A Generic Framework for Interprocedural Analysis of
Numerical Properties

Markus Muller-Olm and Helmut Seidl

L Universitat Dortmund, Fachbereich Informatik, LS 5
Baroper Str. 301, 44221 Dortmund, Germany
mar kus. nuel | er - ol m@s. uni - dort nund. de
2 TU Miinchen, Institut fur Informatik, 12
80333 Munchen, Germany
seidl @n.tum de

Abstract. In his seminal paper [5], Granger presents an analysis vithfiets lin-
ear congruence relations between integer variables. koeafrograms without
guards, his analysis mmpletei.e., infersall such congruences. No upper com-
plexity bound, though, has been found for Granger’s algoritHere, we present
a variation of this analysis which runs in polynomial timeoidover, we provide
an interprocedural extension of this algorithm. Theseritlyms are obtained by
means of multiple instances of a general framework for canshg interproce-
dural analyses of numerical properties. Finally, we ingideow the analyses can
be enhanced to deal with equality guards interprocedurally

1 Introduction

In recent years, a growing interest in the design of veryipeeanalyses of numerical
properties of programs could be observed. On the one haisdidimes from a revived
interest in aggressive program optimizations as demangéal\bcost embedded pro-
cessors. On the other hand when designing and implementtiwakapplications, we
are faced with a need for certifying absence of certain @ogerrors [2, 11] or security
vulnerabilities such as buffer-overflows [3, 15].

Here, we concentrate on equality-based numerical pr@sei@uch properties are
particularly useful, e.g., for induction variable deteatior identification of data align-
ments [1]. This type of analysis has been pioneered by Kd@]iwhere he presents a
first intraprocedural analysis of valid affine relationsiodield. Karr's analysis main-
tains for every program point a vector space of valid affiatiens. Fifteen years later,
his analysis was generalized by Granger [4, 5]. Since GramggsZ instead ofQ, his
intraprocedural analysis not only returns valid affinetiefss but also valid affine con-
gruence relations — with the draw-back, perhaps, that n@uppmplexity bound is
known. Granger’s analysis also differs from Karr’s in that@ger first determines a
linear (in fact affine) abstraction of the sets of intrapcholly reachable states from
which the set of valid relations then is derived in a secoeg.sf forward accumu-
lation of the abstracted collecting semantics is also uselliller-Olm and Seidl in
[12] where (in absence of equality guards) the run-time afrKanalysis algorithm is
improved and also the sizes of occurring numbers is bountesl same authors also

provide the first precise interprocedural extension of Kamalysis [13] and show how
it can be adapted to work not only over fields but also over rtavdingsZ,,, where
m = 2" as used by standard programming languages like Java [1#, Th Gulwani
and Necula re-consider Karr's analysis problem. In ordémfarove on the complexity
of the analysis, they propose randomization. In particsiaes of occurring numbers
are bounded by computing modulo random primes.

In this paper, we present general methods how intraproeéaiualyses of numerical
properties can be constructed which naturally extend &rpmbcedural analyses of the
same properties. Our framework is parametric in the ringiwitvhich the computation
of the analysis is performed. For the case of affine relatmres fields or modular
rings Z,, (m a power of 2), we subsume versions of the intra- and integuioal
analyses from [12, 13] and [14], respectively. Beyond tthesevn analyses, we succeed
in deriving an interprocedural extension of Granger’s gsial[5] that determines not
only all valid affine relations but also all valid congruenmetations. We also indicate
how the analyses can be enhanced to deal with equality gurdedgrocedurally.

The immediate interprocedural extension of Granger'syaimahs provided by the
general framework shares with Granger’s original algonithe draw-back of perform-
ing fixpoint iterations over complete lattices with unboaddthough finite) ascending
chains. In order to improve on this, we propose a new alguorithich, in absence of
procedures, runs in polynomial time. The new algorithm dlobon a careful inspection
of Granger’s analysis problem which allows us to divide thalgsis into one analysis
over the fieldQ together with several analyses over carefully chosen namdings.

The paper is organized as follows. In section 2 we introddfieeaprograms to-
gether with their collecting semantics. In section 3 weddtrce, for every ring, the
R-linear abstractionand show how it can be used to determine v&litinear relations
and also (in case &f = 7Z) valid linear congruence relations. In section 4, we themwsh
for everyprincipal ideal ringR that theR-linear abstraction of the collecting semantics
can be computed precisely and provide complexity boundidiols and modular rings
Z,. In section 5, we particularly deal with the ceRe= Z and provide an alternative
algorithm which (at least in absence of equality guardsgmeines all intraprocedu-
rally valid linear congruence relations in polynomial tinke the interprocedural case,
the new algorithm is polynomial if the length of intermeeigtoccurring numbers is
polynomially bounded. In section 6, we finally extend thepgmeed approach to take
equality guards into account. Finally, section 7 summaried gives hints on direc-
tions of future research.

2 The General Set-up

We use similar conventions as in [13] and [14] which we reballe for reasons of
selfcontainedness. Thus, programs are modeled by systenmhaleterministic flow
graphs that can recursively call each other as in Figure iXLe- {xi,...,xs} be

the set of (global) variables the program operates on. lerotal cover the various
computational domains of interest, we assume that theblagdake values in some
commutative ringR with 1 element. In the programs we analyze, we assume the ba-
sic statements either to kadfine assignmentsf the formx; := to + 31, tix; (with

X1 = 5% X1
X9 = X1 + X2

Fig. 1. An interprocedural program.

t; e Rfori=0,...,kandx; € X) or non-deterministic assignmeratthe formx; :=?
(with x; € X). Itis to reduce the number of program points in the exantpi, we
annotated the edges in Figure 1 with sequences of assiganfdsb, we use assign-
mentsx; := x,; which have no effect onto the program state as skip-statesaad omit
these in pictures. For the moment, skip-statements aretasdxtract guards. Later, we
will present methods which treat equality guards more gedgi Non-deterministic as-
signmentsk; :=? can be used as a safe abstraction of statements in a sougrarpro
which our analysis cannot handle precisely, for examplessiggaments; := ¢ with
non-affine expressionsor of read statements.

