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Abstract. In his seminal paper [5], Granger presents an analysis whichinfers lin-
ear congruence relations between integer variables. For affine programs without
guards, his analysis iscomplete, i.e., infersall such congruences. No upper com-
plexity bound, though, has been found for Granger’s algorithm. Here, we present
a variation of this analysis which runs in polynomial time. Moreover, we provide
an interprocedural extension of this algorithm. These algorithms are obtained by
means of multiple instances of a general framework for constructing interproce-
dural analyses of numerical properties. Finally, we indicate how the analyses can
be enhanced to deal with equality guards interprocedurally.

1 Introduction

In recent years, a growing interest in the design of very precise analyses of numerical
properties of programs could be observed. On the one hand, this comes from a revived
interest in aggressive program optimizations as demanded by low-cost embedded pro-
cessors. On the other hand when designing and implementing critical applications, we
are faced with a need for certifying absence of certain program errors [2, 11] or security
vulnerabilities such as buffer-overflows [3, 15].

Here, we concentrate on equality-based numerical properties. Such properties are
particularly useful, e.g., for induction variable detection or identification of data align-
ments [1]. This type of analysis has been pioneered by Karr in[9] where he presents a
first intraprocedural analysis of valid affine relations over a field. Karr’s analysis main-
tains for every program point a vector space of valid affine relations. Fifteen years later,
his analysis was generalized by Granger [4, 5]. Since Granger usesZ instead ofQ, his
intraprocedural analysis not only returns valid affine relations but also valid affine con-
gruence relations — with the draw-back, perhaps, that no upper complexity bound is
known. Granger’s analysis also differs from Karr’s in that Granger first determines a
linear (in fact affine) abstraction of the sets of intraprocedurally reachable states from
which the set of valid relations then is derived in a second step. A forward accumu-
lation of the abstracted collecting semantics is also used by Müller-Olm and Seidl in
[12] where (in absence of equality guards) the run-time of Karr’s analysis algorithm is
improved and also the sizes of occurring numbers is bounded.The same authors also



provide the first precise interprocedural extension of Karr’s analysis [13] and show how
it can be adapted to work not only over fields but also over modular ringsZm where
m = 2w as used by standard programming languages like Java [14]. In[6, 7], Gulwani
and Necula re-consider Karr’s analysis problem. In order toimprove on the complexity
of the analysis, they propose randomization. In particular, sizes of occurring numbers
are bounded by computing modulo random primes.

In this paper, we present general methods how intraprocedural analyses of numerical
properties can be constructed which naturally extend to interprocedural analyses of the
same properties. Our framework is parametric in the ring within which the computation
of the analysis is performed. For the case of affine relationsover fields or modular
rings Zm (m a power of 2), we subsume versions of the intra- and interprocedural
analyses from [12, 13] and [14], respectively. Beyond theseknown analyses, we succeed
in deriving an interprocedural extension of Granger’s analysis [5] that determines not
only all valid affine relations but also all valid congruencerelations. We also indicate
how the analyses can be enhanced to deal with equality guardsinterprocedurally.

The immediate interprocedural extension of Granger’s analysis as provided by the
general framework shares with Granger’s original algorithm the draw-back of perform-
ing fixpoint iterations over complete lattices with unbounded (though finite) ascending
chains. In order to improve on this, we propose a new algorithm which, in absence of
procedures, runs in polynomial time. The new algorithm is based on a careful inspection
of Granger’s analysis problem which allows us to divide the analysis into one analysis
over the fieldQ together with several analyses over carefully chosen modular rings.

The paper is organized as follows. In section 2 we introduce affine programs to-
gether with their collecting semantics. In section 3 we introduce, for every ringR, the
R-linear abstractionand show how it can be used to determine validR-linear relations
and also (in case ofR = Z) valid linear congruence relations. In section 4, we then show
for everyprincipal ideal ringR that theR-linear abstraction of the collecting semantics
can be computed precisely and provide complexity bounds forfields and modular rings
Zm. In section 5, we particularly deal with the caseR = Z and provide an alternative
algorithm which (at least in absence of equality guards) determines all intraprocedu-
rally valid linear congruence relations in polynomial time. In the interprocedural case,
the new algorithm is polynomial if the length of intermediately occurring numbers is
polynomially bounded. In section 6, we finally extend the proposed approach to take
equality guards into account. Finally, section 7 summarizes and gives hints on direc-
tions of future research.

2 The General Set-up

We use similar conventions as in [13] and [14] which we recallhere for reasons of
selfcontainedness. Thus, programs are modeled by systems of non-deterministic flow
graphs that can recursively call each other as in Figure 1. Let X = {x1, . . . ,xk} be
the set of (global) variables the program operates on. In order to cover the various
computational domains of interest, we assume that the variables take values in some
commutative ringR with 1 element. In the programs we analyze, we assume the ba-
sic statements either to beaffine assignmentsof the formxj := t0 +

Pk
i=1 tixi (with
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Main :

q()

x2 := 0

x1 := 2

q :

q()

x2 := x1 + x2

x2 := x1 + x2

x1 := 3 ∗ x1

x1 := 5 ∗ x1

Fig. 1. An interprocedural program.

ti ∈ R for i = 0, . . . , k andxj ∈ X) or non-deterministic assignmentsof the formxj :=?

(with xj ∈ X). It is to reduce the number of program points in the example,that we
annotated the edges in Figure 1 with sequences of assignments. Also, we use assign-
mentsxj := xj which have no effect onto the program state as skip-statements and omit
these in pictures. For the moment, skip-statements are usedto abstract guards. Later, we
will present methods which treat equality guards more precisely. Non-deterministic as-
signmentsxj :=? can be used as a safe abstraction of statements in a source program
which our analysis cannot handle precisely, for example of assignmentsxj := t with
non-affine expressionst or of read statements.

