

f ♯
e〈G〉 =

{

〈{p · q | q ∈ G}〉 , if A(e) ≡ p 6= 0
〈{q[p/xj ] | q ∈ G}〉 , if A(e) ≡ xj := p

In particular, we conclude that for every finite set of gener-
ator polynomialsG, a finite generating system for the ideal
f ♯

e〈G〉 is effectively computable.
Not quite as obvious is the case where the edgee is la-

beled with an unknown assignmentxj :=?. Then the run
setR(e) = {xj := c | c ∈ F} is infinite. Still, however,
the effect of concatenating this run set turns out to be com-
putable. To see this, recall that every polynomialp ∈ F[X]
can be uniquely written as a sum

p ≡
d

∑

i=0

pi · x
i
j

where the{xj}-coefficient polynomialspi of xi
j do not con-

tain occurrences ofxj . Then defineπj : F[X] → 2F[X] as
the mapping which mapsp to the set{p0, . . . , pd} of its
{xj}-coefficient polynomials. We prove:

Lemma 4 AssumeA(e) ≡ xj :=?. Then for every setG of
generator polynomials,

f ♯
e〈G〉 = 〈

⋃

{πj(q) | q ∈ G}〉

The lemma and its proof are similar to Lemma 8 in [11].
Proof: By definition and Lemma 3, we have:

f ♯
e〈G〉 = 〈[[xj := c]]

T
q | c ∈ F, q ∈ G〉

= 〈q[c/xj ] | c ∈ F, q ∈ G〉

Obviously, each polynomialq[c/xj ] is contained in the
ideal generated from the{xj}-coefficient polynomials of
q. Therefore, a generator set of the left-hand sidef ♯

e〈G〉 is
included in the right-hand side〈

⋃

{πj(q) | q ∈ G}〉 of the
equation, and hence also the generated ideal. This proves
the inclusion “⊆”.

For the reverse inclusion, it suffices to prove for
an arbitrary polynomialq ∈ G, that the setπj(q)
of {xj}-coefficient polynomials ofq is contained in
〈q[c/xj ] | c ∈ F〉. Assume thatq =

∑d
i=0 qi · xi

j where the
polynomialsqi do not contain occurrences ofxj . Consider
the square matrixA defined by:

A =











1 x0 x2
0 . . . xd

0

1 x1 x2
1 . . . xd

1

1
...

...
. . .

...
1 xd x2

d . . . xd
d











wherex0, . . . , xd ∈ F ared + 1 distinct elements. It is not
hard to see that

A







q0

...
qd






=







q[x0/xj ]
...

q[xd/xj ]






.

The determinant ofA is an instance of what is
known as Vandermonde’s determinant and has the value
∏

0≤i<m≤d(xm − xi). As the valuesx0, . . . , xd are dis-
tinct, the determinant is different from0. Therefore, matrix
A is invertible and for the inverse matrix, we have







q0

...
qd






= A−1







q[x0/xj ]
...

q[xd/xj ]






.

Thus, the coefficient polynomials ofq are even linear com-
binations of the polynomialsq[x0/xj ], . . . , q[xd/xj ] which
shows thatπj(q) = {q0, . . . , qd} is contained in the ideal
generated by the polynomialsq[c/xj ], c ∈ F. 2

Since for every polynomialp, the set of its{xj}-
coefficient polynomials is effectively computable, we con-
clude that also the generator set

⋃

{πj(q) | q ∈ G} of the
idealf ♯

e〈G〉 is effectively computable—given only that the
setG is finite.

For a given target nodet ∈ N and polynomial relation
pt ∈ F[X] let R♯

pt
denote the following abstracted con-

straint system over the complete latticeIX:

[R1]
♯

R♯(t) ⊇ 〈{pt}〉

[R2]♯ R♯(u) ⊇ f ♯
e(R

♯(v)) , if e = (u, v) ∈ E

We find:

Lemma 5 The constraint systemR♯
pt

has a unique least so-
lution R♯(u), u ∈ N , with the following properties:

1. R♯(u), u ∈ N , is effectively computable.

2. R♯(u) = α(R(u)) for everyu ∈ N .

Proof: SinceIX is a complete lattice and all transfer func-
tions f ♯

e on right-hand sides of constraints are monotonic,
the constraint systemR♯

pt
has a unique least solution. More-

over, recall that Hilbert’s basis Theorem 1 implies that every
ascending sequence of ideals:

I0 ⊆ . . . ⊆ Im ⊆ . . .

is ultimately stable, i.e.,Im′ = Im for somem ∈ N and all
m′ ≥ m. We conclude that the least solution can be com-
puted by a finite number of fixpoint iterations. Since each
intermediately occurring ideal is finitely generated, eachin-
dividual fixpoint iteration is computable. By Buchberger’s

6



algorithm (cf., e.g.,[2]) it is decidable whether or not a poly-
nomial p is contained in the ideal〈G〉 for a finite set of
generatorsG. It follows that it is also decidable whether
an idealI1 is included in another idealI2—given only fi-
nite generator setsGi for the involved idealsIi [2, Theorem
5.55]. Thus, we can effectively decide when fixpoint itera-
tion for R♯

pt
reaches the least fixpoint. This completes the

proof of Assertion 1
For the second assertion, we apply the Transfer Lemma

of general fixpoint theory (see, e.g., [1, 5]):

Lemma 6 (Transfer lemma) SupposeL, L♯ are complete
lattices,f : L → L andg : L♯ → L♯ are monotonic func-
tions andγ : L → L♯ is a completely distributive function.
If γ ◦ f = g ◦ γ thenγ(µf) = µg, whereµf andµg are
the least fixpoints off andg, respectively, that exist by the
Knaster-Tarski fixpoint theorem.

In our case,L is the|N |-fold Cartesian product of2Runs

(one component for each variableR(u), u ∈ N , in con-
straint systemR) andL♯ is the|N |-fold Cartesian product
of IX (one component for each variableR♯(u), u ∈ N ,
in constraint systemR♯

pt
). The mappingsf andg are in-

duced from the right side the constraints inR andR♯
pt

in
the standard way, such that their least fixpoints correspond
to the least solutions of the constraint systemsR andR♯

pt
.

The mappingγ maps a vector fromL to the vector of the
α-images of its components.

By Lemma 2 the abstraction functionα is completely
distributive which implies thatγ is completely distributive
as well. By Lemma 3, the transfer functions are exact which
together with the fact thatα is completely distributive im-
pliesγ ◦ f = g ◦ γ. Hence, the Transfer Lemma ensures
that the least solution of the abstracted constraint system
R♯

pt
is the abstraction of the least solution of the concrete

constraint systemR. This is Assertion 2. Thus, the proof is
complete. 2

We can now put the pieces together and prove the main
theorem of this section.

Theorem 2 There is an effective procedure to decide
whether a polynomial relationpt is valid at a given pro-
gram pointt or not.

Proof: The polynomial relationpt is valid att if and only
if α(R(s)) = {0}, wheres is the entry point of the pro-
gram. By Lemma 5 we can effectively compute a generat-
ing system forα(R(s)) by computing the least solution of
constraint systemR♯

pt
. As the ideal{0} has only the two

sets of generators∅ and{0} it is easy to check, whether the
set of generators computed forR♯(s) generates{0} or not.
2

Example 1 Consider the example program from Figure 1.
We want to verify that the relation given by the polynomial
pt ≡ x1 − x2 + 1 holds at program pointt = 2. Starting
from the ideal〈{pt}〉 for program point 2, we obtain a set of
generators for the idealR♯(1) of preconditions at program
point 1 by first computing:

q1 = [[x1 := x1 · (x3 − 1)]]
T
pt

= pt[x1 · (x3 − 1)/x1]

= x1 · x3 − x1 − x2 + 1

and then iteratively adding to the ideal〈q1〉 further precon-
ditions for the loop until stabilization is reached. We have:

[[x1 := x1 · x3 + 1;x2 := x2 · x3]]
T
q1

= q1[x1 · x3 + 1/x1,x2 · x3/x2]
= (x1 · x3 + 1) · x3 − (x1 · x3 + 1) − x2 · x3 + 1
= x1 · x2

3 − x1 · x3 − x2 · x3 + x3

= x3 · q1

∈ 〈q1〉

Thus, the value of the fixpoint for program point 1 is given
by R♯(1) = 〈{q1}〉. For the entry point 0 of the program
we then calculate the set of preconditions for the set{q1}:

[[x1 := 1;x2 := x3]]
T
q1 = 1 · x3 − 1 − x3 + 1

= 0

Therefore,R♯(0) = 〈0〉 = {0} — implying that the relation
x1 − x2 + 1 = 0 indeed holds at program point 2. 2

The considerations of this section can easily be extended
to checking finite sets of polynomials. A setG ⊆ F[X]
is valid for a statey ∈ F

k iff p(y) = 0 for all p ∈ G.
Thus, a set represents the conjunction of its members. We
can clearly check validity of a given finite setGt at a given
program pointt by applying the above procedure for each
relation inGt. We can do better, however, by checking all
of them at once. Clearly, we obtain from Lemma 1:

Corollary 1 The set of polynomial relationsGt ⊆ F[X] is
valid at the target nodet iff [[r]]

T
p = {0} for all r ∈ R(s),

p ∈ Gt.