In this setting, araffine programcomprises a finite sétroc of procedure names
together with one distinguished procediviain. Execution starts with a call tvlain.
Each procedure € Proc is specified by a distinct edge-labelazhtrol flow graphwith
a single start poirdt, and a single return poimtt, where each edge is either labeled
with an assignment or a call to some procedure.

The basic approach of [13,12, 14] which we take up here is tstcoct a precise
abstract interpretation of a constraint system charaiterithe concrete program se-
mantics. Similar to [5, 12], we find it convenient to startrfrehecollectingsemantics.
For that, we model atateattained by program execution when reaching a program
point or procedure by &-dimensional (column) vectdrz = [z1,...,z:]' € R of
ring elements where; is the value assigned to variabte For convenience, we con-
siderextendedstates[1, z1, ..., zx]* containing an extra 0-th component 1. Then ev-
ery assignment; := t, x; € X, t = to + >, t;ix;, induces dinear transformation
[x; :=t] : R¥*' — R*! of the extended state which is described by the matrix:

I; 0
[[Xj ::t]] = to...tj—1|tj ...tk
0 Ti—j

where [; is the identity matrix inR?*. This definition is readily extended to sets of
extended states. Composition of transformations is cagtby matrix multiplication.
Since linear mappings are closed under composition, tleetedf a single run can be

represented by one matrix ji*+)”. Since in general, procedures have multiple runs,

3 The superscriptt” denotes theransposeoperation which mirrors a matrix at the main diago-
nal and changes a row vector into a column vector (and vicgayer

we model their semantics Isetsof linear transformations. These are characterized by
the constraint systemk:

[Erl] Er(q) 2 Er(rety)

[€r2] Er(stg) 2 {Ik+1}

[Er3] Er(v) D &r(u) - {[x; :=1]} if edge (u,v) is labeledx, := ¢
[Er4] Er(v) 2D &r(u) - {[x; :=(] | c € R} if edge(u,v) is labeledx; :=?
[ErB] Er(v) 2D Er(u) - Er(q) if edge(u,v) callsq

The variablefr(g) is meant to capture the set of effects of the procequBy the con-
straintség1, this value is obtained as the set of transformati€uiget,) for the return
pointret, of ¢q. According to£r2, this accumulation starts at the start paintwith the
identity transformation. The constrairtis3 and&r4 deal with affine and nondetermin-
istic assignments, respectively, while the constrafatscorrespond to calls.

Given the effects of procedures, we characterize the setg¢efided states reaching
program points and procedures by the constraint system

[Cr1] Cr(Main) D {1} x R*

[Cr2] Cr(q) D Cr(u) if edge(u,) callsq

[Cr3] Cr(sty) 2 Cr(q)

[Cr4] Cr(v) D [x5 = t](Cr(w)) if edge (u,v) is labeledx; := ¢
[Cr5] Cr(v) D WU x; :=J(Cr(w)) | c € R} if edge(u,v) is labeledx; :=7
[Cr6] Cr(v) D &r(q)(Cr(uw)) if edge (u, v) callsg

The constraintr1 indicates that we start before the call wfain with the full (ex-
tended) state space. The constraifis indicate that the extended states reaching a
procedure includes all extended states reaching its catistae constraintsg3 state
that the extended states reaching a call to a proceduresalsh its start point. The con-
straintsCr4 throughCgr6 then are completely analogous to a usual forward propagatin
definition of theintra-proceduralcollecting semantics only that at a call edge the set of
transformations obtained for the called procedure is agftonstraintsg6).

By the fixpoint theorem of Knaster-Tarski, the constrairgteynsér andcCr have
least solutions. For convenience, we denote the compobnétitese least solutions by
Er(X), andCr(X), respectively ¥ a procedure name or program point).

3 The Linear Abstraction

Program analyses of numerical program properties are lmasalstractions of subsets
of vectors. Here, we consider the abstraction of ai'set R**! of extended states by
theR-linear closureof v

aR(V): <V>R:{A1'U1+...+)\SUS|820,Ai€ R,Ui EV}

Due to the extension of states by an extra 0-th componengfibigaction adds alin-
earcombinations of vectors il — with the understanding that only those vectors in the
closure are meaningful whose 0-th components equal 1. Werketimatar (V) is closed
under vector addition and multiplication with ring elem@nt R. Such sets are called

R-modulesvhere the setV)r is theR-modulegeneratedy V. It is well-known that for
anyr, theR-submodules oR" are closed under intersection. Ordered by set inclusion
(which we denote by in the context of submodules) they thus form a completeckatti
Sub(R"), like the linear subspaces Bf for a fieldF. The least element ub(R") is

{0} consisting of the zero vector only, the greatest elemeRt itself. The least upper
bound of twoR-submoduled/;, Mo is

M, I_IM2:<M1UM2>R:{m1 +m2|mi€Mi}.

The linear abstraction has been extensively studied féereéifit rings. In [5], it is used
with R = Z to analyze linear congruence relations. In [12], this awston is applied
for fields to speed up Karr’'s analysis [9] of affine relatioimgerestingly, the interpro-
cedural analyses of affine relations [13, 14] over fields andutar ringsz,,,, m = 2%,
do not directly rely on abstractions of the collecting setitarbut on linear abstractions
of sets of weakest precondition transformers.