In this setting, anaffine programcomprises a finite setProc of procedure names
together with one distinguished procedureMain. Execution starts with a call toMain.
Each procedureq ∈ Proc is specified by a distinct edge-labeledcontrol flow graphwith
a single start pointstq and a single return pointretq where each edge is either labeled
with an assignment or a call to some procedure.

The basic approach of [13, 12, 14] which we take up here is to construct a precise
abstract interpretation of a constraint system characterizing the concrete program se-
mantics. Similar to [5, 12], we find it convenient to start from thecollectingsemantics.
For that, we model astateattained by program execution when reaching a program
point or procedure by ak-dimensional (column) vector3 x = [x1, . . . , xk]t ∈ R

k of
ring elements wherexi is the value assigned to variablexi. For convenience, we con-
sider extendedstates[1, x1, . . . , xk]t containing an extra 0-th component 1. Then ev-
ery assignmentxj := t, xj ∈ X, t ≡ t0 +

Pk
i=1 tixi, induces alinear transformation

[[xj := t]] : R
k+1 → R

k+1 of the extended state which is described by the matrix:

[[xj := t]] =

2

4

Ij 0

t0 . . . tj−1 tj . . . tk

0 Ik−j

3

5

whereIj is the identity matrix inR
j2 . This definition is readily extended to sets of

extended states. Composition of transformations is captured by matrix multiplication.
Since linear mappings are closed under composition, the effect of a single run can be
represented by one matrix inR(k+1)2 . Since in general, procedures have multiple runs,

3 The superscript “t” denotes thetransposeoperation which mirrors a matrix at the main diago-
nal and changes a row vector into a column vector (and vice versa).



we model their semantics bysetsof linear transformations. These are characterized by
the constraint systemER:

[ER1] ER(q) ⊇ ER(retq)

[ER2] ER(stq) ⊇ {Ik+1}

[ER3] ER(v) ⊇ ER(u) · {[[xj := t]]} if edge(u, v) is labeledxj := t

[ER4] ER(v) ⊇ ER(u) · {[[xj := c]] | c ∈ R} if edge(u, v) is labeledxj :=?

[ER5] ER(v) ⊇ ER(u) · ER(q) if edge(u, v) callsq

The variableER(q) is meant to capture the set of effects of the procedureq. By the con-
straintsER1, this value is obtained as the set of transformationsER(retq) for the return
point retq of q. According toER2, this accumulation starts at the start pointstq with the
identity transformation. The constraintsER3 andER4 deal with affine and nondetermin-
istic assignments, respectively, while the constraintsER5 correspond to calls.

Given the effects of procedures, we characterize the sets ofextended states reaching
program points and procedures by the constraint systemCR:

[CR1] CR(Main) ⊇ {1} × R
k

[CR2] CR(q) ⊇ CR(u) if edge(u, ) callsq

[CR3] CR(stq) ⊇ CR(q)

[CR4] CR(v) ⊇ [[xj := t]](CR(u)) if edge(u, v) is labeledxj := t

[CR5] CR(v) ⊇
S

{[[xj := c]](CR(u)) | c ∈ R} if edge(u, v) is labeledxj :=?

[CR6] CR(v) ⊇ ER(q)(CR(u)) if edge(u, v) callsq

The constraintCR1 indicates that we start before the call ofMain with the full (ex-
tended) state space. The constraintsCR2 indicate that the extended states reaching a
procedure includes all extended states reaching its calls and the constraintsCR3 state
that the extended states reaching a call to a procedure also reach its start point. The con-
straintsCR4 throughCR6 then are completely analogous to a usual forward propagating
definition of theintra-proceduralcollecting semantics only that at a call edge the set of
transformations obtained for the called procedure is applied (constraintsCR6).

By the fixpoint theorem of Knaster-Tarski, the constraint systemsER andCR have
least solutions. For convenience, we denote the componentsof these least solutions by
ER(X), andCR(X), respectively (X a procedure name or program point).

3 The Linear Abstraction

Program analyses of numerical program properties are basedon abstractions of subsets
of vectors. Here, we consider the abstraction of a setV ⊆ R

k+1 of extended states by
theR-linear closureof V :

αR(V ) = 〈V 〉R = {λ1v1 + . . . + λsvs | s ≥ 0, λi ∈ R, vi ∈ V } .

Due to the extension of states by an extra 0-th component, theabstraction adds alllin-
earcombinations of vectors inV – with the understanding that only those vectors in the
closure are meaningful whose 0-th components equal 1. We remark thatαR(V ) is closed
under vector addition and multiplication with ring elements r ∈ R. Such sets are called



R-moduleswhere the set〈V 〉R is theR-modulegeneratedby V . It is well-known that for
anyr, theR-submodules ofRr are closed under intersection. Ordered by set inclusion
(which we denote by⊑ in the context of submodules) they thus form a complete lattice
Sub(Rr), like the linear subspaces ofFr for a fieldF. The least element ofSub(Rr) is
{0} consisting of the zero vector only, the greatest element isR

r itself. The least upper
bound of twoR-submodulesM1, M2 is

M1 ⊔ M2 = 〈M1 ∪ M2〉R = {m1 + m2 | mi ∈ Mi} .

The linear abstraction has been extensively studied for different rings. In [5], it is used
with R = Z to analyze linear congruence relations. In [12], this abstraction is applied
for fields to speed up Karr’s analysis [9] of affine relations.Interestingly, the interpro-
cedural analyses of affine relations [13, 14] over fields and modular ringsZm, m = 2w,
do not directly rely on abstractions of the collecting semantics but on linear abstractions
of sets of weakest precondition transformers.

