
Interprocedurally Analyzing Polynomial Identities

Markus Müller-Olm1, Michael Petter2, and Helmut Seidl2

1 Westfälische Wilhelms-Universität Münster, Institutfür Informatik
Einsteinstr. 62, 48149 Münster, Germany
mmo@math.uni-muenster.de

2 TU München, Institut für Informatik, I2
80333 München, Germany
seidl@in.tum.de

Abstract. Since programming languages are Turing complete, it is impossible
to decide for all programs whether a given non-trivial semantic property is valid
or not. The way-out chosen by abstract interpretation is to provideapproximate
methods which may fail to certify a program property on some programs. Preci-
sion of the analysis can be measured by providing classes of programs for which
the analysis is complete, i.e., decides the property in question. Here, we consider
analyses of polynomial identities between integer variables such asx1 · x2 −

2x3 = 0. We describe current approaches and clarify their completeness proper-
ties. We also present an extension of our approach based on weakest precondition
computations to programs with procedures and equality guards.

1 Introduction

Invariants and intermediate assertions are the key to deductive verification of programs.
Correspondingly, techniques for automatically checking and finding invariants and in-
termediate assertions have been studied (cf., e.g., [3, 2, 22]). In this paper we present
analyses that check and find valid polynomial identities in programs. A polynomial
identity is a formulap(x1, . . . ,xk) = 0 wherep(x1, . . . ,xk) is a multi-variate polyno-
mial in the program variablesx1, . . . ,xk.3

Looking for valid polynomial identities is a rather generalquestion with many ap-
plications. Many classical data flow analysis problems can be seen as problems about
polynomial identities. Some examples are: findingdefinite equalities among variables
like x = y; constant propagation, i.e., detecting variables or expressions with a constant
value at run-time;discovery of symbolic constantslike x = 5y+2 or evenx = yz2+42;
detection of complex common sub-expressionswhere even expressions are sought which
are syntactically different but have the same value at run-time such asxy+42 = y2+5;
anddiscovery of loop induction variables.

Polynomial identities found by an automatic analysis are also useful for program
verification, as they provide non-trivial valid assertionsabout the program. In particular,
loop invariants can be discovered fully automatically. As polynomial identities express

3 More generally our analyses can handle positive Boolean combinations of polynomial identi-
ties.



quite complex relationships among variables, the discovered assertions may form the
backbone of the program proof and thus significantly simplify the verification task.

In the following, we critically review different approaches for determining valid
polynomial identities with an emphasis on their precision.In expressions, only addition
and multiplication are treated exactly, and, except for guards of the formp 6= 0 for poly-
nomialsp, conditional choice is generally approximated by non-deterministic choice.
These assumptions are crucial for the design of effective exact analyses [12, 13]. Such
programs will be calledpolynomialin the sequel.

Much research has been devoted to polynomial programs without procedure calls,
i.e., intraproceduralanalyses. Karr was the first who studied this problem [11]. He
considers polynomials of degree at most 1 (affineexpressions) both in assignments and
in assertions and presents an algorithm which, in absence ofguards, determines all
valid affine identities. This algorithm has been improved bythe authors and extended
to deal with polynomial identities up to a fixed degree [13]. Gulwani and Necula also
re-considered Karr’s analysis problem [7] recently. They use randomization in order to
improve the complexity of the analysis at the price of a smallprobability of finding
invalid identities.

The first attempt to generalize Karr’s method topolynomialassignments is [12]
where we show that validity of a polynomial identity at a given target program point is
decidable for polynomial programs. Later, Rodriguez-Carbonell et al. propose an anal-
ysis based on the observation that the set of identities which are valid at a program point
can be described by a polynomialideal [20]. Their analysis is based on a constraint sys-
tem over polynomial ideals whose greatest solution precisely characterizes the set of all
valid identities. The problem, however, with this approachis thatdescendingchains of
polynomial ideals may be infinite implying that no effectivealgorithm can be derived
from this characterization. Therefore, they provide special cases [21] or approxima-
tions that allow to infer some valid identities. Opposed to that, our approach is based
on effective weakest precondition computations [12, 14]. We consider assertions to be
checked for validity and compute for every program point weakest preconditions which
also are represented by ideals. In this case, fixpoint iteration results inascendingchains
of ideals which are guaranteed to terminate by Hilbert’s basis theorem. Therefore, our
method provides a decision procedure for validity of polynomial identities. By using
a genericidentity with unknowns instead of coefficients, this methodalso provides an
algorithm forinferring all valid polynomial identities up to a given degree [14].

An interprocedural generalization of Karr’s algorithm is given in [15]. Using tech-
niques from linear algebra, we succeed in inferring all interprocedurally valid affine
identities in programs with affine assignments and no guards. The method easily gener-
alizes to inferring also all polynomial identities up to a fixed degree in these programs.
A generalization of the intraprocedural randomized algorithm to programs with proce-
dures is possible as well [8]. A first attempt to infer polynomial identities in presence
of polynomial assignments and procedure calls is provided by Colon [4]. His approach
is based on ideals of polynomialtransition invariants. We illustrate, though, the pitfalls
of this approach and instead show how the idea of precondition computations can be
extended to an interprocedural analysis. In a natural way, the latter analysis also extends
the interprocedural analysis from [15] where only affine assignments are considered.



The rest of the paper is organized as follows. Section 2 introduces basic notions.
Section 3 provides a precise characterization of all valid polynomial identities by means
of a constraint system. This characterization is based on forward propagation. Section
4 provides a second characterization based on effective weakest precondition computa-
tion. This leads to backwards-propagation algorithms. Both Sections 3 and 4 consider
only programs without procedures. Section 5 explains an extension to polynomial pro-
grams with procedures based on polynomial transition invariants and indicates its limi-
tations. Section 6 presents a possible extension of the weakest-precondition approach to
procedures. Section 7 then indicates how equality guards can be added to the analyses.
Finally, Section 8 summarizes and gives further directionsof research.

