I nter procedurally Analyzing Polynomial Identities

Markus Miller-Olm, Michael Pettet, and Helmut Seidl

1 Westfalische Wilhelms-Universitat Munster, Instifit Informatik
Einsteinstr. 62, 48149 Munster, Germany
mo@rat h. uni - nuenst er . de
2 TU Miinchen, Institut fir Informatik, 12
80333 Munchen, Germany
seidl @n.tum de

Abstract. Since programming languages are Turing complete, it is gsibte
to decide for all programs whether a given non-trivial seticgoroperty is valid
or not. The way-out chosen by abstract interpretation isévige approximate
methods which may fail to certify a program property on somegmms. Preci-
sion of the analysis can be measured by providing classe®gfams for which
the analysis is complete, i.e., decides the property intgpreHere, we consider
analyses of polynomial identities between integer vaeslguch as; - x2 —
2x3 = 0. We describe current approaches and clarify their compéste proper-
ties. We also present an extension of our approach basedakesteorecondition
computations to programs with procedures and equalitydsuar

1 Introduction

Invariants and intermediate assertions are the key to dedwerification of programs.
Correspondingly, techniques for automatically checking inding invariants and in-
termediate assertions have been studied (cf., e.g., [3]R,12 this paper we present
analyses that check and find valid polynomial identities iagpams. A polynomial
identity is a formulap(xy, . . ., x;) = 0 wherep(x1, . . ., X}) is a multi-variate polyno-
mial in the program variables, , . . ., x;.%

Looking for valid polynomial identities is a rather genegalestion with many ap-
plications. Many classical data flow analysis problems casden as problems about
polynomial identities. Some examples are: finditgjinite equalities among variables
like x = y; constant propagation.e., detecting variables or expressions with a constant
value at run-timegliscovery of symbolic constariitee x = 5y+2 or evenx = yz?+42;
detection of complex common sub-expressidmnere even expressions are sought which
are syntactically different but have the same value at me-such asy +42 = y?+5;
anddiscovery of loop induction variables

Polynomial identities found by an automatic analysis ase alseful for program
verification, as they provide non-trivial valid asserti@i®ut the program. In particular,
loop invariants can be discovered fully automatically. Afypomial identities express

% More generally our analyses can handle positive Boolearbmtions of polynomial identi-
ties.

quite complex relationships among variables, the dis@assertions may form the
backbone of the program proof and thus significantly singplie verification task.

In the following, we critically review different approachéor determining valid
polynomial identities with an emphasis on their precisiarexpressions, only addition
and multiplication are treated exactly, and, except fordsiaf the fornp # 0 for poly-
nomialsp, conditional choice is generally approximated by non-aeteistic choice.
These assumptions are crucial for the design of effectieeteanalyses [12, 13]. Such
programs will be callegholynomialin the sequel.

Much research has been devoted to polynomial programs miiffrocedure calls,
i.e., intraproceduralanalyses. Karr was the first who studied this problem [11]. He
considers polynomials of degree at mostffileexpressions) both in assignments and
in assertions and presents an algorithm which, in absengeiafs, determines all
valid affine identities. This algorithm has been improvedy authors and extended
to deal with polynomial identities up to a fixed degree [13lUZani and Necula also
re-considered Karr's analysis problem [7] recently. Theg tandomization in order to
improve the complexity of the analysis at the price of a smadbability of finding
invalid identities.

The first attempt to generalize Karr's methodgolynomialassignments is [12]
where we show that validity of a polynomial identity at a gitarget program point is
decidable for polynomial programs. Later, Rodriguez-@adil et al. propose an anal-
ysis based on the observation that the set of identitiestwdrie valid at a program point
can be described by a polynomidéal[20]. Their analysis is based on a constraint sys-
tem over polynomial ideals whose greatest solution prctdearacterizes the set of all
valid identities. The problem, however, with this approacthatdescendinghains of
polynomial ideals may be infinite implying that no effectizigiorithm can be derived
from this characterization. Therefore, they provide splecases [21] or approxima-
tions that allow to infer some valid identities. Opposedttatt our approach is based
on effective weakest precondition computations [12, 143. &nsider assertions to be
checked for validity and compute for every program pointkesapreconditions which
also are represented by ideals. In this case, fixpointitera¢sults inascendinghains
of ideals which are guaranteed to terminate by Hilbert'sdteeorem. Therefore, our
method provides a decision procedure for validity of polyral identities. By using
a genericidentity with unknowns instead of coefficients, this metfadgb provides an
algorithm forinferring all valid polynomial identities up to a given degree [14].

An interprocedural generalization of Karr's algorithm isen in [15]. Using tech-
nigues from linear algebra, we succeed in inferring allriotecedurally valid affine
identities in programs with affine assignments and no guditts method easily gener-
alizes to inferring also all polynomial identities up to agfikdegree in these programs.
A generalization of the intraprocedural randomized alhomnito programs with proce-
dures is possible as well [8]. A first attempt to infer polyriahidentities in presence
of polynomial assignments and procedure calls is provigedddon [4]. His approach
is based on ideals of polynomiahnsition invariants We illustrate, though, the pitfalls
of this approach and instead show how the idea of precomditionputations can be
extended to an interprocedural analysis. In a natural mayatter analysis also extends
the interprocedural analysis from [15] where only affinégs®sients are considered.