In general, we are interested in numerical propertiesP which invariantly hold for
all (extended) statesx in the collecting semantics at a given program point. Clearly, the
linear abstraction can only be used to detect properties which are invariant under linear
combinations of the extended state or, equivalently, affinecombinations of the program
state. In particular, this is the case foraffinerelations between program variables like,
e.g.,2− 4x1 +3x2 = 0. Since we work with extended states, we can rely on the simpler
linear relations on extended states here. In general, a linear relation over a ringR is a
(row) vectora = [a0, . . . , ak] wherex = [x0, . . . , xk]t satisfiesa iff a·x =

Pk
i=0 aixi = 0.

The set of affine relations satisfied by a set of states coincides with the set of linear
relations satisfied by the corresponding set of extended states. We observe:

Fact 1 For every ringR the following holds:

1. For every row vectora, the set{x ∈ R
k+1 | a · x = 0} is anR-module.

2. For every setG ⊆ R
k+1,

〈G〉⊥R =def {a | ∀x ∈ G : a · x = 0} = {a | ∀x ∈ 〈G〉R : a · x = 0} .

Moreover, the set〈G〉⊥R is anR-module. ⊓⊔

Assume that theR-module〈CR(X)〉R is generated by the finite setG ⊆ R
k+1. Then by

fact 1, we can determine the set of all valid linear relationsatX as the set of all solutions
of the homogeneous system of equations:

a · x = 0 , x ∈ G

wherea = [a0, . . . , ak] is a row vector of variables. Here, we are mostly interested in
principal ideal rings(or PIRs). A principal ringR is a commutative ring with 1 in which
every ideal isprincipal. Recall that anidealI ⊆ R is a subset ofR which is closed under
addition and multiplication with arbitrary ring elements,i.e.,a+b ∈ I whenevera, b ∈ I

andr · a ∈ I whenevera ∈ I andr ∈ R. An idealI is principal if it is generated by
a single element, i.e.,I = {r · d | r ∈ R} for somed ∈ R. PIRs comprise not only
fields but also the integral domainZ as well as all modular ringsZm, m ≥ 2. In [8, 16],
efficient methods are developed for computing various normal forms of matrices over
PIRs. The most notable property of PIRs is that they allow us to solve linear systems of
equations by a generalized Gaussian elimination algorithm. Of particular importance is



the integral domainZ. AssumeG ⊆ Zk+1 is a set of integer vectors. Then the set of all
linear relations which are valid forG is (up to multiplication with constants) identical
to the set of linear relations which are valid over theQ-module generated byG:

Fact 2 For every subsetG ⊆ Zk+1 of column vectors and every row vectora ∈ Zk+1,
the following statements are equivalent:

1. a · x = 0 for all x ∈ G;
2. a · x = 0 for all x ∈ 〈G〉Z;
3. a · x = 0 for all x ∈ 〈G〉Q. ⊓⊔

Assume we want to determine the set of validZ-linear relations at a program point
X. By fact 2, it suffices to determine the linear relations which are valid for〈CZ(X)〉Q.
SinceQ is a field, these can be computed efficiently with the techniques from [13,
12]. It therefore does not pay off to determine the (complicated)Z-linear closure of the
collecting semantics if we are interested in linear relations only.

In [5], however, Granger considers a more general form of properties, namely,linear
congruence relations. A linear congruence equation is an equationa · x ≡ 0 [m] where
a ∈ Z is a row vector andm > 0 is the integer modulus. The column vectorx ∈ Zk+1

satisfies the congruence relation iffa · x ≡ 0 [m] or, equivalently,a · x + mz = 0 for
somez ∈ Z. A linear relation of the extended state can be seen as a particular linear
congruence relation if we allowm to equal0. If m > 1, we can assume that all compo-
nents ofa are in the range{0, . . . , m−1}. The set of allx satisfying a linear congruence
relation is closed under addition and multiplication with elements ofZ and therefore a
Z-module. In [5], Granger shows that everyZ-module can also be represented as the
set of solutions of a finite number of linear congruence relations. For later use, we pro-
vide a refinement of his characterization. We introduce the following auxiliary notions.
Assume thatG ⊆ Zr is a set ofq linearly independent4 column vectors. LetV ⊆ Zr·q

denote the matrix formed by the vectors inG. Using generalized Gaussian elimination,
some unimodular matrix5 T ∈ Zr2

can be constructed such thatT · V =
»

D

0

–

for an

upper triangular square matrixD. Then we definedet(G) as the absolute value of the
determinant ofD. It follows from uniqueness of the Hermite normal form [17, 16] that
this definition is independent of the choice ofT . We obtain:

Theorem 1. AssumeG ⊆ Zr is a set of linearly independent vectors wheredet(G)

dividesm > 0. Let E0 and Em denote finite sets of generators for〈G〉⊥Z and 〈G〉⊥Zm
,

respectively. Then the following holds:

1. 〈G〉Z is the set of solutions of the system

a · x = 0, a ∈ E0, b · x ≡ 0 [m], b ∈ Em

2. Another linear congruence relationb′ · x ≡ 0 [m′] is satisfied by all vectors inG
iff the following holds. Ifm′ = 0 thenb′ ∈ 〈E0〉Z. Otherwise, leth denote the least
common multiple ofm and m′ wherem · d = h and m′ · d′ = h. Thend′ · b′ is
contained in〈E0 ∪ {d · b | b ∈ Em}〉Zh

.

4 Recall thatG is linearly independent overQ iff G is linearly independent overZ.
5 An integer matrix isunimodulariff its determinant equals±1.



For a proof of this theorem, see appendix A. By the second statement, the setsE0 and
Em allow us, for every other modulusm′, to determine a finite setE′ of generators of
all valid linear relations modulom′. First, we construct the setE = E0∪{d ·b | b ∈ Em}

whereh = d ·m is the least common multiple ofm andm′. The idea is now to determine
E′ as a finite set of generators of allZh-linear combinations of vectors inE which
containd′ = h

m′ as a factor. For this, letV denote the matrix whose rows are formed
by the vectors inE. Then a vectorv is a linear combination of the vectors inE which
containsd′ as a factor iffv = y · V for somey ∈ Z

|E|
h such thatm′ · (y · V ) ≡ 0 [h].