2 The General Set-up

We use similar conventions as in [15, 17, 16] which we recall here in order to be self-
contained. Thus, programs are modeled by systems of non-deterministic flow graphs
that can recursively call each other as in Fig. 1. LetX = {x1, . . . ,xk} be the set of

5

8
9

6
7

0
1

3
4

P : x3 := x3 + 1

x1 := x1 + x2 + 1

x1 := x1 − x2

x1 := x1 − x2 − x3

Main:

2

x2 := x1

x3 := 0

P ()

P ()

x1 − x2 − x3 = 0

Fig. 1. An interprocedural program.

(global) variables the program operates on. For ease of presentation, we assume that
variables take values in the fieldQ. Similar arguments, though, can also be applied in
case values are integers fromZ or even when we consider values from a modular ring
Zm for somem = 2w, w ≥ 1, as used in programming languages such as Java [17, 16].

In the programs we analyze, we assume the assignments to variables to be of the
form xj := p for some polynomialp from Q[X], i.e., the ring of all polynomials with
coefficients fromQ and variables fromX. Note that this restriction does not come by



accident. It is well-known [9, 19] that it is undecidable fornon-deterministic flow graphs
to determine whether a given variable holds a constant valueat a given program point
in all executions if the full standard signature of arithmetic operators (addition, subtrac-
tion, multiplication, and division) is available. Constancy of a variable is obviously a
polynomial identity:x is a constant at program pointn if and only if the polynomial
identityx − c = 0 is valid atn for somec ∈ Q. Clearly, we can write all expressions
involving addition, subtraction, and multiplication withpolynomials. Thus, if we allow
also division, validity of polynomial identities becomes undecidable.

Assignments with non-polynomial expressions or input dependent values are there-
fore assumed to be abstracted withnon-deterministic assignments. A non-deterministic
assignment of the formxj :=? (with xj ∈ X) is meant to represent the non-deterministic
choice between all assignmentsxj := c, c ∈ Q. In general, we also assume that con-
ditional branching is abstracted with non-deterministic branching, i.e., either way is
possible. Note that in [13] it is pointed out that in presenceof equality guards, exact
constant propagation again becomes undecidable. The only form of guards at edges
which we can handle within our framework precisely are disequality guards of the form
p 6= 0 for some polynomialp. In order to reduce the number of program points in
examples, we sometimes annotate edges with sequences of assignments. Also, we use
assignmentsxj := xj which have no effect onto the program state as skip-statements
and omit these in pictures. For the moment, skip-statementsare used to abstract, e.g.,
equality guards. In Section 7, we will present methods whichapproximatively deal with
equality guards.

A polynomial programcomprises a finite setProc of procedure nameswith one
distinguished procedureMain. Execution starts with a call toMain. Each procedure
q ∈ Proc is specified by a distinct finite edge-labeledcontrol flow graphwith a single
start pointstq and a single return pointretq where each edge is labeled with an assign-
ment, a non-deterministic assignment, a disequality guardor a call to some procedure.
For simplicity, we only consider procedures without parameters or return values oper-
ating on global variables. The framework, though, can straightforwardly be extended to
procedures with local variables, call-by-value parameterpassing and return values.

The basic approach of [15, 13, 17] which we take up here is to construct a precise
abstract interpretation of a constraint system characterizing the concrete program se-
mantics. For that, we model astateattained by program execution when reaching a
program point or procedure by ak-dimensional vectorx = [x1, . . . , xk] ∈ Qk where
xi is the value assigned to variablexi. Runs through the program execute sequences of
assignments and guards. Each such sequence induces apartial polynomial transforma-
tion of the program state.

A (total) polynomial transformationτ can be described by a vector of polynomials
τ = [q1, . . . , qk] whereτ applied to a vectorx equals the vector:

τ(x) = [q1(x), . . . , qk(x)]

where we have writtenq′(x) for the value returned by a polynomialq′ for the vectorx.
A partial polynomial transformationπ is a pairπ = (q, τ) of a polynomialq and a poly-
nomial transformationτ . If q(x) 6= 0 thenπ(x) is defined and returnsτ(x). Otherwise,
π(x) is undefined. Partial polynomial transformations are closed under composition



[14]. The partial polynomial transformations corresponding to single assignments and
disequality guards are given by:

[[xj := p]] = (0, [x1, . . . ,xj−1, p,xj+1, . . . ,xk])
[[q 6= 0]] = (q, [x1, . . . ,xk])

The definition of a partial polynomial transformation is readily extended to sets of
states. Since in general, procedures have multiple runs, wemodel their semantics by
setsof partial polynomial transformations.

3 Intraprocedural Analysis: Forward Iteration

Let π = (q, τ) be the partial polynomial transformation induced by some program run.
Then, a polynomial identityp = 0 is said to bevalid after this run if, for each initial
statex ∈ Qk, eitherq(x) = 0 – in this case the run is not executable fromx – or
q(x) 6= 0 andp(τ(x)) = 0 – in this case the run is executable fromx and the final
state computed by the run isτ(x). A polynomial identityp = 0 is said to be valid at a
program pointv if it is valid after every run reachingv.