The rest of the paper is organized as follows. Section 2 dinites basic notions.
Section 3 provides a precise characterization of all vadighpomial identities by means
of a constraint system. This characterization is based wefa propagation. Section
4 provides a second characterization based on effectivkegeprecondition computa-
tion. This leads to backwards-propagation algorithmshBgections 3 and 4 consider
only programs without procedures. Section 5 explains a@nskbn to polynomial pro-
grams with procedures based on polynomial transition iamés and indicates its limi-
tations. Section 6 presents a possible extension of theagég@kecondition approach to
procedures. Section 7 then indicates how equality guamibeadded to the analyses.
Finally, Section 8 summarizes and gives further directmfiresearch.

2 TheGeneral Set-up

We use similar conventions as in [15,17, 16] which we recatehin order to be self-
contained. Thus, programs are modeled by systems of n@mrdigistic flow graphs
that can recursively call each other as in Fig. 1. Ket= {x1,...,x;} be the set of

X17X27X3:0

T
Main: @%

T
P @ X3 := X3+ 1
X1 :=X1 +x2+1

P()
e X1 = X1 — X2
ONalg

Fig. 1. An interprocedural program.

(global) variables the program operates on. For ease oéptatson, we assume that
variables take values in the fief@. Similar arguments, though, can also be applied in
case values are integers frdror even when we consider values from a modular ring
Z,, forsomem = 2%, w > 1, as used in programming languages such as Java [17, 16].
In the programs we analyze, we assume the assignments &bhesrito be of the
form x; := p for some polynomiap from Q[X], i.e., the ring of all polynomials with
coefficients fromQ and variables fronX. Note that this restriction does not come by

accident. Itis well-known [9, 19] that it is undecidable fmm-deterministic flow graphs
to determine whether a given variable holds a constant \atlaegiven program point
in all executions if the full standard signature of arithimejperators (addition, subtrac-
tion, multiplication, and division) is available. Constgrof a variable is obviously a
polynomial identity:x is a constant at program pointif and only if the polynomial
identity x — ¢ = 0 is valid atn for somec € Q. Clearly, we can write all expressions
involving addition, subtraction, and multiplication wiglolynomials. Thus, if we allow
also division, validity of polynomial identities becomesdecidable.

Assignments with non-polynomial expressions or input dejeat values are there-
fore assumed to be abstracted wittim-deterministic assignmens non-deterministic
assignment of the form; :=7 (with x; € X) is meant to represent the non-deterministic
choice between all assignments := ¢, ¢ € Q. In general, we also assume that con-
ditional branching is abstracted with non-deterministianzhing, i.e., either way is
possible. Note that in [13] it is pointed out that in presentequality guards, exact
constant propagation again becomes undecidable. The onty éf guards at edges
which we can handle within our framework precisely are disdity guards of the form
p # 0 for some polynomiap. In order to reduce the number of program points in
examples, we sometimes annotate edges with sequencesgriasats. Also, we use
assignments; := x; which have no effect onto the program state as skip-stattsmen
and omit these in pictures. For the moment, skip-statensetsised to abstract, e.g.,
equality guards. In Section 7, we will present methods whjgproximatively deal with
equality guards.

A polynomial programcomprises a finite se®roc of procedure namewith one
distinguished procedurglain. Execution starts with a call tMain. Each procedure
q € Proc is specified by a distinct finite edge-labeleahtrol flow graphwith a single
start pointst, and a single return poimét, where each edge is labeled with an assign-
ment, a non-deterministic assignment, a disequality gaaedcall to some procedure.
For simplicity, we only consider procedures without partareor return values oper-
ating on global variables. The framework, though, canglriédrwardly be extended to
procedures with local variables, call-by-value parampésising and return values.

The basic approach of [15, 13, 17] which we take up here is tstcoct a precise
abstract interpretation of a constraint system charaiterithe concrete program se-
mantics. For that, we model gtate attained by program execution when reaching a
program point or procedure byfadimensional vectos: = [z, ..., 2] € Q* where
x; is the value assigned to variabie Runs through the program execute sequences of
assignments and guards. Each such sequence indpegsa polynomial transforma-
tion of the program state.

A (total) polynomial transformation can be described by a vector of polynomials
7 =|q,-..,qx] wherer applied to a vector. equals the vector:

7(2) = g (@), g ()]

where we have writtery () for the value returned by a polynomiglifor the vectorz.

A partial polynomial transformation is a pairr = (¢, 7) of a polynomial; and a poly-
nomial transformation. If ¢(«) # 0 thenn(z) is defined and returns(z). Otherwise,
7(x) is undefined. Partial polynomial transformations are aoseder composition

[14]. The partial polynomial transformations correspamgio single assignments and
disequality guards are given by:

[[XJ :p]] = (0, [xl,...,xj_l,p,xj_‘_l,...,xk])
[[Q#O]] = (Q7 [le"'7x/€])

The definition of a partial polynomial transformation is dégp extended to sets of
states. Since in general, procedures have multiple runsnedgel their semantics by
setsof partial polynomial transformations.

3 Intraprocedural Analysis: Forward Iteration

Letw = (¢, 7) be the partial polynomial transformation induced by songgpm run.
Then, a polynomial identity = 0 is said to bevalid after this run if, for each initial
statex € QF, eitherg(z) = 0 — in this case the run is not executable fram- or
q(z) # 0 andp(r(x)) = 0 —in this case the run is executable framand the final
state computed by the runigz). A polynomial identityp = 0 is said to be valid at a
program point if it is valid after every run reaching.