Thus, we first compute generatorsb1, . . . , bq ∈ Z
|E|
h for the module of solutions of the

equation systemy (m′ · V ) ≡ 0 [h]. The vectorsbi V can be written asbi V = d′b′i —
giving us the setE′ = {b′1, . . . , b

′
q} of generators for all valid linear relations modulom′.

Theorem 1 allows us to compute the linear congruence relations which are valid at
X from theZ-linear closure ofCZ(X), the set of extended states reachingX. Our new
observation is that, instead of computing theZ-linear closure of the reachable states, we
can decompose the analysis into an analysis returning all valid linear relations plus an
analysis returning all valid linear relations modulo a carefully chosenm. If on the other
hand, we are interested in the linear closure of the reachable extended states atX, then
we can recover these from the linear equations together withthe valid linear equations
modulom by solving an appropriate homogeneous system of equations.

4 Constructing Interprocedural Analyses

We have seen that for affine programs, the effects of procedures are given by sets of
linear transformations, or matrices. Matrices in turn can be viewed as vectors — only
with quadratically many components. We therefore can use the same abstractionαR for
effects which we use for sets of extended state vectors. By applyingαR to the constraint
systemsER andCR, we obtain constraint systemsE♯

R
andC♯

R
:

[E♯
R
1] E♯

R
(q) ⊒ E♯

R
(retq)

[E♯
R
2] E♯

R
(stq) ⊒ 〈{Ik+1}〉R

[E♯
R
3] E♯

R
(v) ⊒ E♯

R
(u) · 〈{[[xj := t]]}〉R if edge(u, v) is labeledxj := t

[E♯
R
4] E♯

R
(v) ⊒ E♯

R
(u) · 〈{[[xj := 0]], [[xj := 1]]}〉R if edge(u, v) is labeledxj :=?

[E♯
R
5] E♯

R
(v) ⊒ E♯

R
(u) · E♯

R
(q) if edge(u, v) callsq

As in [13, 12], the abstract effect of a non-deterministic assignmentxj :=? can be mod-
eled by the span of the two transformations[[xj := 0]] and[[xj := 1]].

The constraint systemE♯
R

closely resembles the corresponding constraint systems as
presented in [13] and [14]. There, however, the accumulatedtransformations are inter-
preted asweakest precondition transformersand therefore accumulated from the rear.
The constraint system now accumulates values in a forward fashion. Accordingly, the
second constraint systemC♯

R
is in the spirit of the forwardintraproceduralaccumulation

as used, e.g., in [12]. Thus, in contrast to [13, 14], the second constraint systemdirectly



speaks about abstract sets of values and not about abstract sets of transformations:

[C♯
R
1] C♯

R
(Main) ⊒ R

k+1

[C♯
R
2] C♯

R
(q) ⊒ C♯

R
(u) if edge(u, ) callsq

[C♯
R
3] C♯

R
(stq) ⊒ C♯

R
(q)

[C♯
R
4] C♯

R
(v) ⊒ [[xj := t]] (C♯

R
(u)) if edge(u, v) is labeledxj := t

[C♯
R
5] C♯

R
(v) ⊒ [[xj := 0]] (C♯

R
(u))⊔

[[xj := 1]] (C♯
R
(u)) if edge(u, v) is labeledxj :=?

[C♯
R
6] C♯

R
(v) ⊒ E♯

R
(q)(C♯

R
(u)) if edge(u, v) callsq

By the fixpoint theorem of Knaster-Tarski, the constraint systemsE♯
R

andC♯
R

have least
solutions. Again, we denote the components of these least solutions by E♯

R
(X) and

C♯
R
(X), respectively (X a procedure or program point). Abstracting the collecting se-

mantics according to constraint systemC♯
R

has the advantage that it relies on matrices
only for procedure calls. This means that we can take advantage from any improve-
ments on the abstractions, e.g., for guardsg = 0 (g an affine combination) or non-affine
assignments which have been proposed for the intraprocedural analysis [9, 5].

Furthermore, we verify that the abstraction commutes with the application and with
the composition of transformations. By linearity we have:

Proposition 1. LetR denote a commutative ring with 1. Then:

1. 〈{Ax | x ∈ V, A ∈ M}〉R = 〈{A x | x ∈ 〈V 〉R, A ∈ 〈M〉R}〉R
2. 〈{A1 A2 | Ai ∈ Mi}〉R = 〈{A1 A2 | Ai ∈ 〈Mi〉R}〉R

for every set of vectorsV ⊆ R
k+1 and sets of matricesM, M1, M2 ⊆ R

(k+1)2 . ⊓⊔

By the fixpoint transfer lemma, we therefore obtain from proposition 1, for the con-
straint systemsE♯

R
andC♯

R
:

Theorem 2. For a program interpreted over a ringR, the following holds:

1. E♯
R
(q) = 〈ER(q)〉R for every procedureq;

2. C♯
R
(X) = 〈CR(X)〉R for every procedure or program pointX. ⊓⊔

Theorem 2 gives a precise characterization of the linear closure of the collecting se-
mantics through a constraint system. Note that forprincipal ideal ringsR, the lattice of
R-submodules ofRr satisfies the ascending chain condition. IfR is a field, the length of
every strictly increasing sequence ofR-submodules ofRr is bounded byr for dimen-
sional reasons. IfR is a modular ringZm, then the length of every strictly increasing
sequence ofR-submodules ofRr can be shown to be bounded byr · log(m). If R is the
ring of integers, the lengths of strictly increasing sequences ofR-submodules, though
finite, cannot be bounded.