Accordingly, we work with the abstraction mappingα′ :
2Runs → IX:

α′(R) = 〈{[[r]]Tp | r ∈ R, p ∈ Gt})〉 .

This leads to the a slightly modified constraint[R1]
♯:

[R1]
♯

R♯(t) ⊇ 〈Gt〉

The rest works as before. We conclude:
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Theorem 3 There is an effective procedure to decide
whether a (finite) set of polynomial relationsGt is valid at
a given program pointt or not.

Note that we can representdisjunctionsof polynomial
relations by products:p = 0 ∨ p′ = 0 is valid for a statey
iff p·p′ = 0 is valid fory. Thus, by considering sets of poly-
nomials and using products, we can indeed handle arbitrary
positive Boolean combinationsof polynomial relations.

4. Inferring Valid Polynomial Relations

It seems that the algorithm of testing whether a certain
given polynomial relationp0 = 0 is valid at some program
point contains no clue on how to infer so far unknown valid
polynomial relations. This, however, is not quite true. We
show in this section how to determine all polynomial rela-
tions of some arbitrary given form that are valid at a given
program point of interest. The form of a polynomial is given
by a selection of monomials that may occur in the polyno-
mial.

Let D ⊆ N
k
0 be a finite set of exponent tuples for the

variablesx1, . . . , xk. Then a polynomialp is called aD-
polynomial if it contains only monomialsb · xi1

1 · . . . · xik

k ,
b ∈ F, with (i1, . . . , ik) ∈ D, i.e., if it can be written as

p =
∑

σ=(ik,...,ik)∈D

aσ · xi1
1 · . . . · xik

k

If, for instance, we chooseD = {(i1, . . . , ik) | i1 +
. . . + ik ≤ d} for a fixed maximal degreed ∈ N, then
theD-polynomials are all the polynomials up to degreed.
Here thedegreeof a polynomial is the maximal degree of
a monomial occurring inp where the degree of a monomial
b · xi1

1 · . . . · xik

k , b ∈ F, equalsi1 + . . . + ik.
We introduce a new set of variablesAD given by:

AD = {aσ | σ ∈ D}

Then we introduce thegenericD-polynomial as

pD =
∑

σ=(ik,...,ik)∈D

aσ · xi1
1 · . . . · xik

k

The polynomialpD is an element of the polynomial ring
F[X ∪ AD]. Note that every concreteD-polynomialp ∈
F[X] can be obtained from the genericD-polynomialpD

simply by substituting concrete valuesaσ ∈ F, σ ∈ D, for
the variablesaσ. If a : σ 7→ aσ anda : σ 7→ aσ, we write
pD[a/a] for this substitution. We have:

Lemma 7 Letp =
∑

σ=(ik ,...,ik)∈D aσ·x
i1
1 ·. . .·xik

k ∈ F[X]
denote aD-polynomial with coefficientsa : σ 7→ aσ. Then
for every runr,

[[r]]
T
p = ([[r]]

T
pD)[a/a]

where[[r]]T on the left-hand side of the equation is computed
over F[X] whereas on the right-hand side it is computed
overF[X ∪ AD].

Proof: By Equation (1), there are polynomialsq0, . . . , qk ∈

F[X] such that[[r]]Tp′ = q0 · p
′[q1/x1, . . . , qk/xk] for every

polynomialp′. Therefore,

[[r]]
T
p = q0 · p[q1/x1, . . . , qk/xk]

= q0 · pD[a/a][q1/x1, . . . , qk/xk]

= (q0 · pD[q1/x1, . . . , qk/xk])[a/a]

= ([[r]]
T
pD)[a/a]

which proves the asserted equality. 2

Lemma 7 tells us that instead of computing the weak-
est precondition of eachD-polynomial separately, we as
well may compute the weakest precondition of the single
genericD-polynomialpD once and for all and substitute
the concrete coefficientsaσ of the polynomialsp into the
precondition ofpD later. In particular, we conclude that the
following statements are equivalent:

1. p is valid at the target program pointt;

2. [[r]]
T
p = 0 for all r ∈ R(s);

3. ([[r]]TpD)[a/a] = 0 for all r ∈ R(s);

4. q[a/a] = 0 for all q ∈ {[[r]]TpD | r ∈ R(s)};

5. q[a/a] = 0 for all q ∈ 〈{[[r]]TpD | r ∈ R(s)}〉.