Clearly, if p = 0 is valid then alsor · p = 0 for arbitrary polynomialsr. Also, if
p1 = 0 andp2 = 0 are valid then alsop1 +p2 = 0 is valid. Thus, the set of polynomials
p for whichp = 0 is valid atv forms apolynomial ideal.4 Recall that, by Hilbert’s basis
theorem, every polynomial idealI ⊆ Q[X] can be finitely represented by:

I = 〈p1, . . . , pm〉 =df {r1 · p1 + . . . + rm · pm | ri ∈ Q[X]}

for suitablep1, . . . , pm ∈ Q[X]. The set{p1, . . . , pm} is also said togeneratethe
idealI. Based on such representations, algorithms have been developed for fundamental
operations on ideals [1]. In particular, membership is decidable for ideals as well as
containment and equality. Moreover, the set of all idealsI ⊆ Q[X] forms acomplete
lattice w.r.t. set inclusion “⊆” where the least and greatest elements are the zero ideal
{0} and the complete ringQ[X], respectively. The greatest lower bound of a set of
ideals is simply given by their intersection while their least upper bound is the ideal
sum. More precisely, the sum of the idealsI1 andI2 is defined by

I1 ⊕ I2 = {p1 + p2 | p1 ∈ I1, p2 ∈ I2}

A set of generators for the sumI1 ⊕ I2 is obtained by taking the union of sets of
generators for the idealsI1 andI2.

For the moment, let us considerintraproceduralanalysis only, i.e., analysis of pro-
grams just consisting of the procedureMain and without procedure calls. Such program
consist of a single control-flow graph. As an example, consider the program in Fig. 2.

Given that the set of valid polynomial identities at every program point can be de-
scribed by polynomial ideals, we can characterize the sets of valid polynomial identities
by means of the following constraint systemF :

4 A polynomial idealI is a set of polynomial which is closed under addition and under multi-
plication with arbitrary polynomials:∀p, q ∈ I : p + q ∈ I and∀p ∈ I, q ∈ Q[X] : p · q ∈ I .



1

0

2

y := 1
z := 0

y := y ∗ xz := z + y

0 = 0

z ∗ x − z − y ∗ x + 1 = 0

z ∗ x− z − y + 1 = 0

Fig. 2. A program without procedures.

F(start) ⊆ {0}
F(v) ⊆ [[xi := p]]♯(F(u)) (u, v) an assignmentxi := p
F(v) ⊆ [[xi := ?]]♯(F(u)) (u, v) an assignmentxi := ?
F(v) ⊆ [[p 6= 0]]♯(F(u)) (u, v) a guardp 6= 0

where the effects of assignments and disequality guards onto idealsI are given by:

[[xi := p]]♯(I) = {q | q[p/xi] ∈ I}

[[xi := ?]]♯(I) = {
∑m

j=0 qjx
j
i | qj ∈ I ∩ Q[X\{xi}]}

[[p 6= 0]]♯(I) = {q | p · q ∈ I}

Intuitively, these definitions can be read as follows. A polynomial identityq is valid after
an execution step iff its weakest precondition was valid before the step. For an assign-
mentxi := p, this weakest precondition equalsq[p/xi] = 0. For a non-deterministic
assignmentxi := ?, the weakest precondition of a polynomialq =

∑m
j=0 qjx

j
i with

qj ∈ Q[X\{xi}] is given by:

∀ xi. q = 0 ≡ q0 = 0 ∧ . . . ∧ qm = 0

Finally, for a disequality guardp 6= 0, the weakest precondition is given by:

¬(p 6= 0) ∨ q = 0 ≡ p = 0 ∨ q = 0 ≡ p · q = 0

Obviously, the operations[[xi := t]]♯, [[xi := ?]]♯, and[[p 6= 0]]♯ are monotonic. There-
fore by the fixpoint theorem of Knaster-Tarski, the constraint systemF has a unique
greatest solution over the lattice of ideals ofQ[X]. By definition, the operations com-
mute with arbitrary intersections. Therefore, using standard coincidence theorems for
completely distributive intraprocedural dataflow frameworks [10], we conclude:



Theorem 1. Assumep is a program without procedures. The greatest solution of the
constraint systemF for p precisely characterizes at every program pointv, the set of
all valid polynomial identities. ⊓⊔

The abstract effect of a disequality guard is readily expressed as an ideal quotient for
which effective implementations are well-known. The abstract assignment operations,
though, which we have used in the constraint systemF are not very explicit. In order
to obtain an effective abstract assignment operation, we intuitively proceed as follows.
First, we replace the variablexi appearing on the left-hand side of the assignment with
a new variablez both in the idealI and the right-hand side of the assignment. The
variablez thus represents the value ofxi beforethe assignment. Then we add the new
relationship introduced by the assignment (if there is any)and compute the ideal closure
to add all implied polynomial relationships between the variablesX andz. Since the
old value of the overwritten variable is no longer accessible, we keep from the implied
identities only those between the variables fromX. Formally, we verify:

Lemma 1. For every idealI = 〈p1, . . . , pn〉 ⊆ Q[X] and polynomialp ∈ Q[X],

1. {q | q[p/xi] ∈ I} = 〈xi − s, s1, . . . , sk〉 ∩ Q[X] and
2. {

∑m
j=0 qjx

j
i | qj ∈ I ∩ Q[X\{xi}]} = 〈s1, . . . , sn〉 ∩ Q[X] ,

wheres = p[z/xi] andsj = pj[z/xi] for i = 1, . . . , n.

Note that the only extra operation on ideals we use here is therestriction of an ideal
to polynomials with variables from a subset. This operationis also calledelimination
and standard effective algorithms are known [1].