Secondly, we note that everyR-submoduleM of R
r can be represented byM = 〈G〉R

for a setG of at mostr generators. Accordingly, inclusion ofR-submodules can be
reduced to deciding for a vectorv ∈ R

r whether or notv ∈ 〈G〉R for a finite subset
G ⊆ R

r. If G = {v1, . . . , vs}, the latter problem consists in deciding whether there exist
λ1, . . . , λs ∈ R such that



λ1v1 + . . . + λsvs = v

Thus, the problem reduces to solving inhomogeneous systemsof linear equations. IfR
is a field, this can be achieved, e.g., by standard Gaussian elimination. Instead, we may
rely on reduction toechelon formas discussed in [8, 16]. Therefore, theorem 2 gives
rise to an effective analysis over anyeffectivePIR R, i.e., every PIRR where 0 and 1,
equality as well as the arithmetic operations and the basic principal ideal operations are
computable. The ideal operations we need are ageneralized gcdand effective methods
for solvingone variableequationsa ·x1 = b with a, b ∈ R (see again [8, 16] for details).
Summarizing, we have:

Theorem 3. Assumep is an affine program over an effective PIRR. Then the least
solutions of the constraint systemsE♯

R
andC♯

R
are effectively computable. ⊓⊔

In particular, we obtain interprocedural algorithms for computing the linear closures of
the collecting semantics for fields as well as for all modularrings — thus giving us algo-
rithms for computing all valid linear relations. The corresponding run-time complexities
for a program of sizen with k variables are summarized in figure 2. For simplicity, we
have assumed unit cost for every arithmetic operation as well as for the principal ideal
operations. The first line reports the results obtained in [12, 13], while the result onZm

R intraprocedural interprocedural

field O(n · k3) O(n · k8)

Zm O(n · k3 · log(m)) O(n · k8 · log(m))

Fig. 2.Unit cost complexity of computing theR-linear closure.

is the generalization of [14] to arbitrary modular rings. Theorem 3 also provides us
with an interprocedural generalization of Granger’s analysis. The complexity, however,
remains unclear here, since ascending chains ofZ-modules can have arbitrary lengths.

5 Efficient Linear Congruence Analysis

In this section, we refine the general approach for PIRs for the caseR = Z in order
to obtain apolynomial timealgorithm for computing all intraprocedurally valid linear
congruence relations. This algorithm also extends to a fastinterprocedural algorithm —
provided that mild restrictions on occurring numbers are satisfied.

Theorem 4. Assumep is an affine program overZ of sizen with k variables.

1. For every program point or procedureX, we can compute a (finite) representation
of the set of all linear congruence relations valid atX.

2. Intraprocedurally, these representations can be computed in polynomial time.
3. Interprocedurally, these representations can be computed in exponential time.



Proof. Assume the programp hask program variables. The algorithm achieving the
explicit complexity bounds is based on theorem 1. It proceeds in three phases.

Phase 1: We compute the least solutions of the constraint systemsE♯
Q andC♯

Q. More
precisely, we compute for every program point or procedureX, linearly indepen-
dent subsetsGE(X) ⊆ EZ(X), GC(X) ⊆ CZ(X) such that

E♯
Q(X) = 〈GE(X)〉Q C♯

Q(X) = 〈GC(X)〉Q

Then we determine for everyX, a set of generators for the set of allZ-linear rela-
tions which are valid atX.

Phase 2: For everyX, we determinem(X) as the determinantdet(GC(X)).
Phase 3: For everyX, we solve the constraint systemsE♯

Zm
andC♯

Zm
for m = m(X).

This allows us to determine theZm-moduleC♯
Zm

(X) and compute a set of generators
of theZm-linear relations which are valid atX.

We successively discuss the three phases of the algorithm. The first phase is readily im-
plemented by a variant of the algorithm proposed in [13] for solving constraint system
E♯

Q and (an adapted version of) [12] for then solvingC♯
Q. These algorithms are based

on semi-naive fixpoint iteration and generate for every program point or procedureX a
basis consisting of matrices fromEZ(X) and (extended) states fromCZ(X), respectively.

Example 1.Consider, e.g., the program from section 2. We find the matrices:

Q0 =

2

4

1 0 0

0 1 0

0 0 1

3

5 Q1 =

2

4

1 0 0

0 15 0

0 18 1

3

5 Q2 =

2

4

1 0 0

0 225 0

0 282 1

3

5

which are contained inEZ(q) and together generate the vector spaceE♯
Q
(q). Using these

matrices, we determine a set of generators for the vector-spaceC♯
Q(6) as:

z0 = [1, 2, 0]t z1 = [1, 30, 36]t z2 = [1, 450, 564]t

⊓⊔

Since〈CZ(X)〉Q = 〈CQ(X)〉Q, fact 1 implies that theZ-module〈GC(X)〉⊥Z already equals
theZ-module〈CZ(X)〉⊥Z , i.e., the set of valid linear equalities.

Let ∆E , ∆C denote the maximal absolute sizes of the entries of the matrices and
vectors, respectively, in the sets of generators used by thefixpoint computation overQ.
By inspecting the algorithms in [13, 12], we find:

∆E ≤ 22O(n·k
2)

∆C ≤ ∆
O(n·k)
E

In general, solving the constraint systemsE♯
Q andC♯

Q over Q thus can be performed
by O(n · k8) operations using arithmetic for numbers bounded in length by O(n · k2 ·

log(∆E)). In case of an intra-procedural analysis, we can completelyabandon the con-
straint systemE♯

Q. Adapting the algorithm from [12], we need justO(n · k3) arithmetic
operations on numbers of lengthO(n · k2).

We turn to phase 2. Given a linearly independent setGC(X) of cardinalityq, we
compute the determinantm(X) = det(GC(X)) with a polynomial number of bit opera-
tions, e.g., using the methods of Storjohann [17, 16]. In ourapplication the length of the
computed determinant (and thus also oflog(m(X))) is bounded byO(n · k2 · log(∆E)).
Let G denote a linearly independent set of generators ofC♯

Z(X) = 〈CZ(X)〉Z. Since
〈G〉Q = 〈GC(X)〉Q, G has cardinalityq as well.