In general, we are interested in numerical properiteshich invariantly hold for
all (extended) statesin the collecting semantics at a given program point. Cleéne
linear abstraction can only be used to detect propertiestwdrie invariant under linear
combinations of the extended state or, equivalently, affarabinations of the program
state. In particular, this is the case fdfinerelations between program variables like,
e.g.,2 — 4x; + 3x2 = 0. Since we work with extended states, we can rely on the simple
linear relations on extended states here. In general, a linedrorelaver a ringr is a
(row) vectora = [ao, . . ., ai] Wherer = [zo, ..., zx]" satisfiesy iff a-z = 38 aiz; = 0.
The set of affine relations satisfied by a set of states caéscidth the set of linear
relations satisfied by the corresponding set of extendeelssté/e observe:

Fact 1 For every ringR the following holds:

1. For every row vectos, the set{z € R**! | a -z = 0} is anR-module.
2. Forevery seG C RFH!,

(GVg =qer {a|V2E€EG:a-2=0}={a|Vz € (G)r:a -z =0}.

Moreover, the setG)x is anR-module. O

Assume that th&®-module(Cz(X))r is generated by the finite st C R**'. Then by
fact 1, we can determine the set of all valid linear relatiats as the set of all solutions
of the homogeneous system of equations:

a-x=0, z€CG
wherea = [ao,...,a,] iS @ row vector of variables. Here, we are mostly interested i
principal ideal rings(or PIRs). A principal ringR is a commutative ring with 1 in which
every ideal igrincipal. Recall that andeal I C R is a subset oR which is closed under
addition and multiplication with arbitrary ring elemenits,,a+b € I wheneven,b € T
andr -a € I whenever € I andr € R. AnidealT is principal if it is generated by
a single element, i.ef, = {r - d | r € R} for somed € R. PIRs comprise not only
fields but also the integral domainas well as all modular rings,,,, m > 2. In [8, 16],
efficient methods are developed for computing various nbfares of matrices over
PIRs. The most notable property of PIRs is that they allovousotve linear systems of
equations by a generalized Gaussian elimination algori@iparticular importance is

the integral domaiZ. AssumeG C Z**! is a set of integer vectors. Then the set of all
linear relations which are valid fo& is (up to multiplication with constants) identical
to the set of linear relations which are valid over thnodule generated hy:

Fact 2 For every subset: C Z**! of column vectors and every row vecioe Z**+!,
the following statements are equivalent:

l.a-z=0 forall z € G;
2. a-z=0 forall z € (G)z;
3. a-2=0 forall z € (G)g. a

Assume we want to determine the set of validinear relations at a program point
X. By fact 2, it suffices to determine the linear relations vahéce valid for(Cz(X))g.
SinceQ is a field, these can be computed efficiently with the techesgiom [13,
12]. It therefore does not pay off to determine the (compdidgz-linear closure of the
collecting semantics if we are interested in linear refagionly.

In[5], however, Granger considers a more general form gh@ries, namelyinear
congruence relationdA linear congruence equation is an equatiox = 0 [m] where
a € Z is a row vector andr > 0 is the integer modulus. The column vectoe 7**+*
satisfies the congruence relationdff = = 0 [m] or, equivalentlya - z + mz = 0 for
some:z € Z. A linear relation of the extended state can be seen as aylartiinear
congruence relation if we allow to equalo. If m > 1, we can assume that all compo-
nents ofa are in the rang€o, ..., m — 1}. The set of allk: satisfying a linear congruence
relation is closed under addition and multiplication witereents ofz and therefore a
Z-module. In [5], Granger shows that evetymodule can also be represented as the
set of solutions of a finite number of linear congruence i@tet For later use, we pro-
vide a refinement of his characterization. We introduce @tlewing auxiliary notions.
Assume that? C 7" is a set ofg linearly independefitcolumn vectors. Let’ C 7"
denote the matrix formed by the vectorginUsing generalized Gaussian elimination,
some unimodular matr’x7" € z™* can be constructed such that vV = % for an

upper triangular square matrix. Then we definelet(G) as the absolute value of the
determinant ofD. It follows from uniqueness of the Hermite normal form [18] that
this definition is independent of the choicelafWe obtain:

Theorem 1. Assumez C Z" is a set of linearly independent vectors wheeg(G)
dividesm > 0. Let E, and E,,, denote finite sets of generators f@¥); and (G)z, ,
respectively. Then the following holds:

1. (G)z is the set of solutions of the system
a-x=0,a€ Ey, b-x=0[m],be€ En
2. Another linear congruence relatidgn- x = 0 [m'] is satisfied by all vectors ia
iff the following holds. Ifm’ = 0 thend’ € (Ey);. Otherwise, let: denote the least
common multiple ofn andm’ wherem -d = h andm’ - d = h. Thend’ - b is
contained iN(EoU{d-b| b€ En})z,.

* Recall that' is linearly independent ovéd iff G is linearly independent ovét.
5 An integer matrix isunimodulariff its determinant equals-1.