Clearly, if p = 0 is valid then alsa- - p = 0 for arbitrary polynomials-. Also, if
p1 = 0 andp, = 0 are valid then alsp; + p, = 0 is valid. Thus, the set of polynomials
p for whichp = 0 is valid atv forms apolynomial ideal Recall that, by Hilbert's basis
theorem, every polynomial idedlC Q[X] can be finitely represented by:

I=pi,....pm) =at {r1-p1+...+7m pm |1 € QX]}

for suitablepy,...,p, € Q[X]. The set{p1,...,pn} IS also said togeneratethe
ideall. Based on such representations, algorithms have beerogeddbr fundamental
operations on ideals [1]. In particular, membership is daloie for ideals as well as
containment and equality. Moreover, the set of all iddals Q[X] forms acomplete
lattice w.r.t. set inclusion £” where the least and greatest elements are the zero ideal
{0} and the complete rin@[X], respectively. The greatest lower bound of a set of
ideals is simply given by their intersection while theirdeapper bound is the ideal
sum More precisely, the sum of the idedlsand /s is defined by

Lo ={p1+p2|p1€l,ps €5}

A set of generators for the suhh & I is obtained by taking the union of sets of
generators for the ideals and /5.

For the moment, let us considetraproceduralanalysis only, i.e., analysis of pro-
grams just consisting of the procedain and without procedure calls. Such program
consist of a single control-flow graph. As an example, cardide program in Fig. 2.

Given that the set of valid polynomial identities at everggnam point can be de-
scribed by polynomial ideals, we can characterize the $etslid polynomial identities
by means of the following constraint systefn

4 A polynomial ideal is a set of polynomial which is closed under addition and umdelti-
plication with arbitrary polynomialsip,q € I : p+qge Tandvpe I,q e QX]:p-q € I.

zxX—Z—Yy*xx+1=0

Fig. 2. A program without procedures.

F(start) C {0}

Fv) C [xi=p]*(F(u)) (u,v) an assignment; := p
F) C [xi:=7F(u) (u,v) an assignment; := ?
F) < [p#0JH(F(u) (u,v) aguardp # 0

where the effects of assignments and disequality guardsideals! are given by:

[xi == pl*(I) = {q|qlp/xi] € I}
[xi == 704(1) = {30 a5x) |45 € INQX\{x;}]}
[p#01* (1) = {qlp-qel}

Intuitively, these definitions can be read as follows. A paignial identityq is valid after
an execution step iff its weakest precondition was valicdbbethe step. For an assign-
mentx; := p, this weakest precondition equal®/x;] = 0. For a non-deterministic
assignmenk; := 7, the weakest precondition of a polynomigk= Z}”:O ¢;x] with

¢; € Q[X\{x;}] is given by:

Vx,.9q=0 = ¢g=0A...AN¢n =0
Finally, for a disequality guarg # 0, the weakest precondition is given by:
(p£0)Vg=0=p=0VvVgqg=0=p-¢q=0

Obviously, the operationx; := t]*, [x; := ?]#, and[p # 0]* are monotonic. There-
fore by the fixpoint theorem of Knaster-Tarski, the consiraystemZ has a unique

greatest solution over the lattice of ideals@®{fX]. By definition, the operations com-
mute with arbitrary intersections. Therefore, using staddtoincidence theorems for
completely distributive intraprocedural dataflow frameks[10], we conclude:

Theorem 1. Assumep is a program without procedures. The greatest solution ef th
constraint systend for p precisely characterizes at every program painthe set of
all valid polynomial identities. a

The abstract effect of a disequality guard is readily exggdss an ideal quotient for
which effective implementations are well-known. The afistiassignment operations,
though, which we have used in the constraint sysfémre not very explicit. In order
to obtain an effective abstract assignment operation, tutively proceed as follows.
First, we replace the variablg appearing on the left-hand side of the assignment with
a new variablez both in the ideall and the right-hand side of the assignment. The
variablez thus represents the value xf beforethe assignment. Then we add the new
relationship introduced by the assignment (if there is amg)compute the ideal closure
to add all implied polynomial relationships between theafslesX andz. Since the
old value of the overwritten variable is no longer accessible keep from the implied
identities only those between the variables frl&mFormally, we verify:

Lemmal. Foreveryideall = (p1,...,p,) C Q[X] and polynomiap € Q[X],

1. {qlglp/xi] €I} = (xi—s,51,...,5:) NQ[X] and
2. {0 txi | ¢ € INQX\{X}H} = (s1,...,80) NQIX],

wheres = p[z/x;] ands; = p;[z/x;]fori=1,..., n.

Note that the only extra operation on ideals we use here ie#tdction of an ideal
to polynomials with variables from a subset. This operaisoalso callecelimination
and standard effective algorithms are known [1].

Proof. Assume that the idedlis generated from the polynomials, . . ., p,,. We only
prove statement (1). Assunge= qo(x; — $) + 2?21 g;js; does not contain variable
whereqo, . .., q, € QX U {z}], s = p[z/x;] and for allj, s; = p;[z/x;]. Since thes;
do not containk;,

qlp/xi] = ap(p — 8) + 27— 4jsj

for suitable polynomialgy, ..., ¢,. Substituting agairx; for z in this equation, we
therefore obtain:
alp/xi] = ai(p —p) + 25—, d}p;
_ Z" /7%
= 2.5=149P;

for suitable polynomialg(, ..., q).. Thereforeg[p/x;] € I.