Claim: det(G) dividesdet(GC(X)).

This central claim together with theorem 1 implies that the set of all linear congruence
relations valid atX can be derived from the set of all linear relations valid atX (as
computed in phase 1) together with all linear congruence relations modulom(X) (as
computed in phase 3).

We turn to the proof of the claim. LetV ∈ Z(k+1)·q andV ′ ∈ Z(k+1)·q denote the
coefficient matrices formed by the vectors ofGC(X) andG, respectively. By definition,
there are square unimodular matricesT, T ′ ∈ Z(k+1)2 such thatT ·V =

»

D

0

–

andT ′ ·V ′ =
»

D′

0

–

for square upper triangular matricesD, D′ where the product of the diagonal

elements ofD and D′ equalsdet(GC(X)) and det(G), respectively. SinceGC(X) ⊆

〈G〉Z, there is also a square matrixS ∈ Zq2

such thatV = V ′ ·S. Therefore,D = T1 ·D
′ ·S

whereT1 is the left upper(q × q)-submatrix ofT · (T ′)−1 and, thus,det(D) = det(T1) ·

det(D′) · det(S). SinceT1 andS are integer matrices the claim follows.

Example 2.Starting from the vectorsz0, z1, z2 for program point 6 of example 1, we
may apply elementary row transformations (overZ) each with determinant 1 to the
coefficient matrix of thezi. Thus, we obtain the matrix:

2

4

1 1 1

0 4 700

0 0 −84

3

5

Thus, the determinant equalsm(6) = 1 · 4 · 84 = 336 — serving as the modulus for
the third stage. Since the three vectorsz0, z1, z2 are linearly independent, they span
the complete vector spaceQ3. Therefore, no non-trivial linear relation holds for every
reachable state at program point 6. ⊓⊔

In phase 3, it remains to determine the set of all linear relationsmodulom(X) which
hold for all vectors inC♯

Z
(X). Since taking integers modulom(X) is a homomorphism,

we conclude that theZm(X)-module〈C♯
Zm(X)

(X)〉⊥Zm(X)
equals the set of all linear con-

gruence relations which are valid atX modulom(X). Note further that the third phase
of fixpoint iteration for the constraint systems overZm(X) need not start from scratch
but can use the generators computed in the first phase modulom(X) as start value.

Example 3.We turn to phase 3 for our example program. Recall that the modulus for
program point 6 equals336. Accordingly, we determine the least solutions of the con-
straint systemsE♯

Z336
, C♯

Z336
. We start with the already obtained sets of generators —

modulo336. In order to obtain a subsumption test forE♯
Z336

at variableq, we bring the
set of matrices{Q0, Q1, Q2} computed in example 1 into echelon form (modulo336).
In our case this results in the matrices:

Q′

0 =

2

4

1 0 0

0 1 0

0 0 1

3

5 Q′

1 =

2

4

0 0 0

0 14 0

0 18 0

3

5 Q′

2 =

2

4

0 0 0

0 0 0

0 6 0

3

5

Propagating, e.g., the matrixQ2 for the call at the edge(1, 2), we obtain:

Q3 =

2

4

1 0 0

0 15 0

0 192 1

3

5

Matrix Q3 is already subsumed by theQ′
i. The same also holds for the propagation of



the matricesQ0 andQ1. Therefore, the set{Q0, Q1, Q2} already represents the fixpoint.
Accordingly, the moduleC♯

Z336
(6) is generated from the vectors:

z′
1 = [1, 2, 0]t z′

2 = [1, 30, 36]t z′
3 = [1, 114, 228]t

Next, we determine the module of valid equalities modulo336 as the set of solutions of
the following homogeneous system of equations overZ336:

[a0, a1,a2] ·

2

4

1 1 1

2 30 114

0 36 228

3

5 = [0, 0, 0]

or, equivalently,

[a0,a1,a2] ·

2

4

1 0 0

2 28 0

0 36 84

3

5 = [0, 0, 0]

The module of solutions is generated by the two vectors:

[312, 12, 0], [0, 0, 28]

This corresponds to the congruence equations:

312 · x0 + 12 · x1 ≡ 0 [336] 28 · x2 ≡ 0 [336] ⊓⊔

Remark that all calculations on vectors or matrices in the third phase of the algorithm
are in fixed modular rings and thus do not incur extra swells ofintermediate numbers.
In particular, we can use the complexity bounds from figure 2,to estimate the num-
ber of arithmetic and generalized gcd computations. For theintraprocedural case, we
thus obtainO(n · k3 · log(m(X))) operations. Since the lengthlog(m(X)) of m(X) is
polynomially bounded inn andk, we obtain a polynomial algorithm.

In the interprocedural case, the number of operations is bounded byO(n · k8 ·

log(m(X)). The modulusm(X), though, can have exponential length. Therefore, we
obtain an exponential complexity bound as stated in assertion 2. ⊓⊔

A subtle point in the algorithm overQ or Z is the potential swell of intermediate num-
bers. Our complexity analysis reveals that the total run-time of the interprocedural algo-
rithm is polynomial in the sizen of the program, the numberk of variables andlog(∆E).
Thus, the algorithm performs well if∆E is found to be moderate. At the expense of loss
of precision, this can always be enforced. Assume we have given us a threshold∆.
Whenever a matrixA with entry|Aij | > ∆ is to be added to some fixpoint variable, we
instead add matricesA(0), A(1) which are obtained fromA by replacing the too large
entry with 0 andd, respectively, for some divisord of Aij (e.g., 1).