Proof. Assume that the idealI is generated from the polynomialsp1, . . . , pn. We only
prove statement (1). Assumeq = q0(xi − s) +

∑n
j=1 qjsj does not contain variablez

whereq0, . . . , qn ∈ Q[X ∪ {z}], s = p[z/xi] and for allj, sj = pj [z/xi]. Since thesj

do not containxi,
q[p/xi] = q′0(p − s) +

∑n
j=1 q′jsj

for suitable polynomialsq′0, . . . , q
′

n. Substituting againxi for z in this equation, we
therefore obtain:

q[p/xi] = q′′0 (p − p) +
∑n

j=1 q′′j pj

=
∑n

j=1 q′′j pj

for suitable polynomialsq′′0 , . . . , q′′n. Therefore,q[p/xi] ∈ I.
For the reverse implication assumeq[p/xi] ∈ I which means thatq[p/xi] =

∑n
j=1 qjpj

for suitable polynomialsqj . Substitutingz for xi in this equation, therefore gives us
q[s/xi] =

∑n
j=1 q′jsj for suitable polynomialsq′j wheres = p[z/xi] andsj = pj [z/xi].

Now recall the identity (fork > 0):

xk
i − sk = gk · (xi − s) for gk =

k−1∑

h=0

xh
i sk−1−h



and assume thatq =
∑d

k=0 rkx
k
i for polynomialsrk ∈ Q[X\{xi}]. Then

q =
∑d

k=0 rk · (xk
i − sk) + q[s/xi]

=
∑d

k=1 rkgk · (xi − s) +
∑n

j=1 q′jsj

= q′0 · (xi − s) +
∑n

j=1 q′jsj for the polynomial q′0 =
∑d

k=1 rkgk .

Therefore,q ∈ 〈xi − s, s1, . . . , sn〉. Sinceq ∈ Q[X], the assertion follows. ⊓⊔

According to Lemma 1, all operations used in the constraint systemF are effective.
Nonetheless, this does not in itself provide us with an analysis algorithm. The reason
is that the polynomial ring hasinfinite decreasingchains of ideals. And indeed, simple
programs can be constructed where fixpoint iteration will not terminate.

Example 1.Consider our simple example from Fig. 2. There, we obtain theideal for
program point 1 as the infinite intersection:

F(1) = 〈z,y − 1〉 ∩
〈z − 1,y − x〉 ∩
〈z − 1 − x,y − x2〉 ∩
〈z − 1 − x − x2,y − x3〉 ∩
. . . ⊓⊔

Despite infinitely descending chains, the greatest solution ofF has been determined
precisely by Rodriguez-Carbonell et al. [21] — but only for asub-class of programs.
Rodriguez-Carbonell et al. consider simple loops whose bodies consist of a finite non-
deterministic choice between sequences of assignments satisfying additional restrictive
technical assumptions. No complete methods are known for significantly more general
classes of programs. Based on constraint systemF , we nonetheless obtain an effective
analysis which inferssomevalid polynomial identities by applyingwideningfor fix-
point acceleration [6]. This idea has been proposed, e.g., by Rodriguez-Carbonell and
Kapur [20] and Colon [4]. We will not pursue this idea here. Instead, we propose a
different approach.

4 Intraprocedural Analysis: Backward Propagation

The key idea of [12, 14] is this: instead of propagating ideals of valid identities in a
forward direction, we start with a conjectured identityqt = 0 at some program pointv
and compute weakest preconditions for this assertion by backwards propagation. The
conjecture is proven if and only if the weakest preconditionat program entrystart =
stMain is true. The assertiontrue, i.e., the empty conjunction is uniquely represented by
the ideal{0}. Note that it is decidable whether or not a polynomial ideal equals{0}.

Assignments and disequality guards now induce transformations which for every
postcondition, return the corresponding weakest precondition:

[[xi := p]]T q = 〈q[p/xi]〉

[[xi :=?]]T q = 〈q1, . . . , qm〉 whereq =
∑m

j=0 qjx
j
i with qj ∈ Q[X\{xi}]

[[p 6= 0]]T q = 〈p · q〉



Note that we have represented the disjunctionp = 0∨q = 0 by p ·q = 0. Also, we have
represented conjunctions of equalities by the ideals generated by the respective poly-
nomials. The definitions of our transformers are readily extended to transformers for
ideals, i.e., conjunctions of identities. For a given target program pointt and conjecture
qt = 0, we therefore can construct a constraint systemB:

B(t) ⊇ 〈qt〉
B(u) ⊇ [[xi := p]]T(B(v)) (u, v) labeled withxi := p
B(u) ⊇ [[xi :=?]]T(B(v)) (u, v) labeled withxi :=?
B(u) ⊇ [[p 6= 0]]T(B(v)) (u, v) labeled withp 6= 0

Since the basic operations are monotonic, the constraint systemB has a unique
least solution in the lattice of ideals ofQ[X]. Consider a single execution pathπ whose
effect is described by the partial polynomial transformation(q0, [q1, . . . , qk]). Then the
corresponding weakest precondition is given by:

[[π]]T p = 〈q0 · p[q1/x1, . . . , qk/xk]〉

The weakest precondition ofp w.r.t. a set of execution paths can be described by the
ideal generated by the weakest preconditions for every execution path in the set sep-
arately. Since the basic operations in the constraint system B commute with arbitrary
least upper bounds, we once more apply standard coincidencetheorems to conclude:

Theorem 2. Assumep is a polynomial program without procedures andt is a program
point ofp. Assume the least solution of the constraint systemB for a conjectureqt = 0
at t assigns the idealI to program pointstart. Then,qt = 0 is valid att iff I = {0}. ⊓⊔

Using a representation of ideals through finite sets of generators, the applications of
weakest precondition transformers for edges can be effectively computed. A computa-
tion of the least solution of the constraint systemB by standard fixpoint iteration leads
to ascending chains of ideals. Therefore, in order to obtainan effective algorithm, we
only must assure thatascendingchains of ideals are ultimately stable. Due to Hilbert’s
basis theorem, this property indeed holds in polynomial rings over fields (as well as
over integral domains likeZ). Therefore, the fixpoint characterization of Theorem 2
gives us an effective procedure for deciding whether or not aconjectured polynomial
identity is valid at some program point of a polynomial program.