For a proof of this theorem, see appendix A. By the secondrsint, the setg, and
E,, allow us, for every other modulus’, to determine a finite s€f’ of generators of
all valid linear relations modulg:'. First, we constructthe s&t= Ecu{d-b|be En}
whereh = d-m is the least common multiple @f andm'. The idea is now to determine
E’ as a finite set of generators of all,-linear combinations of vectors i which
containd’ = - as a factor. For this, let’ denote the matrix whose rows are formed
by the vectors inE. Then a vector is a linear combination of the vectors lwhich
containsd’ as a factor iffv = y - v for somey e z/”! such thaim’ - (y - V) = 0 [h].
Thus, we first compute generatars. . ., b, € Z‘hE‘ for the module of solutions of the
equation systeny (m’ - V) = 0 [h]. The vectors, V can be written ag; V = d't;, —
giving us the set’ = {b', ..., b,} of generators for all valid linear relations moduito.

Theorem 1 allows us to compute the linear congruence rektidich are valid at
X from theZz-linear closure of’;(X), the set of extended states reachingOur new
observation is that, instead of computing thénear closure of the reachable states, we
can decompose the analysis into an analysis returning ladl ireear relations plus an
analysis returning all valid linear relations modulo a ¢altg chosenm. If on the other
hand, we are interested in the linear closure of the reaeledénded states at, then
we can recover these from the linear equations togetherthétivalid linear equations
modulom by solving an appropriate homogeneous system of equations.

4 Constructing Interprocedural Analyses

We have seen that for affine programs, the effects of proesdane given by sets of
linear transformations, or matrices. Matrices in turn carviewed as vectors — only
with quadratically many components. We therefore can ussdéme abstractiaxk for
effects which we use for sets of extended state vectors. Bly@g ar to the constraint
systemstr andCg, we obtain constraint systenfig andcy:

) DEL) - {[x; = t]})r if edge(u,v) is labeledx; := ¢
5,34] Ei(v) O 5£(u) - {[x; :=0],[x; :=1]})r if edge(u,v) is labeledx; :=?
cis] €iw) D EL(w) - EL(q) if edge (u, v) callsq

Asin [13,12], the abstract effect of a non-deterministgigismentx, :=? can be mod-
eled by the span of the two transformatidgrs := 0] and[x; := 1].

The constraint systeg}. closely resembles the corresponding constraint systems as
presented in [13] and [14]. There, however, the accumulasgformations are inter-
preted asveakest precondition transformeasd therefore accumulated from the rear.
The constraint system now accumulates values in a forwatdda. Accordingly, the
second constraint systegp is in the spirit of the forwardhtraproceduralaccumulation
as used, e.g., in[12]. Thus, in contrast to [13, 14], the sd@mnstraint systemirectly

speaks about abstract sets of values and not about absttmof sransformations:

q) JCh(u) if edge (u, _) callsq
3 [x; :=1] (Ci(u)) ifedge(u,v)islabeledx; := ¢

#
[x; :== 1] (Ci(u)) ifedge(u,v) is labeledx; :=?
[CE6] Ch(v) D EN(a)(Ch(u)) if edge (u, v) callsq

By the fixpoint theorem of Knaster-Tarski, the constrairgteynse? andc, have least
solutions. Again, we denote the components of these ledstists by £4(Xx) and
Ci(X), respectively & a procedure or program point). Abstracting the collectiag s
mantics according to constraint systeéimhas the advantage that it relies on matrices
only for procedure calls. This means that we can take adgarftam any improve-
ments on the abstractions, e.g., for guardso (g an affine combination) or non-affine
assignments which have been proposed for the intraproakahalysis [9, 5].

Furthermore, we verify that the abstraction commutes wighapplication and with
the composition of transformations. By linearity we have:

Proposition 1. LetR denote a commutative ring with 1. Then:

1. {Az|zeV,Aec M})r = ({Ax |z € (V)r, A€ (M)r})r
2. <{A1 Ao | A; € M1}>R = <{A1 Ao | A; € <M1>R}>R
for every set of vectors C R¥*! and sets of matricess, My, M, € R<+D*, O

By the fixpoint transfer lemma, we therefore obtain from msipon 1, for the con-
straint systems? andcy:

Theorem 2. For a program interpreted over a ring, the following holds:

1. &i(q) = (Er(q))r for every procedure;
2. CL(X) = (Cr(X))r for every procedure or program poic. a

Theorem 2 gives a precise characterization of the lineauctof the collecting se-
mantics through a constraint system. Note thapfimcipal ideal ringsR, the lattice of
R-submodules oR” satisfies the ascending chain conditiorR i a field, the length of
every strictly increasing sequencerRsubmodules oR” is bounded by for dimen-
sional reasons. IR is a modular ringZ,,, then the length of every strictly increasing
sequence oR-submodules oR” can be shown to be bounded bylog(m). If R is the
ring of integers, the lengths of strictly increasing sequsnofR-submodules, though
finite, cannot be bounded.

Secondly, we note that eveRysubmodule\s of R” can be represented by = (G)r
for a setG of at mostr generators. Accordingly, inclusion &-submodules can be
reduced to deciding for a vectore R” whether or notv € (G)r for a finite subset
G CR".If G ={v1,...,vs}, the latter problem consists in deciding whether theretexis
A, ..., Xs € Rsuch that

AMv1+ .o+ Asvs = v

Thus, the problem reduces to solving inhomogeneous sysiélimear equations. IR

is a field, this can be achieved, e.g., by standard Gaussiaimation. Instead, we may
rely on reduction teechelon formas discussed in [8, 16]. Therefore, theorem 2 gives
rise to an effective analysis over agffectivePIRR, i.e., every PIRR where 0 and 1,
equality as well as the arithmetic operations and the basicipal ideal operations are
computable. The ideal operations we need agergeralized gc@nd effective methods
for solvingone variableequations: - x; = b with a, b € R (See again [8, 16] for details).
Summarizing, we have:

Theorem 3. Assumep is an affine program over an effective PR Then the least
solutions of the constraint systefsandc?, are effectively computable. O