6 Guards

The draw-back of the interprocedural analyses of section 4 is that conditional branching
is abstracted by non-deterministic choice. A natural classof guards to be taken into
account areequality guardsof the form g = 0 for g ≡ g0 + g1x1 + . . . + gkxk. In
presence of equality guards, however, already the problem of determining at a given
program point whether a variable always equals 0 is undecidable [12]. This holds even
in absence of procedures. Accordingly, any effective analysis of programs with guards



must be approximate. Intraprocedurally, an approximativetreatment of equality guards
has been considered both by Karr for fields [9] and by Granger for Z [5]. In both cases,
the effect of such a guard amounts to intersection of affine spaces. This idea also works
for R-modules of extended states and any ringR:

[[g = 0]] M = 〈M ∩ {[x0, . . . , xk]t | x0 = 1,
Pk

j=0gjxj = 0}〉R

Computing the intersection can be reduced to solving a pair of linear equations: Assume
M = 〈G〉R whereG is a finite set of generators. LetV denote a matrix containing the
vectors ofG as column vectors, letb denote the 0-th row ofV . Then we obtain a system
of generators for[[g = 0]] M by solving the system:

(g′ V ) · y = 0 b · y = 1

for the row vectorsg′ = [g0, . . . , gk] and b = [b1, . . . , bq ] and a column vectory =

[y1, . . . ,yq]
t of variables.

It is not obvious, though, how intersections can be lifted tothe transformer level.
Therefore, we suggest topostponethe decision taken at the guard. Instead of perform-
ing the intersection, weaccumulatethe value of the guard expression in anindicator
variable. More precisely, assume that the edges with guards are numberedk +1, . . . , m.
Then weinstrumentthe original program by introducing fresh variablesxk+1, . . . ,xm,
one for each guard. Initially, all these variables are assumed to have values 0. At the
j-th guardg = 0, we place the assignmentxj := xj + g. This corresponds to the matrix:

2

6

6

4

Ik+1 0

0 Ij−k−1 0 0

g0 . . . gk 0 1 0

0 0 0 Im−j

3

7

7

5

The extra values stored in the indicator variables are then used for an improved treat-
ment of calls in the constraint systemC♯

R
. As an invariant, we insist inC♯

R
that all indica-

tor variables have values 0, since this is the case for all program runs permitted by the
guards. Thus the first constraint now reads:

[C♯
R
1] C♯

R
(Main) ⊒ R

k+1 × {0m−k}

Accordingly, we modify the constraints for calls to:

[C♯
R
6] C♯

R
(v) ⊇ 〈E♯

R
(q)(C♯

R
(u)) ∩ ({1} × R

k × {0m−k})〉R if edge(u, v) callsq

Thus, having applied the transformations fromE♯
R
(q), we select just those vectors from

the result whose indicator variables all equal 0. These can be determined by solving an
appropriate system of linear equations. Altogether, we obtain for every effective PIRR,
an enhanced interprocedural analysis which deals with equality guards and conserva-
tively extends the corresponding intraprocedural analysis. In particular, this technique
extends the known methods for fields, for modular ringsZm and also forZ.

The separation of computing valid affine relations from computing valid modular
relations as in section 5 also returns sound information. Inpresence of guards, however,
the latter may result in an extra loss of precision. Consider, e.g., the guard8 − x1 = 0.
Assume that before the guard, we have the extended statex = [1, 3]t. Since8−3 = 5 6= 0,
x does not pass the guard both in an analysis overQ and overZ. Assume, however, that
we perform the third stage of the algorithm modulo5. Sincex satisfies the guard modulo
5, x is propagated through the guard — thus incurring an extra loss in precision.



7 Conclusion

We have provided a general framework for analyzing interprocedurally valid affine rela-
tions over any principal ideal ringR. In absence of guards, the analyses could be shown
to be complete, i.e., to infer all valid relations of the given form. In particular, our frame-
work covers the known cases of fieldsQ or Zp (p a prime) as well as modular ringsZm

(m composite) and also provides an interprocedural extensionof Granger’s analysis of
linear congruence relations. In order to obtain a faster analysis, we then decomposed
the latter analysis into several instances of our framework. This new algorithm has the
advantage that its run-time complexity can be explicitly determined. In particular, its in-
traprocedural variant runs in polynomial time. Finally, weindicated how the proposed
techniques can be enhanced to deal interprocedurally with equality guards.

A key issue in designing efficient algorithms has been to bound potential swell of
intermediately occurring numbers. In case of linear congruence analysis, we therefore
refrained from computing theZ-affine abstraction of the collecting semantics directly.
Instead, we resorted to computations over modular rings. Remark that instead of per-
forming a separate analysis for each program pointX of interest we could as well
perform one joint analysis using the lcm of the moduli for theX. The disadvantage,
however, is that lengths of occurring numbers could then again grow unacceptably.