Corollary 1. In a polynomial program without procedures, it can effectively be checked
whether or not a polynomial identity is valid at some target point. ⊓⊔

Example 2.Consider our example program from Fig. 2. If we want to check the con-
jecturez · x − z − y + 1 = 0 for program point 1, we obtain:

B(2) ⊇ 〈(z · x − z − y + 1)[y · x/y]〉
= 〈z · x − z − y · x + 1〉

Since,
(z · x − z − y · x + 1)[z + y/z] = z · x − z − y + 1



the fixpoint is already reached for program points1 and2. Thus,

B(1) = 〈z · x − z − y + 1〉
B(2) = 〈z · x − z − y · x + 1〉

Moreover,
B(0) = 〈(z · x− z − y + 1)[0/z, 1/y]〉

= 〈0〉 = {0}

Therefore, the conjecture is proved. ⊓⊔

It seems that the algorithm of testing whether a certain given polynomial identity
p0 = 0 is valid at some program point contains no clue on how to inferso far un-
known valid polynomial identities. This, however, is not quite true. We show now how
to determine all polynomial identities of some arbitrary given form that are valid at a
given program point of interest. The form of a polynomial is given by a selection of
monomials that may occur in the polynomial.

Let D ⊆ Nk
0 be a finite set of exponent tuples for the variablesx1, . . . , xk. Then a

polynomialq is called aD-polynomial if it contains only monomialsb · xi1
1 · . . . · xik

k ,
b ∈ Q, with (i1, . . . , ik) ∈ D, i.e., if it can be written as

q =
∑

σ=(ik,...,ik)∈D

aσ · xi1
1 · . . . · xik

k

If, for instance, we chooseD = {(i1, . . . , ik) | i1 + . . . + ik ≤ d} for a fixed maximal
degreed ∈ N, then theD-polynomials are all the polynomials up to degreed. Here the
degreeof a polynomial is the maximal degree of a monomial occurringin q where the
degree of a monomialb · xi1

1 · . . . · xik

k , b ∈ Q, equalsi1 + . . . + ik.
We introduce a new set of variablesAD given by:

AD = {aσ | σ ∈ D} .

Then we introduce thegenericD-polynomial as

qD =
∑

σ=(ik,...,ik)∈D

aσ · xi1
1 · . . . · xik

k .

The polynomialqD is an element of the polynomial ringQ[X ∪ AD]. Note that every
concreteD-polynomialq ∈ Q[X] can be obtained from the genericD-polynomial
qD simply by substituting concrete valuesaσ ∈ Q, σ ∈ D, for the variablesaσ . If
a : σ 7→ aσ anda : σ 7→ aσ, we writeqD[a/a] for this substitution.

Instead of computing the weakest precondition of eachD-polynomialq separately,
we may compute the weakest precondition of the single generic polynomialqD once
and for all and substitute the concrete coefficientsaσ of the polynomialsq into the
precondition ofqD later. Indeed, we show in [14]:

Theorem 3. Assumep is a polynomial program without procedures and letBD(v), v
program point ofp, be the least solution of the constraint systemB for p with conjecture
qD at targett. Thenq = qD[a/a] is valid att iff q′[a/a] = 0 for all q′ ∈ BD(start). ⊓⊔



Clearly, it suffices thatq′[a/a] = 0 only for a set of generators ofBD(start). Still, this
does not immediately give us an effective method of determining all suitable coefficient
vectors, since the precise set of solutions of arbitrary polynomial equation systems are
not computable. We observe, however, in [14]:

Lemma 2. Every idealBD(u), u a program point, of the least solution of the abstract
constraint systemB for conjectureqD at some target nodet is generated by a finite setG
of polynomialsq where each variableaσ occurs only with degree at most 1. Moreover,
such a generator set can be effectively computed. ⊓⊔

Thus, the set of (coefficient maps) ofD-polynomials which are valid at our target
program pointt can be characterized as the set of solutions of alinear equation sys-
tem. Such equation systems can be algorithmically solved, i.e., finite representations of
their sets of solutions can be constructed explicitly, e.g., by Gaussian elimination. We
conclude:

Theorem 4. For a polynomial programp without procedures and a program pointt in
p, the set of allD-polynomials which are valid att can be effectively computed. ⊓⊔

As a side remark, we should mention that instead of working with the larger poly-
nomial ringQ[X ∪ AD], we could work withmodulesover the polynomial ringQ[X]
consisting of vectors of polynomials whose entries are indexed withσ ∈ D. The oper-
ations on modules turn out to be practically much faster thancorresponding operations
on the larger polynomial ring itself, see [18] for a practical implementation and prelim-
inary experimental results.

5 Interprocedural Analysis: Transition Invariants

The main question of precise interprocedural analysis is this: how can the effects of
procedure calls be finitely described? An interesting idea (essentially) due to Colon [4]
is to represent effects by polynomialtransition invariants. This means that we introduce
a separate copyX′ = {x′

1, . . . ,x
′

k} of variables denoting the values of variables before
the execution. Then we use polynomials to express possible relationships between pre-
and post-states of the execution. Obviously, all such validrelationships again form an
ideal, now in the polynomial ringQ[X ∪ X′].