In particular, we obtain interprocedural algorithms fongmuting the linear closures of
the collecting semantics for fields as well as for all modtitags — thus giving us algo-
rithms for computing all valid linear relations. The copesading run-time complexities
for a program of size, with & variables are summarized in figure 2. For simplicity, we
have assumed unit cost for every arithmetic operation alsasdbr the principal ideal
operations. The first line reports the results obtained 27 18], while the result of,,

| R ||intraprocedura| |interprocedural |
field|O(n - k*) O(n - k%)
T, [|O(n - K* - log(m))|O(n - kB - log(m))

Fig. 2. Unit cost complexity of computing thR-linear closure.

is the generalization of [14] to arbitrary modular rings.ebhem 3 also provides us
with an interprocedural generalization of Granger’s asialyThe complexity, however,
remains unclear here, since ascending chaismbdules can have arbitrary lengths.

5 Efficient Linear Congruence Analysis

In this section, we refine the general approach for PIRs ferctseR = Z in order
to obtain apolynomial timealgorithm for computing all intraprocedurally valid linea
congruence relations. This algorithm also extends to arfestprocedural algorithm —
provided that mild restrictions on occurring numbers atisfad.

Theorem 4. Assume is an affine program ovet of sizen with k variables.

1. For every program point or procedure, we can compute a (finite) representation
of the set of all linear congruence relations validat

2. Intraprocedurally, these representations can be coegbirt polynomial time.

3. Interprocedurally, these representations can be costbirt exponential time.

Proof. Assume the program hask program variables. The algorithm achieving the
explicit complexity bounds is based on theorem 1. It proséedhree phases.

Phase 1: We compute the least solutions of the constraint sys@mdq&. More
precisely, we compute for every program point or procedurdinearly indepen-
dent subset§s (X) C £2(X), Ge(X) C Cz(X) such that

EH(X) = (Ge(X))e CH(X) = (Ge(X))o

Then we determine for every, a set of generators for the set of allinear rela-
tions which are valid ax.

Phase 2: For everyX, we determinen(X) as the determinamt(Ge(X)).

Phase 3: For everyX, we solve the constraint systemﬁm andcgm for m = m(X).
This allows us to determine tie,-modulec} (X)and compute a set of generators
of theZ,,-linear relations which are valid &.

We successively discuss the three phases of the algorithefirt phase is readily im-
plemented by a variant of the algorithm proposed in [13] fvieg constraint system
&é and (an adapted version of) [12] for then solviﬁ’@ These algorithms are based
on semi-naive fixpoint iteration and generate for every paogpoint or procedur& a
basis consisting of matrices frofa(X) and (extended) states framn(X), respectively.

Example 1.Consider, e.g., the program from section 2. We find the mestric

I H

which are contained ifi;(q) and together generate the vector spagxq). Using these
matrices, we determine a set of generators for the vecanes’é(G) as:

20 =[1,2,0]" 21 =[1,30,36]" 22 = [1,450,564]"

- O o
oo
o Ut O
= O o
N OO
= O o

10
Qo= 101
00

1
1

O

Since(Cz(X))g = (Co(X))e, fact 1 implies that th&-module(G¢(X))z already equals
thez-module(Cz(X))7, i.e., the set of valid linear equalities.

Let A¢, Ac denote the maximal absolute sizes of the entries of the ceatand
vectors, respectively, in the sets of generators used bijxh@nt computation ove®.
By inspecting the algorithms in [13,12], we find:

20(n-k?)

As <2 A < A7H

In general, solving the constraint systegfsandc}, over Q thus can be performed
by O(n - k®) operations using arithmetic for numbers bounded in lengtiop. - &2 -
log(A¢)). In case of an intra-procedural analysis, we can completefyndon the con-
straint systemﬂg. Adapting the algorithm from [12], we need justn - £*) arithmetic
operations on numbers of lengthn - £%).

We turn to phase 2. Given a linearly independentc>x) of cardinality ¢, we
compute the determinant(X) = det(G¢ (X)) with a polynomial number of bit opera-
tions, e.g., using the methods of Storjohann [17, 16]. Inaguplication the length of the
computed determinant (and thus alsdaf(m (X))) is bounded by (n - k% - log(As)).
Let G denote a linearly independent set of generators’ok) = (Cz(X))z. Since
(G)g = (Ge (X))o, G has cardinality; as well.

Claim: det(G) dividesdet(Gc¢(X)).

This central claim together with theorem 1 implies that tbieds all linear congruence
relations valid atx can be derived from the set of all linear relations validsatas
computed in phase 1) together with all linear congruenagicgls modulan(X) (as
computed in phase 3).

We turn to the proof of the claim. Let € z*+Y7 andV’ ¢ z**Y 7 denote the
coefficient matrices formed by the vectors@f(X) andG, respectively. By definition,
there are square unimodular matrigeg” € z*+9* such that-v = [%] andr’-v' —
[DT'} for square upper triangular matricés D’ where the product of the diagonal
elements ofD and D’ equalsdet(Gc (X)) anddet(G), respectively. Sincé&c(X) C
(G)z, there is also a square mattixe 77" suchthat’ = V'-S. Thereforep = 71-D'- S
whereT; is the left uppeq x ¢)-submatrix of7" - (77)~! and, thusdet(D) = det(T) -
det(D’) - det(S). SinceTy andsS are integer matrices the claim follows.