In order to keep the presentation simple, we have consideredparameterless proce-
dures and global variables only. Local variables, call-by-value passing of parameters
and return values can be handled along the lines of [13]. At the expense of an increase
in the complexity, our methods can also be used to determine valid polynomialrelations
up to a fixed degreed [12, 13]. Further questions remain. It is still open whetherit is
possible to determine all validpolynomialrelations — independent of a given degree
bound. Also, it is desirable to design interprocedural analyses that deal precisely with
further arithmetic operators.
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A Proof of Theorem 1

The proof of statement (1) is a refinement of Granger’s argument for computing a set
of congruence relations characterizing〈G〉Z. Let V ∈ Zr·q denote the matrix whose
column vectors are the vectors fromG. Thenx ∈ 〈G〉Z iff V y = x for some (column)
vectory = [y1, . . . , yq]

t ∈ Zq. SinceV is linearly independent, we can find a unimodular
matrixT ∈ Zr2

such thatT ·V =
»

D

0

–

whereD is an upper triangular(q×q)-matrix and

the product of the diagonal elements equalsdet(G) and thus dividesm. In particular,
V y = x iff (T · V ) y = T x. In this matrix equation, the lastr − q rows constitute linear
equations overZ whereas the firstq rows can equivalently be formulated using linear
equations modulom. In order to see this, letdi denote thei-th diagonal element ofD
andti thei-th row ofT . Then theq-th row of the equation readsdqyq = tq · x which is
equivalent to the linear congruence equationtq ·x ≡ 0 [dq ]. By multiplying the remaining
rows withdq and subtracting suitable multiples of theq-th row, we can remove theq-th
column of the remaining left-hand side of the equation system which leaves us with a
similar problem whereq has been decreased by one. Thus, we successively construct
linear congruences with modulidi · . . . · dq for i = q down toi = 1. By scaling these
equations with the productspi = m

det(G)
·d1 · . . . ·di−1, we obtain equivalent congruences

modulom which together with them +1− q linear equations characterize allx ∈ 〈G〉Z.

Example 4.Consider the setG = {[2, 16, 34]t, [−2,−11,−24]t}. Let V denote the cor-
responding(3 × 2)-matrix of coefficients. Then there is unimodular matrixT with:

T =

2

4

−7 1 0

−8 1 0

−1 −2 1

3

5 and V ′ = T · V =

2

4

2 3

0 5

0 0

3

5

From the last row ofT we thus can read off the linear equation:



−x0 − 2x1 + x2 = 0

The first two rows of the matrix equationV ′ [y1, y2]
t = T [x0, x1, x2]

t give us:

2y1 + 3y2 = −7x0 + x1

5y2 = −8x0 + x1

Subtracting three times the second equation from 5 times thefirst one gives us:

10y1 = −11x0 + 2x1

5y2 = −8x0 + x1

This provides us with the following two congruence equations which together with the
linear relation characterize theZ-module generated byG:

−11x0 + 2x1 ≡ 0 [10]
−8x0 + x1 ≡ 0 [5]

⊓⊔

It remains to consider statement 2. The casem′ = 0 is trivial. So letm′ > 0. As the linear
congruence equationb′ ·x ≡ 0 [m′] is satisfied for a vectorv ∈ Zr iff (d′ · b′) ·x ≡ 0 [h] is
satisfied forv (recall thath = m′ · d′), it suffices to show that〈E0 ∪ {d · b | b ∈ Em}〉Zh

characterizes the linear congruence relations valid for all vectors inG moduloh. Thus
we show:b′ · x ≡ 0 [h] is satisfied by all vectors inG iff b′ ∈ 〈E0 ∪ {d · b | b ∈ Em}〉Zh

.
First of all, if b′ ∈ E0, thenb′ · x = 0 and hence alsob′ · x = 0 [h] for all x ∈ G.

Moreover ifb ∈ Em thenb · x = 0 [m] and hence(d · b) · x = 0 [h] for all x ∈ G because
h = d · m. Thus, for anyb′ ∈ 〈E0 ∪ {d · b | b ∈ Em}〉Zh

, b′ · x ≡ 0 [h] is satisfied by
all vectors inG because validity of linear congruence relations is preserved by linear
combinations. This shows the “if”-direction.

For the “only if”-direction, let againV ∈ Zr·q be the matrix whose columns are
formed by the vectors fromG. Note that for anyl > 0 andb ∈ Zr

l , the linear congruence
relationb · x ≡ 0 [l] holds for allx ∈ G iff b is a solution of the following equation
systemE overZl: y ·V = 0. Similarly, for b ∈ Zr the relationb ·x ≡ 0 is satisfied by all
vectors inG if b is a solution of the equation systemE overZ. Let b′ be a solution ofE
overZh. We need to show thatb′ = b′0 + d · b′1 whereb′0 is a solution ofE overZ andb′1

is a solution overZm. As the columns ofV are linearly independent, we can construct
a unimodular matrixT such thatV ′ = T · V =

»

D

0

–

whereD is upper triangular with

diagonal elementsd1, . . . , dq anddet(G) = d1 · . . . · dq dividesm. Now we consider the
homogeneous systemE′: y · V ′ = 0. The vectorb′′ = b′ · T−1 is a solution ofE′ over
Zh. We can writeb′′ in the formb′′0 + b′′1 where all componentsi = 1, . . . , q of b′′0 and
all componentsi = q + 1, . . . , r of b′′1 are 0. By inspectingE′, we see thatb′′0 is also a
solution ofE′ overZ andb′′1 is also a solution overZh. By induction fori = q down to
i = 1, we verify in addition that thei-th entry ofb′′1 equals 0 modulod · di+1 · . . . · dq.
Thus,b′′1 = d · y for somey ∈ Zr. Sinced · y · V ′ = b′′1 · V ′ ≡ 0 [d · m], we conclude that
alsoy · V ′ ≡ 0 [m]. Therefore,y is a solution of the systemy · V ′ = 0 overZm. Now,
we chooseb′0 = b′′0 · T andb′1 = y · T such thatb′ = b′′ · T = (b′′0 + d · y) · T = b′0 + d · b′1.
Moreover, we haveb′0 · V = b′′0 · T · V = b′′0 · V ′ such thatb′0 solves equation systemE
overZ becauseb′′0 solvesE′ overZ. Similarly, b′1 · V = b′′1 · T · V = b′′1 · V ′ such thatb′1
solvesE overZm becauseb′′1 solvesE′ overZm. This completes the proof. ⊓⊔