For the reverse implication assugip/x;| € I whichmeansthatlp/x;] = >=7_, ¢;p;
for suitable polynomialg;. Substitutingz for x; in this equation, therefore gives us
qls/x:] = >_7_, ¢;s; for suitable polynomialg; wheres = p[z/x;] ands; = p;[z/x].
Now recall the identity (fok > 0):

k—1
xF—sf =g (x;—s) for gp= fosk_l_h
h=0

and assume that= 22:0 rex¥ for polynomialsr, € Q[X\{x;}]. Then

d
0 = Yioom- (e =) +qls/x]
= Dho1 TRk (Xi — 8) + 207 458,
= q, - (xi—9)+ 2?21 q;5; for the polynomial ¢}, = 2221 TrGk -

Thereforeq € (x; — s, 1, ..., $n). Sinceq € Q[X], the assertion follows. O

According to Lemma 1, all operations used in the constrgistesnF are effective.
Nonetheless, this does not in itself provide us with an aislglgorithm. The reason
is that the polynomial ring hasfinite decreasinghains of ideals. And indeed, simple
programs can be constructed where fixpoint iteration witlteaminate.

Example 1.Consider our simple example from Fig. 2. There, we obtainidkal for
program point 1 as the infinite intersection:

z—1-x,y—x%) N

O

Despite infinitely descending chains, the greatest solutfc= has been determined
precisely by Rodriguez-Carbonell et al. [21] — but only fosw@h-class of programs.
Rodriguez-Carbonell et al. consider simple loops whoseédsoecbnsist of a finite non-
deterministic choice between sequences of assignmergfysag additional restrictive
technical assumptions. No complete methods are knowndaifgiantly more general
classes of programs. Based on constraint systemve nonetheless obtain an effective
analysis which infersomevalid polynomial identities by applyingiideningfor fix-
point acceleration [6]. This idea has been proposed, eygRdulriguez-Carbonell and
Kapur [20] and Colon [4]. We will not pursue this idea herestbad, we propose a
different approach.

4 Intraprocedural Analysis: Backward Propagation

The key idea of [12,14] is this: instead of propagating ideal valid identities in a
forward direction, we start with a conjectured identjty= 0 at some program point
and compute weakest preconditions for this assertion bkvimatls propagation. The
conjecture is proven if and only if the weakest precondiibprogram entrgtart =
stmain iStrue. The assertiotrue, i.e., the empty conjunction is uniquely represented by
the ideal{0}. Note that it is decidable whether or not a polynomial ideplas{0}.

Assignments and disequality guards now induce transfeomsivhich for every
postcondition, return the corresponding weakest pretiomdi

[xi :=pl" ¢ = (qlp/xi]) ‘
[xi :=?1"q¢ = {(q1,-..,qm) wWhereq= > it a5 with ¢; € Q[X\{x;}]
[p#0]"q¢ = (p-q)

Note that we have represented the disjunctiea0V ¢ = 0 by p-¢q = 0. Also, we have
represented conjunctions of equalities by the ideals geeeby the respective poly-
nomials. The definitions of our transformers are readilyeeged to transformers for
ideals, i.e., conjunctions of identities. For a given tagyegram point and conjecture
q: = 0, we therefore can construct a constraint system

B(t) 2 {a)

B(u) 2 [x;:=p]"(B(v)) (u,v) labeled withx; :=p
B(u) 2 [x;:=?]"(B(v)) (u,v) labeled withx; :=?
B(u) 2 [p#0]T(B(v)) (u,v) labeled withp # 0

Since the basic operations are monotonic, the constragteisM3 has a unique
least solution in the lattice of ideals @fX]. Consider a single execution pattwhose
effect is described by the partial polynomial transformifiyo, [¢1, - - ., gx]). Then the
corresponding weakest precondition is given by:

[x]"p = {(qo-plar/x1,- - an/xx])

The weakest precondition @fw.r.t. a set of execution paths can be described by the
ideal generated by the weakest preconditions for everyutiacpath in the set sep-
arately. Since the basic operations in the constraint syteommute with arbitrary
least upper bounds, we once more apply standard coincidie@ceems to conclude:

Theorem 2. Assume is a polynomial program without procedures ahid a program
point of p. Assume the least solution of the constraint sydfeior a conjecturey, = 0
att assigns the ideal to program poinstart. Theng; = Oisvalid attiff I = {0}. O

Using a representation of ideals through finite sets of gegnes, the applications of
weakest precondition transformers for edges can be efédgttomputed. A computa-
tion of the least solution of the constraint syst8rby standard fixpoint iteration leads
to ascending chains of ideals. Therefore, in order to olaaieffective algorithm, we
only must assure thatscending:hains of ideals are ultimately stable. Due to Hilbert’s
basis theorem, this property indeed holds in polynomiaiginver fields (as well as
over integral domains lik&Z). Therefore, the fixpoint characterization of Theorem 2
gives us an effective procedure for deciding whether or nmirgectured polynomial
identity is valid at some program point of a polynomial praxgr

Corollary 1. Inapolynomial program without procedures, it can effeeijsbe checked
whether or not a polynomial identity is valid at some targeinp. a

Example 2.Consider our example program from Fig. 2. If we want to chéekdon-
jecturez - x —z —y + 1 = 0 for program point 1, we obtain:

B(2) 2 ((z-x—z—y+1)[y-x/y])
(z-x—z—y-x+1)

Iy

Since,
(z-x—z—y - x+1)z+y/z] = z-x—z—y+1

the fixpoint is already reached for program poihand2. Thus,

B(l) = (z-x—z—y+1)
B2) = (z-x—z—y-x+1)

Moreover,
B(0) = ((z-x—z—y+1)[0/z1/y])
= (0) = {0}
Therefore, the conjecture is proved. a

It seems that the algorithm of testing whether a certainrgpp@ynomial identity
po = 0 is valid at some program point contains no clue on how to istefar un-
known valid polynomial identities. This, however, is noitgurue. We show now how
to determine all polynomial identities of some arbitraryegi form that are valid at a
given program point of interest. The form of a polynomial igey by a selection of
monomials that may occur in the polynomial.

Let D C N¥ be a finite set of exponent tuples for the variabtes. . ., 2. Then a
polynomialg is called aD-polynomial if it contains only monomials- xlf o xfj,

b e Q,with (i1,...,i;) € D, i.e., ifit can be written as

_ i1 Tk
q= g Ao X1 ... X

o=(ik,...,ix)ED

If, for instance, we choosP = {(i1,...,ix) | i1 + ... + i < d} for a fixed maximal
degreel € N, then theD-polynomials are all the polynomials up to degteédere the
degreeof a polynomial is the maximal degree of a monomial occuriing where the
degree of a monomial- xi' - ...-x}*,b € Q, equalsiy + ...+ ij.

We introduce a new set of variablds, given by:

Ap={a,|oeD}.

Then we introduce thgenericD-polynomial as

_ E i1 ik
qdp = ag-xl-...~xk.
U:(ik,...,ik)eD

The polynomialyp is an element of the polynomial rinf@[X U A p]. Note that every
concreteD-polynomialg € Q[X] can be obtained from the gener2-polynomial
gp Simply by substituting concrete values € Q, o € D, for the variablesa,. If
a:o+— a,anda: o — a,, we writeqp[a/a] for this substitution.

Instead of computing the weakest precondition of eBepolynomialq separately,
we may compute the weakest precondition of the single gepatiynomialgp once
and for all and substitute the concrete coefficiantsof the polynomials; into the
precondition ofyp later. Indeed, we show in [14]:

Theorem 3. Assume is a polynomial program without procedures and &b (v), v
program point ofp, be the least solution of the constraint systéfior p with conjecture
qp attargett. Theng = qpla/al is valid att iff ¢'[a/a] = O forall ¢ € Bp(start). O

Clearly, it suffices thai’[a/a] = 0 only for a set of generators & (start). Still, this
does notimmediately give us an effective method of deteimgiall suitable coefficient
vectors, since the precise set of solutions of arbitrarympaiial equation systems are
not computable. We observe, however, in [14]:

Lemma?2. Every idealBp(u), v a program point, of the least solution of the abstract
constraint syster for conjectureyp at some target nodeis generated by a finite sét
of polynomials; where each variable, occurs only with degree at most 1. Moreover,
such a generator set can be effectively computed. a

Thus, the set of (coefficient maps) BFpolynomials which are valid at our target
program point can be characterized as the set of solutions lifiear equation sys-
tem. Such equation systems can be algorithmically solved finite representations of
their sets of solutions can be constructed explicitly,,dg.Gaussian elimination. We
conclude:

Theorem 4. For a polynomial progranp without procedures and a program poinin
p, the set of allD-polynomials which are valid d@tcan be effectively computed. O

As a side remark, we should mention that instead of workirth e larger poly-
nomial ringQ[X U A p], we could work withmodulesover the polynomial ring)[X]
consisting of vectors of polynomials whose entries arexadevitho € D. The oper-
ations on modules turn out to be practically much faster ttmaresponding operations
on the larger polynomial ring itself, see [18] for a practicaplementation and prelim-
inary experimental results.

5 Interprocedural Analysis. Transition Invariants

The main question of precise interprocedural analysisigs ttow can the effects of
procedure calls be finitely described? An interesting idgsaéntially) due to Colon [4]
is to represent effects by polynomiednsition invariants This means that we introduce
aseparate copX’ = {x/, ..., x] } of variables denoting the values of variables before
the execution. Then we use polynomials to express posglatanships between pre-
and post-states of the execution. Obviously, all such valigtionships again form an
ideal, now in the polynomial rin@[X U X'].

The transformation ideals for assignments, non-detestitrdssignments and dis-
equality guards are readily expressed by:

[xi == p]* = ({x; —x} | j # i} U{x; — p[x/x]})

[xi =71 = ({x; —x] | j #1i})

[p#01% = {pl'/x] - (x; —x)) [5 =1,....k})
In particular, the last definition means that either the diswrong before the transition
or the states before and after the transition are equal. a$ie bffects can be composed

to obtain the effects of larger program fragments by meamsaafmposition operation
“o". Composition on transition invariants can be defined by:

Lol = (Ly/x] & Lly/x]) NQXUX]

where a fresh seY = {y1,...,yx} is used to store the intermediate values between
the two transitions represented byandl, and the postfix operatdy /x| denotes re-
naming of variables iX with their corresponding copies . Note that %" is defined

by means of well-known effective ideal operations. Using tperation, we can put up

a constraint syster for ideals of polynomial transition invariants of procedsir

Tw) C (x;—x}|i=1,...,k) wvisentrypoint
T(v) C [xi:=p]*oT(u) (u,v) is labeled withx; := p
T(v) C [xi:=?]"* 07 (u) (u,v) is labeled withx; :=7
T(v) C [p#0]* 0T (u) (u,v) is labeled withp # 0
T(w) C T(f)oT(u) (u,v) calls f
T(f) € T(v) v exit point of f

Main : fO:

AN
\C? 7 @
@
y 70
@

Fig. 3. A simple program with procedures.