Example 2.Starting from the vectors, z1, z2 for program point 6 of example 1, we
may apply elementary row transformations (o#@reach with determinant 1 to the
coefficient matrix of the;. Thus, we obtain the matrix:

11 1
04 700
00 —84

Thus, the determinant equalg6) = 1 -4 -84 = 336 — serving as the modulus for
the third stage. Since the three vectessz1, 2> are linearly independent, they span
the complete vector spacg’. Therefore, no non-trivial linear relation holds for every
reachable state at program point 6. a

In phase 3, it remains to determine the set of all linear ieiatmodulom (X) which
hold for all vectors inc(X). Since taking integers modula(X) is a homomorphism,
we conclude that th@m<x)—module<cgm . (X)>in<x) equals the set of all linear con-
gruence relations which are valid @& modulom (X). Note further that the third phase
of fixpoint iteration for the constraint systems ov&f, v, need not start from scratch

but can use the generators computed in the first phase modip as start value.

Example 3.We turn to phase 3 for our example program. Recall that theutnsdor
program point 6 equald36. Accordingly, we determine the least solutions of the con-
straint systems‘gm,cgm. We start with the already obtained sets of generators —
modulo336. In order to obtain a subsumption test frgr336 at variableg, we bring the

set of matricedQo, Q1,Q=} computed in example 1 into echelon form (modsia).

In our case this results in the matrices:

100
Q) = [} Q) - {
Propagating, e.g., the matrix. for the call at the edgé, 2), we obtain:

001

Matrix Qs is already subsumed by thig. The same also holds for the propagation of

(=Rl
O
o oo
(=Nl

0
0
6

[Nl

1
1

SO
N OO
= oo

1
19

o]

the matrice%), andQ.. Therefore, the s€tQ,, Q1, Q- } already represents the fixpoint.
Accordingly, the moduleéf%336 (6) is generated from the vectors:

2 =[1,2,0]" 25 =[1,30,36]" 2 =[1,114,228]"

Next, we determine the module of valid equalities modisi®as the set of solutions of
the following homogeneous system of equations @sey:

111
[ao,a1,a2] - 230114 | = [0,0,0]
0 36 228
or, equivalently,
100
[ao,a1,a2]- |228 0| = [0,0,0]
0 36 84

The module of solutions is generated by the two vectors:
[312,12,0], [0,0,28]
This corresponds to the congruence equations:

312-x04+12-x1 = 0[336] 28-x2 = 0 [336] o

Remark that all calculations on vectors or matrices in thel thhase of the algorithm
are in fixed modular rings and thus do not incur extra swells@frmediate numbers.
In particular, we can use the complexity bounds from figureoZstimate the num-
ber of arithmetic and generalized gcd computations. Foirtttaprocedural case, we
thus obtainO(n - k* - log(m(X))) operations. Since the lenglby(m (X)) of m(X) is
polynomially bounded im andk, we obtain a polynomial algorithm.

In the interprocedural case, the number of operations isted byO(n - k® -
log(m(X)). The modulusn(X), though, can have exponential length. Therefore, we
obtain an exponential complexity bound as stated in asgeti a

A subtle point in the algorithm ovep or Z is the potential swell of intermediate num-
bers. Our complexity analysis reveals that the total rometf the interprocedural algo-
rithm is polynomial in the size of the program, the numbérof variables antbg(Az).
Thus, the algorithm performs well ii ¢ is found to be moderate. At the expense of loss
of precision, this can always be enforced. Assume we havengis a thresholdi.
Whenever a matrixt with entry|A4;;| > A is to be added to some fixpoint variable, we
instead add matrices®, A" which are obtained fromt by replacing the too large
entry with 0 andi, respectively, for some divisafrof 4;; (e.g., 1).

6 Guards

The draw-back of the interprocedural analyses of sectiartlat conditional branching
is abstracted by non-deterministic choice. A natural cté#sguards to be taken into
account areequality guardsof the formg = 0 for g = go + gix1 + ... + gexx. IN

presence of equality guards, however, already the probfedetermining at a given
program point whether a variable always equals 0 is undbEd&?2]. This holds even
in absence of procedures. Accordingly, any effective asialgf programs with guards

must be approximate. Intraprocedurally, an approximdtaa&tment of equality guards
has been considered both by Karr for fields [9] and by Grarmez {5]. In both cases,
the effect of such a guard amounts to intersection of affiaesgp This idea also works
for R-modules of extended states and any Rag

[g=01M = (M0 {fzo,...,za]" | zo = 1,37_,g5; = O})r

Computing the intersection can be reduced to solving a péirear equations: Assume
M = (G)r WhereG is a finite set of generators. Let denote a matrix containing the
vectors ofG as column vectors, létdenote the 0-th row of”. Then we obtain a system
of generators fofg = 0] M by solving the system:

(V) y=0 by=1
for the row vectoryy’ = [go,...,gx] @andb = [b1,...,b,] and a column vectoy =
[yi,--.,yq)" Of variables.

It is not obvious, though, how intersections can be liftedh® transformer level.
Therefore, we suggest fipstponehe decision taken at the guard. Instead of perform-
ing the intersection, waccumulatehe value of the guard expression in iadicator
variable More precisely, assume that the edges with guards are medbe 1,...,m.
Then weinstrumentthe original program by introducing fresh variables 1, .. ., x,
one for each guard. Initially, all these variables are agslito have values 0. At the
j-th guardg = 0, we place the assignmexf := x; + g. This corresponds to the matrix:

Ijsa 0

0 |Lj—,—1/0] O

0 0 [0[Tn;
The extra values stored in the indicator variables are tisexa @or an improved treat-
ment of calls in the constraint systet. As an invariant, we insist id} that all indica-
tor variables have values 0, since this is the case for afjnara runs permitted by the
guards. Thus the first constraint now reads:

[Ci1] CE(Main) J R x {0™*}

Accordingly, we modify the constraints for calls to:

[CR6] Ca(v) 2 (Ek(a)(Ch(w)) N ({1} x R¥ x {0™F})r if edge(u, v) callsq

Thus, having applied the transformations fréfiiq), we select just those vectors from
the result whose indicator variables all equal 0. These eatreltermined by solving an
appropriate system of linear equations. Altogether, waialdor every effective PIR,
an enhanced interprocedural analysis which deals withliégggaiards and conserva-
tively extends the corresponding intraprocedural anglytsi particular, this technique
extends the known methods for fields, for modular riigsand also forZ.