The transformation ideals for assignments, non-deterministic assignments and dis-
equality guards are readily expressed by:

[[xi := p]]♯♯ = 〈{xj − x′

j | j 6= i} ∪ {xi − p[x′/x]}〉
[[xi :=?]]♯♯ = 〈{xj − x′

j | j 6= i}〉
[[p 6= 0]]♯♯ = 〈{p[x′/x] · (xj − x′

j) | j = 1, . . . , k}〉

In particular, the last definition means that either the guard is wrong before the transition
or the states before and after the transition are equal. The basic effects can be composed
to obtain the effects of larger program fragments by means ofa composition operation
“◦”. Composition on transition invariants can be defined by:

I1 ◦ I2 = (I1[y/x′] ⊕ I2[y/x]) ∩ Q[X ∪ X′]



where a fresh setY = {y1, . . . ,yk} is used to store the intermediate values between
the two transitions represented byI1 andI2 and the postfix operator[y/x] denotes re-
naming of variables inX with their corresponding copies inY. Note that “◦” is defined
by means of well-known effective ideal operations. Using this operation, we can put up
a constraint systemT for ideals of polynomial transition invariants of procedures:

T (v) ⊆ 〈xi − x′

i | i = 1, . . . , k〉 v is entry point
T (v) ⊆ [[xi := p]]♯♯ ◦ T (u) (u, v) is labeled withxi := p
T (v) ⊆ [[xi :=?]]♯♯ ◦ T (u) (u, v) is labeled withxi :=?
T (v) ⊆ [[p 6= 0]]♯♯ ◦ T (u) (u, v) is labeled withp 6= 0
T (v) ⊆ T (f) ◦ T (u) (u, v) callsf
T (f) ⊆ T (v) v exit point off

0

1 4

2

3

y := 0

f()

y := y ∗ x x := x + 1

f() :Main :

Fig. 3. A simple program with procedures.

Example 3.Consider the program from Fig. 3. We calculate:

T (f) = 〈x − x′,y − y′〉 ∩
〈x − x′ − 1,y − y′ · x′〉 ∩
〈x − x′ − 2,y − y′ · x′ · (x′ + 1)〉 ∩
. . .

= 〈0〉

Using this invariant for analyzing the proceduremain, we only find the trivial transition
invariant0. On the other hand, we may insteadinline the proceduref as in Fig. 4. A



0

1 4

3

y := y ∗ x x := x + 1y := 0

Main :

Fig. 4. The inlined version of the example program.

corresponding calculation of the transition invariant ofmain yields:

T (Main) = 〈x − x′,y〉 ∩
〈x − x′ − 1,y〉 ∩
〈x − x′ − 2,y〉 ∩
. . .

= 〈y〉

Thus for this analysis, inlining may gain precision. ⊓⊔

Clearly, using transition invariants incurs the same problem as forward propagation
for intraprocedural analysis, namely, that fixpoint iteration may result in infinite de-
creasing chains of ideals. Our minimal example exhibited two more problems, namely
that the composition operation is notcontinuous, i.e., does not commute with greatest
lower bounds of descending chains in the second argument, and also that a less compo-
sitional analysis through inlining may infer more valid transition invariants.

To be fair here, it should be noted that Colon did not propose to useidealsfor repre-
senting transition invariants. Colon instead consideredpseudo-ideals, i.e., ideals where
polynomials are considered only up to a given degree bound. This kind of further ab-
straction solves the problems of infinite decreasing chainsas well as missing continuity
— at the expense, though, of further loss in precision. Colon’s approach, for example,
fails to find a nontrivial invariant in the example program from Fig. 3 forMain.

6 Interprocedural Analysis: Backward Propagation

Due to the apparent weaknesses of the approach through polynomials as transition in-
variants, we propose to represent effects of procedures by pre-conditions of generic
polynomials. Procedure calls are then dealt with through instantiation of generic coeffi-
cients. Thus, effects are still described by ideals — over a larger set of variables (or by
modules; see the discussion at the end of Section 4). Supposewe have chosen some fi-
nite setD ⊆ Nk

0 of exponent tuples and assume that the polynomialp = pD[a/a] is the
D-polynomial that is obtained from the genericD-polynomial through instantiation of
the generic coefficients witha. Assume further that the effect of some procedure call is



given by the idealI ⊆ Q[X ∪AD] = 〈q1, . . . , qm〉. Then we determine a precondition
of p = 0 w.r.t. to the call by:

I (p) = 〈q1[a/a], . . . , qm[a/a]〉

This definition is readily extended to idealsI ′ generated byD-polynomials. There is no
guarantee, though, that all ideals that occur at the target program pointsv of call edges
(u, v) will be generated byD-polynomials. In fact, simple examples can be constructed
where no uniform setD of exponent tuples can be given. Therefore, we additionally
propose to use an abstraction operatorW that splits polynomials appearing as post-
condition of procedure calls which are notD-polynomials.

We choose a maximal degreedj for each program variablexj and let

D = {(i1, . . . , ik) | ij ≤ dj for i = 1, . . . , k}

The abstraction operatorW takes generators of an idealI and maps them to generators
of a (possibly) larger idealW(I) which is generated byD-polynomials. In order to
construct such an ideal, we need a heuristics which decomposes an arbitrary polynomial
q into a linear combination ofD-polynomialsq1, . . . , qm :

q = r1q1 + . . . + rmqm (1)

We could, for example, decomposeq according to the first variable:

q = q′0 + xd1+1
1 · q′1 + . . . + x

s(d1+1)
1 · q′s

where eachq′i contains powers ofx1 only up to degreed1 and repeat this decomposition
with the polynomialsq′i for the remaining variables. Given a decomposition (1), we have
q ∈ 〈q1, . . . , qm〉. Therefore, we can replace every generator ofI by D-polynomials in
order to obtain an idealW(I) with the desired properties.