®

Example 3.Consider the program from Fig. 3. We calculate:

T(f) = x—-x,y—-y) N
x—x'-1Ly—-y -x)n

(x—x'-2,y-y x'-(xX'+1)) N
= (0)
Using this invariant for analyzing the procedutiein, we only find the trivial transition
invariant0. On the other hand, we may insteitine the procedurd as in Fig. 4. A

Fig.4. The inlined version of the example program.

corresponding calculation of the transition invariantrafin yields:

7 (Main) = (x—x,y) N

<X —-x' - 17 Y> N
(x—x ~2,y) N
= (y)
Thus for this analysis, inlining may gain precision. a

Clearly, using transition invariants incurs the same pobas forward propagation
for intraprocedural analysis, namely, that fixpoint itevatmay result in infinite de-
creasing chains of ideals. Our minimal example exhibiteal twore problems, namely
that the composition operation is n@intinuousi.e., does not commute with greatest
lower bounds of descending chains in the second argumeahglsa that a less compo-
sitional analysis through inlining may infer more validrtgition invariants.

To be fair here, it should be noted that Colon did not proposeséidealsfor repre-
senting transition invariants. Colon instead consid@wslidoideals, i.e., ideals where
polynomials are considered only up to a given degree bouhid. Kind of further ab-
straction solves the problems of infinite decreasing chasnsell as missing continuity
— at the expense, though, of further loss in precision. Cslapproach, for example,
fails to find a nontrivial invariant in the example prograrorfr Fig. 3 forMain.

6 Interprocedural Analysis. Backward Propagation

Due to the apparent weaknesses of the approach throughgooigis as transition in-
variants, we propose to represent effects of proceduresdrggnditions of generic
polynomials. Procedure calls are then dealt with througtaimtiation of generic coeffi-
cients. Thus, effects are still described by ideals — overger set of variables (or by
modules; see the discussion at the end of Section 4). Supg@okave chosen some fi-
nite setD C Nk of exponent tuples and assume that the polynomialpp[a/a] is the
D-polynomial that is obtained from the geneficpolynomial through instantiation of
the generic coefficients witt. Assume further that the effect of some procedure call is

given by the ideal C QXU Ap] = (q1, ..., ¢n)- Then we determine a precondition
of p = 0 w.r.t. to the call by:

I'(p) = (qla/al; ..., gmla/a])

This definition is readily extended to idedlsgenerated by)-polynomials. There is no
guarantee, though, that all ideals that occur at the targgtram points of call edges
(u, v) will be generated by)-polynomials. In fact, simple examples can be constructed
where no uniform seD of exponent tuples can be given. Therefore, we additionally
propose to use an abstraction operdrthat splits polynomials appearing as post-
condition of procedure calls which are nbtpolynomials.

We choose a maximal degrégfor each program variable; and let

D:{(’Ll,,Zk)|ZJ§de0rZ:1,,k}

The abstraction operat®V takes generators of an idedahnd maps them to generators
of a (possibly) larger ideaW (I) which is generated by)-polynomials. In order to
construct such an ideal, we need a heuristics which decags@wsarbitrary polynomial
q into a linear combination ab-polynomialsgy, . . ., g, :

q=71q1 + ...+ Tmqm Q)
We could, for example, decompoge@ccording to the first variable:

g=gh+x{T g+ XY g
where eacly, contains powers af; only up to degred; and repeat this decomposition
with the polynomialg; for the remaining variables. Given a decomposition (1), aeeh
q € {q1,--.,qm). Therefore, we can replace every generataf by D-polynomials in
order to obtain an idedV (I) with the desired properties.

We use the new application operator as well as the abstragfieratoW to gen-
eralize our constraint systehto a constraint systeifi for the effects of procedures:

E(u) 2 (qp) u is exit point

Ew) 2 [xi:==p]"(E()) (u,v) labeled withx; := p
E(w) 2 [xi =" (E(v)) (u, v) labeled withx; :=?
E(w) 2 [p#0]"(EW)) (u,v) labeled withp # 0
E(u) 2 E(f)(W(E(v))) (u,v) calls f

E(f) 2 E(u) u entry point of f

Example 4.Consider again the example program from Fig. 3. Let us chdose 1
wherep; = ay + bx + ¢. Then we calculate fof:

£(f) =«
(ayx +b(x+1)+c) @&
(ayx(x+1)+b(x+2)+c) @
(ayx(x+1)(x+2)+b(x+3)+c) &

= (ay,b,c)

This description tells us that for a linear identity + bx + ¢ = 0 to be valid after a calll
to f, the coefficientd andc necessarily must equal 0. Moreover, either coefficient
equals 0 (implying that the whole identity is trivial) r= 0. Indeed, this is the optimal
description of the behavior gf with polynomials. a

The effects of procedures as approximated by constraitésys can be used to
check a polynomial conjectukg at a given target nodealong the lines of constraint
systemB. We only have to extend it by extra constraints dealing withction calls.
Thus, we put up the following constraint system:

R(t) 2 (@)

R(u) 2 [x; :=p]"(R(v)) u,v) labeled withx; := p
R(u) 2 [x; :=?]"(R(v)) (u,v) labeled withx; :=?
R(u) 2 [p# 0]T(R(v)) (u,v) labeled withp # 0
R(u) 2 ENWRE)) () calsf

R(f) 2 R(u) u entry point of f

R(u) 2 R(f) u,-) calls f

This constraint system again has a least solution which eacomputed by standard
fixpoint iteration. Summarizing, we obtain the followingethrem:

Theorem 5. Assume is a polynomial program with procedures. Assume furthet tha
we assert a conjecturg at program pointt.