The separation of computing valid affine relations from catimy valid modular
relations as in section 5 also returns sound informatioprésence of guards, however,
the latter may result in an extra loss of precision. Consieley, the guard — x; = 0.
Assume that before the guard, we have the extended:stafe, 3]°. Sinces—3 = 5 # 0,

x does not pass the guard both in an analysis @Qvand overZ. Assume, however, that
we perform the third stage of the algorithm modsl&incer satisfies the guard modulo
5, x is propagated through the guard — thus incurring an extiaitoprecision.

7 Conclusion

We have provided a general framework for analyzing intezpdarally valid affine rela-
tions over any principal ideal ring. In absence of guards, the analyses could be shown
to be complete, i.e., to infer all valid relations of the giferm. In particular, our frame-
work covers the known cases of fiel@r Z, (p a prime) as well as modular rings,

(m composite) and also provides an interprocedural extertdi@ranger’s analysis of
linear congruence relations. In order to obtain a fastelyaisa we then decomposed
the latter analysis into several instances of our framewbhis new algorithm has the
advantage that its run-time complexity can be explicitliedeined. In particular, its in-
traprocedural variant runs in polynomial time. Finally, indicated how the proposed
techniques can be enhanced to deal interprocedurally withliy guards.

A key issue in designing efficient algorithms has been to dquotential swell of
intermediately occurring numbers. In case of linear coagoe analysis, we therefore
refrained from computing thg-affine abstraction of the collecting semantics directly.
Instead, we resorted to computations over modular ringsdRle that instead of per-
forming a separate analysis for each program paindf interest we could as well
perform one joint analysis using the lcm of the moduli for tieThe disadvantage,
however, is that lengths of occurring numbers could thefmagi@w unacceptably.

In order to keep the presentation simple, we have consigeeimeterless proce-
dures and global variables only. Local variables, calvbjue passing of parameters
and return values can be handled along the lines of [13]. &ettpense of an increase
in the complexity, our methods can also be used to deternailicepolynomialrelations
up to a fixed degreé [12, 13]. Further questions remain. It is still open whetiiés
possible to determine all valipolynomialrelations — independent of a given degree
bound. Also, it is desirable to design interprocedural ysed that deal precisely with
further arithmetic operators.

References

1. G. Balakrishnan and T. W. Reps. Analyzing Memory Accesses36 Executables. In
Compiler Construction, 13th Int. Conf. (C&-23. LNCS 2985. Springer-Verlag, 2004.

2. B. Blanchet, P. Cousot, R. Cousot, J. Feret, C. MauborQuéjlormiaux, and X. Rival.
A Static Analyzer for Large Safety-Critical Software. limt. ACM Conf. on Programming
Language Design and Implementation (PLOIY6—207, 2003.

3. N.Dor, M. Rodeh, and M. Sagiv. Cleanness Checking of §anipulations in C Programs
via Integer Analysis. I18th Int. Static Analysis Symposium (SAS,AB4-212. LNCS 2126,
Springer Verlag, 2001.

4. P. Granger. Static Analysis of Arithmetical Congruendes. J. of Computer Math.165—
190, 1989.

5. P. Granger. Static Analysis of Linear Congruence Edaalamong Variables of a Program.
In Int. Joint Conf. on Theory and Practice of Software Develepn{TAPSOFT,)169-192.
LNCS 493, Springer-Verlag, 1991.

6. S. Gulwani and G. Necula. Discovering Affine EqualitiesridsRandom Interpretation. In
30th ACM Symp. on Principles of Programming Languages (POP--84, 2003.

7. S. Gulwani and G. Necula. Precise Interprocedural Aiglysing Random Interpretation.
In 32th Ann. ACM Symp. on Principles of Programming LanguaB&L), 324337, 2005.

8. J. Hafner and K. McCurley. Asymptotically Fast Triangidation of Matrices over Rings.
SIAM J. of Computing20(6):1068—-1083, 1991.
9. M. Karr. Affine Relationships Among Variables of a Prograkuata Informatica 6:133-151,

1976.

10. S. LangAlgebra, Third Edition Pearson Education, Inc., 1993.

11. A. Miné. Relational Abstract Domains for the Detectadriloating-Point Run-Time Errors.
In European Conf. on Programming (ESOB3}17. LNCS 2986, Springer Verlag, 2004.

12. M. Muller-Olm and H. Seidl. A Note on Karr's Algorithmn31st Int. Coll. on Automata,
Languages and Programming (ICALA)Y16—1028. Springer Verlag, LNCS 3142, 2004.

13. M. Muller-Olm and H. Seidl. Precise Interproceduralafysis through Linear Algebra. In
31st ACM Symp. on Principles of Programming Languages (PQO#30-341, 2004.

14. M. Muller-Olm and H. Seidl. Analysis of Modular Arithrtie. In European Symposium on
Programming (ESOR¥6-60. Springer Verlag, LNCS 3444, 2005.