We use the new application operator as well as the abstraction operatorW to gen-
eralize our constraint systemB to a constraint systemE for the effects of procedures:

E(u) ⊇ 〈qD〉 u is exit point
E(u) ⊇ [[xi := p]]T(E(v)) (u, v) labeled withxi := p
E(u) ⊇ [[xi :=?]]T(E(v)) (u, v) labeled withxi :=?
E(u) ⊇ [[p 6= 0]]T(E(v)) (u, v) labeled withp 6= 0
E(u) ⊇ E(f)(W(E(v))) (u, v) callsf
E(f) ⊇ E(u) u entry point off

Example 4.Consider again the example program from Fig. 3. Let us choosed = 1
wherep1 = ay + bx + c. Then we calculate forf :

E(f) = 〈ay + bx + c〉 ⊕
〈ayx + b(x + 1) + c〉 ⊕
〈ayx(x + 1) + b(x + 2) + c〉 ⊕
〈ayx(x + 1)(x + 2) + b(x + 3) + c〉 ⊕
. . .

= 〈ay,b, c〉



This description tells us that for a linear identityay+bx+c = 0 to be valid after a call
to f , the coefficientsb andc necessarily must equal 0. Moreover, either coefficienta

equals 0 (implying that the whole identity is trivial) ory = 0. Indeed, this is the optimal
description of the behavior off with polynomials. ⊓⊔

The effects of procedures as approximated by constraint systemE can be used to
check a polynomial conjectureqt at a given target nodet along the lines of constraint
systemB. We only have to extend it by extra constraints dealing with function calls.
Thus, we put up the following constraint system:

R(t) ⊇ 〈qt〉
R(u) ⊇ [[xi := p]]T(R(v)) (u, v) labeled withxi := p
R(u) ⊇ [[xi :=?]]T(R(v)) (u, v) labeled withxi :=?
R(u) ⊇ [[p 6= 0]]T(R(v)) (u, v) labeled withp 6= 0
R(u) ⊇ E(f)(W(R(v))) (u, v) callsf
R(f) ⊇ R(u) u entry point off
R(u) ⊇ R(f) (u, ) callsf

This constraint system again has a least solution which can be computed by standard
fixpoint iteration. Summarizing, we obtain the following theorem:

Theorem 5. Assumep is a polynomial program with procedures. Assume further that
we assert a conjectureqt at program pointt.

Safety: 1. For every proceduref , the idealE(f) represents a precondition of the
identitypD = 0 after the call.

2. If the idealR(Main) equals{0}, then the conjectureqt is valid att.
Completeness: If during fixpoint computation, all ideals at target programpointsv of

call edges(u, v) are represented byD-polynomials as generators, the conjecture
is valid only if the idealR(Main) equals{0}.

The safety-part of Theorem 5 tells us that our analysis will never assure a wrong
conjecture but may fail to certify a conjecture although it is valid. According to the
completeness-part, however, the analysis algorithm provides slightly more information:
if no approximation steps are necessary at procedure calls,the analysis is precise. For
simplicity, we have formulated Theorem 5 in such a way that itonly speaks about
checking conjectures. In order to infer valid polynomial identities up to a specified de-
gree bound, we again can proceed analogous to the intraprocedural case by considering
a generic postcondition in constraint systemR.

7 Equality Guards

In this section, we discuss methods for dealing with equality guardsp = 0. Recall,
that in presence of equality guards, the question whether a variable is constantly 0 at
a program point or not is undecidable even in absence of procedures and with affine
assignments only. Thus, we cannot hope for complete methodshere. Still, in practical
contexts, equality guards are a major source of informationabout values of variables.



0

1

2

x := 0

x := x + 1x = 10

Fig. 5. A simple for-loop.

Consider, e.g., the control flow graph from Fig. 5. Then, according to the equality guard,
we definitely know thatx = 10 whenever program point 2 is reached. In order to deal
with equality guards, we thus extend forward analysis by theconstraints:

F(v) ⊆ [[p = 0]]♯(F(u)) (u, v) labeled withp = 0

where the effect of an equality guard is given by:

[[p = 0]]♯ I = I ⊕ 〈p〉

This formalizes our intuition that after the guard, we additionally know thatp = 0
holds. Such an approximate treatment of equality guards is common in forward pro-
gram analysis and already proposed by Karr [11]. A similar extension is also possible
for inferring transition invariants. The new effect is monotonic. However, it is, no longer
distributive, i.e., it does not commute with intersections. Due to monotonicity, the ex-
tended constraint systemsF as well asT still have greatest solutions which provide safe
approximations of the sets of all valid invariants and transition invariants in presence of
equality guards, respectively.

Example 5.Consider the program from Fig. 5. For program point 1 we have:

F(1) = 〈x〉 ∩ 〈x − 1〉 ∩ 〈x − 2〉 ∩ . . .
= {0}

Accordingly, we find for program point 2,

F(2) = {0} ⊕ 〈x − 10〉
= 〈x − 10〉

Thus, given the lower bound{0} for the infinite decreasing chain of program point 1,
we arrive at the desired result for program point 2. ⊓⊔



It would be nice if also backward analysis could be extended with some approximate
method for equality guards. Our idea for such an extension isbased onLagrange mul-
tipliers. Recall that theweakestprecondition for validity ofq = 0 after a guardp = 0
is given by:

(p = 0) ⇒ (q = 0)

which, for everyλ, is implied by:

q + λ · p = 0

The valueλ is called aLagrange-multiplier and can be arbitrarily chosen. We remark
that a related technique has been proposed in [5] for inferring parametric program in-
variants. Thus, we define:

[[p = 0]]T(q) = 〈q + p · λ〉 (2)

where a different formal multiplierλ is chosen for every occurrence of an equality
guard. Similar to the treatment of generic postconditions,the parametersλ will occur
linearly in a suitably chosen set of generators for the precondition ideal at program start
where they can be chosen appropriately.