6. q[a/a] = 0 for all q ∈ G in a (finite) generatorG of
the ideal〈{[[r]]TpD | r ∈ R(s)}〉.

Now it should be clear how an algorithm may find all poly-
nomial relationsp = 0 with a D-polynomialp which are
valid at program pointt: first, we construct the abstract con-
straint systemR♯

pD
, now overIX∪AD

, which for each pro-
gram pointu computes (a finite generator set of) the ideal
R♯(u) = 〈{[[r]]TpD | r ∈ R(u)}〉. Then it remains to de-
termine the set of all coefficient mapsa : D → F such that
q[a/a] = 0 for all q ∈ R♯(s). Recall that each such polyno-
mial q[a/a] is a polynomial inF[X]. Any such polynomial
equals 0 iff each coefficientb of each occurring monomial
b ·xi1

1 . . .xik

k equals 0. The polynomialq ∈ F[X∪AD], on
the other hand, can uniquely be written as a finite sum

q =
∑

σ=(i1,...,ik)

qσ · xi1
1 · . . . · xik

k (2)

where eachX-coefficientqσ is in F[AD], i.e., may only
contain occurrences of variables fromAD. Thus,q[a/a] =
0 iff qσ[a/a] = 0 for all index tuplesσ occurring in the sum.
Summarizing our considerations so far, we have shown:
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Lemma 8 Let G denote any finite generator set for the
idealR♯(s). The set of coefficient mapsa : D → F of the
D-polynomials which are valid at program pointt equals
the set of solutions of the equation system having an equa-
tion:

qσ = 0

for eachX-coefficientqσ of a polynomialq ∈ G. 2

We are not yet done, since in general we are not able to
determine the precise set of solutions of an arbitrary polyno-
mial equation system algorithmically. Therefore, we need
the following extra observation:

Lemma 9 Every idealR♯(u), u ∈ N, of the least solution
of the abstract constraint systemR♯

pD
has a finite generator

setG consisting of polynomialsq whoseX-coefficients are
of degree at most 1, i.e., are of the form:

∑

σ∈D

bσ · aσ

for bσ ∈ F. Moreover, such a generator set can be effec-
tively computed.

Proof: The polynomialpD hasX-coefficients which triv-
ially have degree 1, since these consist of individual vari-
ablesaσ. Also, applications of the least upper bound opera-
tion as well as of the abstract transformersf ♯

e when applied
to (ideals represented through) finite sets of generators with
X-coefficients of degree at most 1 again result in finite sets
of generators with this property. Therefore, the assertionof
the lemma follows by fixpoint induction. 2

Together Lemma 8 and Lemma 9 show that the set of
(coefficient maps) ofD-polynomials which are valid at our
target program pointt can be characterized as the set of so-
lutions of alinear equation system. Such equation systems
can be algorithmically solved, i.e., finite representations of
their sets of solutions can be constructed explicitly. We con-
clude our second main theorem:

Theorem 4 The set of allD-polynomials which are valid
at some target program pointt can be effectively computed.
2

Example 2 Consider again the example program from Fig-
ure 1. We want to determine for program point 2, all valid
polynomial relations up to degree 1, i.e., all valid polyno-
mial relations of the forma0+a1 ·x1+a2 ·x2 +a3 ·x3 = 0.
Letp1 ≡ a0 + a1 ·x1 + a2 ·x2 + a3 ·x3 denote the generic
D-polynomial forD = D1. Starting from the ideal〈{p1}〉
for program point 2, we determine a set of generators for

the idealR♯(1) of preconditions at program point 1. First,
we compute:

q1 = [[x1 := x1 · (x3 − 1)]]Tp1

= p1[x1 · (x3 − 1)/x1]

= a0 − a1 · x1 + a2 · x2 + a3 · x3 + a1 · x1x3

Next, we add the preconditions for the body of the loop:

[[x1 := x1 · x3 + 1;x2 := x2 · x3]]
T
q1

= q1[x1 · x3 + 1/x1,x2 · x3/x2]
= a0 − a1 + a1 · x3 + a3 · x3

−a1 · x1x3 + a2 · x2x3 + a1 · x1x
2
3

= x3 · q1 +
(

a0 − a1 + (−a0 + a1 + a3) · x3 − a3 · x2
3

)

The polynomialq2 ≡ a0 −a1 +(−a0 +a1 +a3) ·x3−a3 ·
x2

3 is independent ofx1 andx2. Thus, the ideal〈{q1, q2}〉
remains stable under further iteration and therefore equals
R♯(1). A generator set forR♯(0) is obtained by computing:

[[x1 := 1;x2 := x3]]
T
q1 = a0 − a1 + (a1 + a2 + a3) · x3

[[x1 := 1;x2 := x3]]
T
q2 = q2

= a0 − a1 +

(−a0 + a1 + a3) · x3 − a3 · x
2
3

The{x1,x2,x3}-coefficients of these two polynomials now
must equal 0. This gives us the following linear equations:

a0 − a1 = 0 a0 − a1 = 0
a1 + a2 + a3 = 0 −a0 + a1 + a3 = 0

−a3 = 0

Thus,a3 = 0, a1 = a0, and a2 = −a0. We conclude
that1 + x1 − x2 = 0 is (up to constant multiples) the only
polynomial relation of degree at most 1 which is valid at
program point 2. 2

5. Conclusion

We have presented two analysis algorithms. The first
analysis determines for a given program point of a polyno-
mial program with polynomial disequality guards whether a
given polynomial relation is valid or not. The second anal-
ysis generalizes this algorithm to infer all polynomial rela-
tions of an arbitrary given form, e.g., all polynomial rela-
tions up to a given degreed.

We do not know any upper complexity bound for our
algorithms. The termination proof relies on Hilbert’s ba-
sis theorem whose standard proof is non-constructive and
does not provide an upper bound for the maximal length
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of strictly increasing chains of ideals. Therefore, we can-
not bound the number of iterations performed by the algo-
rithms. A first lower bound for the problems in question is
provided in [10] where the problem of must-constant prop-
agation for{+,−, ∗}-constants for polynomial constants is
proven to be already PSPACE-hard.

Linear algebratechniques have been used in program
analysis for a long time. In his seminal paper [8], Karr
presents an analysis that determines validaffine relationsby
a forward propagation of affine spaces. His analysis is pre-
cise foraffine programs, i.e., it interprets assignments with
affine right-hand sides precisely. In [10] we observe that
checkinga given affine relation for validity at a program
point can be performed by a simplerbackward propagating
algorithm. This idea of backward propagation has lead to
an interprocedural generalization of Karr’s result [11] and
also underlies the current paper. In comparison with Karr’s
result, we have a more general space of properties, namely
polynomial relations instead of affine relations. Secondly,
our analysis is precise for a larger class of programs, namely
polynomial programs instead of affine programs. Finally,
we leave the realm of linear algebra and rely on results from
computable algebra instead.

We are not aware of much work on using techniques
from computablealgebra in program analysis, like we do
here. In the work of Michel le Borgne et. al. (cf., e.g., [9])
and Gunnarsson et. al. (cf., e.g., [6]) polynomials over a fi-
nite field are used for representing state spaces in a forward
reachability analysis of polynomial dynamical systems or
discrete event dynamical systems, respectively. However,
they actually work in a finite factorization of a polynomial
ring over a finite field and use polynomials for represent-
ing state spaces of finite systems and not for treating arith-
metic properties. Thus, they use polynomials as a conve-
nient data structure but not to gain new decidability insights.
Recently, Sankaranarayanan et. al. [14] proposed a method
for generating non-linear loop invariants using techniques
from computable algebra. In contrast to our technique their
method is approximate: there is no guarantee of complete-
ness for a well-specified class of programs. On the other
hand, they provide a non-trivial (but incomplete) treatment
of positive polynomial guards. Therefore, the results ob-
tained with these two techniques are incomparable.

It is a challenging open problem whether or not the set
of all valid polynomial relations can be computed not just
the ones of some given form. It is not hard to see that this
set is an ideal ofF[X]. Hence, by Hilbert’s basis theorem
it can be represented by a finite set of generators such that
this is a well-posed problem. Another challenge is to treat
the inter-procedural case, i.e., to detect or even infer poly-
nomial relations in programs with polynomial assignments
and procedures.
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