15. A. Simon and A. King. Analyzing String Buffers in C. Wlgebraic Methodology and
Software Technology, 9th Int. Conf. (AMASI§5-379. LNCS 2422, Springer Verlag, 2002.

16. A. StorjohannAlgorithms for Matrix Canonical Forms$PhD thesis, ETH Zurich, Diss. ETH
No. 13922, 2000.

17. A. Storjohann.A Fast, Practical, and Deterministic Algorithm for Trianiguizing Integer
Matrices Tech. Rep. 255, ETH Zurich, 1996.

18. O. Zariski and P. SamueCommutative Algebra, Vol. Nostrand, Princeton, NJ, 1958.

A Proof of Theorem 1

The proof of statement (1) is a refinement of Granger’s argurite computing a set
of congruence relations characterizit@);. Let vV € Z™? denote the matrix whose
column vectors are the vectors fragh Thenz € (G); iff Vy = x for some (column)
vectory = [y1,...,y4]" € Z%. SinceV is linearly independent, we can find a unimodular
matrixT € Z"* such that"- v = % whereD is an upper triangulgy x ¢)-matrix and

the product of the diagonal elements equiisG) and thus dividesn. In particular,
Vy=uziff (T-V)y=T z. Inthis matrix equation, the last- ¢ rows constitute linear
equations over. whereas the firsg rows can equivalently be formulated using linear
equations modula. In order to see this, let; denote the-th diagonal element ab
andt; thei-th row of T. Then theg-th row of the equation readsy, = t, - = which is
equivalentto the linear congruence equatipn = 0 [d,]. By multiplying the remaining
rows withd, and subtracting suitable multiples of thi¢h row, we can remove thgth
column of the remaining left-hand side of the equation systéich leaves us with a
similar problem whereg has been decreased by one. Thus, we successively construct
linear congruences with moduii - ... - d, for i = ¢ down toi = 1. By scaling these
equations with the products = Fiiey du-dic, We obtain equivalent congruences
modulom which together with the: + 1 — ¢ linear equations characterize ale (G).

Example 4.Consider the set = {[2, 16, 34]", [-2, —11, —24]"}. Let V denote the cor-
responding3 x 2)-matrix of coefficients. Then there is unimodular matrixvith:

-7 1 0 23
T =1|-8 10 and V =T-V = |05
—-1-2 1 00

From the last row of” we thus can read off the linear equation:

—X0—2X1 —|—X2 =0
The first two rows of the matrix equation [yi, y=]" = T [x0, 1, 72]" give US:

2y1 + 3y2 = —Txo + 71
oy2 = —8xo + x1

Subtracting three times the second equation from 5 timefir#t®ne gives us:

10y1 = —llxo + 2301
oy2 = —8xo + w1

This provides us with the following two congruence equatiaich together with the
linear relation characterize ttiemodule generated hy:

—11X0 + 2X1 =0 [10]

—8%0+ x1 =0 [5] 0

It remains to consider statement 2. The case- 0 is trivial. So letm’ > 0. As the linear
congruence equatidn-x = 0 [m’] is satisfied for a vectar € Z" iff (d'-b')-x =0 [n] iS
satisfied for (recall thath = m’ - &), it suffices to show thatEy U{d-b | b € En})z,
characterizes the linear congruence relations valid foregitors inG moduloh. Thus
we showd’ - x = 0 [h] is satisfied by all vectors it iff " € (Eo U{d-b| b€ En})z,.

First of all, if v € Ey, thend’ -z = 0 and hence als# - = = 0 [»] for all z € G.
Moreover ifb € E,, thenb - x = 0 [m] and hencéd - b) - = = 0 [h] for all z € G because
h = d-m. Thus, forany’ € (EqU{d-b|b€ En})z,, b -x = 0 [h] is satisfied by
all vectors inG because validity of linear congruence relations is preseby linear
combinations. This shows the “if"-direction.

For the “only if”-direction, let agairn € Z" be the matrix whose columns are
formed by the vectors fror@. Note that for any > 0 andb € 7], the linear congruence
relationb - x = 0 [I] holds for allz € G iff b is a solution of the following equation
systemr overz;: y -V = 0. Similarly, forb € Z" the relation - x = 0 is satisfied by all
vectors inG if b is a solution of the equation systefhoverZz. Letdy’ be a solution o
overZ;,. We need to show that = v}, + d - b} whereb; is a solution ofE overZ andb
is a solution over.,,. As the columns of” are linearly independent, we can construct
a unimodular matrix” such that’ =T -V = % whereD is upper triangular with

diagonal elements,, ..., d, anddet(G) = d; - ... - d, dividesm. Now we consider the
homogeneous systeRl: y - V' = 0. The vecton” = b - T~ ! is a solution ofE’ over
Zn. We can writeb” in the forms + b7 where all components= 1,...,q of bj and
all components = ¢ + 1,...,r of b{ are 0. By inspectingZ’, we see thatg is also a
solution of £’ overZ andb! is also a solution ovet,. By induction fori = ¢ down to
i = 1, we verify in addition that the-th entry oft} equals 0 modul@ - d;41 - ... - dq.
Thus,b! = d -y for somey € Z". Sinced -y - V' = b7 - V' = 0 [d - m], we conclude that
alsoy - V' = 0 [m]. Thereforey is a solution of the system- V' = 0 overzZ,,. Now,
we chooseéy = by - T andby, = y- T suchthat =b" - T = (by +d-y)-T = by +d - b.
Moreover, we have; -V = by - T -V = by - V' such thab; solves equation system
overZ becausey solvesk’ overZ. Similarly,b} -V = b7 - T -V = b{ - V' such that]
solvesE overz,, because; solvesk’ overz,,. This completes the proof. a