Safety: 1. For every procedurd, the ideal£(f) represents a precondition of the
identitypp = 0 after the call.
2. If the idealR(Main) equals{0}, then the conjecturg; is valid att.
Completeness: If during fixpoint computation, all ideals at target progrgmintsv of
call edges(u,v) are represented by-polynomials as generators, the conjecture
is valid only if the idealR (Main) equals{0}.

The safety-part of Theorem 5 tells us that our analysis weNar assure a wrong
conjecture but may fail to certify a conjecture althoughsitvalid. According to the
completeness-part, however, the analysis algorithm gesvlightly more information:
if no approximation steps are necessary at procedure dadisnalysis is precise. For
simplicity, we have formulated Theorem 5 in such a way thainly speaks about
checking conjectures. In order to infer valid polynomiamdities up to a specified de-
gree bound, we again can proceed analogous to the intrapnaease by considering
a generic postcondition in constraint syst&n

7 Equality Guards

In this section, we discuss methods for dealing with equajitardsp = 0. Recall,
that in presence of equality guards, the question whethariahle is constantly O at
a program point or not is undecidable even in absence of duves and with affine
assignments only. Thus, we cannot hope for complete metherds Still, in practical
contexts, equality guards are a major source of informatloout values of variables.

x =10 x:=x+1

Fig.5. A simple for-loop.

Consider, e.qg., the control flow graph from Fig. 5. Then, adicq to the equality guard,
we definitely know thak = 10 whenever program point 2 is reached. In order to deal
with equality guards, we thus extend forward analysis bycthestraints:

F() C [p=0]*F(u)) (u,v) labeled withp = 0
where the effect of an equality guard is given by:
[p=01 = I®p)

This formalizes our intuition that after the guard, we aiddially know thatp = 0
holds. Such an approximate treatment of equality guardsnsnoon in forward pro-
gram analysis and already proposed by Karr [11]. A simildeesion is also possible
for inferring transition invariants. The new effectis meowic. However, itis, no longer
distributive, i.e., it does not commute with intersectioDsie to monotonicity, the ex-
tended constraint systemtsas well as7 still have greatest solutions which provide safe
approximations of the sets of all valid invariants and ti@ms invariants in presence of
equality guards, respectively.

Example 5.Consider the program from Fig. 5. For program point 1 we have:

F(1) x)yN{x-—1HN{x-—2)N...

= {0}
Accordingly, we find for program point 2,

F(2) = {0} & (x—10)
= (x—10)

Thus, given the lower bounfD} for the infinite decreasing chain of program point 1,
we arrive at the desired result for program point 2. a

It would be nice if also backward analysis could be extendild some approximate
method for equality guards. Our idea for such an extensibased oriagrange mul-
tipliers. Recall that theveakesprecondition for validity ofy = 0 after a guargh = 0
is given by:

which, for every), is implied by:
g+A-p=0

The value) is called aLagrangemultiplier and can be arbitrarily chosen. We remark
that a related technique has been proposed in [5] for imfggparametric program in-
variants. Thus, we define:

[p=0]"(q) = (g+p-\)

where a different formal multiplien is chosen for every occurrence of an equality
guard. Similar to the treatment of generic postconditidins,parameters will occur
linearly in a suitably chosen set of generators for the prditmn ideal at program start
where they can be chosen appropriately.

Example 6.Again consider the program from Fig. 5 and assume that wenteseisted
in identities up to degree 1 at the exit point of the programudwe start with the
generic polynomiaax + b = 0 at node 2. This gives us for program point 1:

Bi(l) = ((a+A)-x+b—-10)\) @
((a4+A)-x+a+A+b—10))

= (a+ A\, b—10))
Choosing\ = —a, we obtainb = —10a. Therefore all multiples of the polynomial
x — 10 are valid identities for program point 2. a

Instead of using a single variableas a Lagrange multipliers we could also use an
entire polynomial. This means that we use in (2) a generigmhialgp (for some set
D of exponent tuples) instead of the variablér each equality guarg = 0:

[p=0]"(q) = (g+p-apA)

where we use new variablel, = {a, | o € D} in ¢qp for each equality guard. Now,
all the variables im p can be adjusted in the computed weakest precondition. Téys m
lead to more precise results — at the price of a more expeasagsis.

8 Discussion

We have summarized forward and backward iteration methardaferring valid poly-
nomial identities. In absence of procedure calls, we adratea rather clear picture: we
exhibited a finite constraint system which precisely cha@mzes the set of all valid
polynomial identities in a polynomial program. Due to pb$siinfinite decreasing

chains of ideals, it is currently open whether the greatekition of this constraint

system can effectively be computed. On the other hand, backanalysis based on
weakest precondition computations relies on increasiagnstof ideals — allowing us

to decide whether any given conjecture at a program poirdlig.vAlso, this enables

us to effectively find all valid polynomial identities up tayaven degree.

In presence of procedure calls, the picture is less clea. nidtural extension of
the intraprocedural forward propagation suggests to wesasdf polynomial transition
invariants to describe effects of procedures. The comipasifperation for such ideals,
though, turned out to be non-continuous. Also, our examptavs that using poly-
nomial transition invariants may not be precise, i.e., magsmome valid polynomial
identities. Therefore, we considered a generalizationaskivard analysis which de-
scribes effects of procedures by means of preconditiongégc polynomials. Here,
we obtained a precise finite characterization of identibdesome given form only if
in the polynomials occurring during the analysis at procedxits the degrees of the
variables are bounded. Note that this approach can be @edids a smooth general-
ization of the methods in [15] for affine programs where atturcing polynomials are
known to have bounded degree.

It still remains open whether precise techniques can beddanlifting the degree
bound in the general intraprocedural case. It is also unblea to deal with recursive
programs precisely if the degrees of weakest precondijoms arbitrarily.

References

[EnY

. T. Becker and V. Weispfenningsrobner BasesSpringer-Verlag, 1993.

. S.Bensalem, Y. Lakhnech, and H. Saidi. Powerful Teclesdar the Automatic Generation
of Invariants. In8th Int. Conf. on Computer Aided Verification (CA¥plume 1102 of
Lecture Notes in Computer Scien&pringer, 1996.

3. N. Bjgrner, A. Browne, and Z. Manna. Automatic Generatibmvariants and Intermediate
Assertions.Theoretical Computer Scienc&73(1):49-87—, 1997.

4. M. Colon. Approximating the Algebraic Relational Seniesibf Imperative Programs. In
11th Int. Symp. on Static Analysis (SA®)ges 296—311. Springer-Verlag, LNCS 3146, 2004.

5. P. Cousot. Proving Program Invariance and TerminatioiPé&gametric Abstraction, La-
grangian Relaxation and Semidefinite Programming Vérification, Model Checking and
Abstract Interpretation (VMCA])pages 1-24. Springer-Verlag, LNCS 3385, 2005.

6. P. Cousot and R. Cousot. Static Determination of Dynamipé&tties of Recursive Proce-
dures. In E. Neuhold, editoii-IP Conf. on Formal Description of Programming Concepts
pages 237-277. North-Holland, 1977.

7. S. Gulwani and G. Necula. Discovering Affine EqualitiesrigsRandom Interpretation. In
30th ACM Symp. on Principles of Programming Languages (PQOpdges 74-84, 2003.

8. S. Gulwani and G. Necula. Precise Interprocedural Aiglysing Random Interpretation.
In 32th Ann. ACM Symp. on Principles of Programming LanguaB&L), pages 324—-337,
2005.

9. M. S. Hecht.Flow Analysis of Computer Programglsevier North-Holland, 1977.

10. J. Kam and J. Ullman. Global Data Flow Analysis and Iteeaflgorithms. Journal of the

ACM (JACM) 23(1):158-171, 1976.
11. M. Karr. Affine Relationships Among Variables of a Pragr&\cta Informatica 6:133-151,
1976.

N

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Muller-Olm and H. Seidl. Polynomial Constants arecidable. In9th Static Analysis
Symposium (SA)ages 4-19. LNCS 2477, Springer-Verlag, 2002.

M. Miiller-Olm and H. Seidl. A Note on Karr's Algorithmn31st Int. Coll. on Automata,
Languages and Programming (ICALR)ages 1016-1028. Springer Verlag, LNCS 3142,
2004.

M. Miiller-Olm and H. Seidl. Computing Polynomial Pragr Invariants.Information Pro-
cessing Letters (IPLP1(5):233-244, 2004.

M. Miller-Olm and H. Seidl. Precise Interproceduralalysis through Linear Algebra. In
31st ACM Symp. on Principles of Programming Languages (PQftiges 330-341, 2004.
M. Muller-Olm and H. Seidl. A Generic Framework for Imteocedural Analysis of Nu-
merical Properties. 182th Static Analysis Symposium (SA®)ges 235-250. LNCS 3672,
Springer-Verlag, 2005.

M. Muller-Olm and H. Seidl. Analysis of Modular Arithrtie. In European Symposium on
Programming (ESORpages 46—60. Springer Verlag, LNCS 3444, 2005.

M. Petter. Berechnung von polynomiellen Invariant€d@4 Diploma Thesis.

J. R. Reif and H. R. Lewis. Symbolic Evaluation and theb@lo/alue Graph. Idth ACM
Symp. on Principles of Programming Languages POPLp&ges 104-118, 1977.

E. Rodriguez-Carbonell and D. Kapur. An Abstract Intetation Approach for Automatic
Generation of Polynomial Invariants. [lth Int. Symp. on Static Analysis (SARges
280-295. Springer-Verlag, LNCS 3146, 2004.

E. Rodriguez-Carbonell and D. Kapur. Automatic Genenabf Polynomial Loop Invari-
ants: Algebraic Foundations. Int. ACM Symposium on Symbolic and Algebraic Computa-
tion 2004 (ISSACO04)pages 266-273, 2004.

S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Noarlio®op Invariant Generation
using Grobner Bases. IACM Symp. on Principles of Programming Languages (PQPL)
pages 318-329, 2004.