Example 6.Again consider the program from Fig. 5 and assume that we are interested
in identities up to degree 1 at the exit point of the program. Thus we start with the
generic polynomialax + b = 0 at node 2. This gives us for program point 1:

B1(1) = 〈(a + λ) · x + b− 10λ〉 ⊕
〈(a + λ) · x + a + λ + b− 10λ〉

= 〈a + λ,b − 10λ〉

Choosingλ = −a, we obtainb = −10a. Therefore all multiples of the polynomial
x − 10 are valid identities for program point 2. ⊓⊔

Instead of using a single variableλ as a Lagrange multipliers we could also use an
entire polynomial. This means that we use in (2) a generic polynomialqD (for some set
D of exponent tuples) instead of the variableλ for each equality guardp = 0:

[[p = 0]]T(q) = 〈q + p · qDλ〉

where we use new variablesAD = {aσ | σ ∈ D} in qD for each equality guard. Now,
all the variables inAD can be adjusted in the computed weakest precondition. This may
lead to more precise results – at the price of a more expensiveanalysis.

8 Discussion

We have summarized forward and backward iteration methods for inferring valid poly-
nomial identities. In absence of procedure calls, we arrived at a rather clear picture: we
exhibited a finite constraint system which precisely characterizes the set of all valid
polynomial identities in a polynomial program. Due to possibly infinite decreasing



chains of ideals, it is currently open whether the greatest solution of this constraint
system can effectively be computed. On the other hand, backward analysis based on
weakest precondition computations relies on increasing chains of ideals — allowing us
to decide whether any given conjecture at a program point is valid. Also, this enables
us to effectively find all valid polynomial identities up to agiven degree.

In presence of procedure calls, the picture is less clear. The natural extension of
the intraprocedural forward propagation suggests to use ideals of polynomial transition
invariants to describe effects of procedures. The composition operation for such ideals,
though, turned out to be non-continuous. Also, our example shows that using poly-
nomial transition invariants may not be precise, i.e., may miss some valid polynomial
identities. Therefore, we considered a generalization of backward analysis which de-
scribes effects of procedures by means of preconditions of generic polynomials. Here,
we obtained a precise finite characterization of identitiesof some given form only if
in the polynomials occurring during the analysis at procedure exits the degrees of the
variables are bounded. Note that this approach can be considered as a smooth general-
ization of the methods in [15] for affine programs where all occurring polynomials are
known to have bounded degree.

It still remains open whether precise techniques can be found for lifting the degree
bound in the general intraprocedural case. It is also unclear how to deal with recursive
programs precisely if the degrees of weakest preconditionsgrow arbitrarily.

References

1. T. Becker and V. Weispfenning.Gröbner Bases. Springer-Verlag, 1993.
2. S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful Techniques for the Automatic Generation

of Invariants. In8th Int. Conf. on Computer Aided Verification (CAV), volume 1102 of
Lecture Notes in Computer Science. Springer, 1996.

3. N. Bjørner, A. Browne, and Z. Manna. Automatic Generationof Invariants and Intermediate
Assertions.Theoretical Computer Science, 173(1):49–87–, 1997.

4. M. Colon. Approximating the Algebraic Relational Semantics of Imperative Programs. In
11th Int. Symp. on Static Analysis (SAS), pages 296–311. Springer-Verlag, LNCS 3146, 2004.

5. P. Cousot. Proving Program Invariance and Termination byParametric Abstraction, La-
grangian Relaxation and Semidefinite Programming . InVerification, Model Checking and
Abstract Interpretation (VMCAI), pages 1–24. Springer-Verlag, LNCS 3385, 2005.

6. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Recursive Proce-
dures. In E. Neuhold, editor,IFIP Conf. on Formal Description of Programming Concepts,
pages 237–277. North-Holland, 1977.

7. S. Gulwani and G. Necula. Discovering Affine Equalities Using Random Interpretation. In
30th ACM Symp. on Principles of Programming Languages (POPL), pages 74–84, 2003.

8. S. Gulwani and G. Necula. Precise Interprocedural Analysis Using Random Interpretation.
In 32th Ann. ACM Symp. on Principles of Programming Languages (POPL), pages 324–337,
2005.

9. M. S. Hecht.Flow Analysis of Computer Programs. Elsevier North-Holland, 1977.
10. J. Kam and J. Ullman. Global Data Flow Analysis and Iterative Algorithms. Journal of the

ACM (JACM), 23(1):158–171, 1976.
11. M. Karr. Affine Relationships Among Variables of a Program. Acta Informatica, 6:133–151,

1976.



12. M. Müller-Olm and H. Seidl. Polynomial Constants are Decidable. In9th Static Analysis
Symposium (SAS), pages 4–19. LNCS 2477, Springer-Verlag, 2002.

13. M. Müller-Olm and H. Seidl. A Note on Karr’s Algorithm. In 31st Int. Coll. on Automata,
Languages and Programming (ICALP), pages 1016–1028. Springer Verlag, LNCS 3142,
2004.

14. M. Müller-Olm and H. Seidl. Computing Polynomial Program Invariants.Information Pro-
cessing Letters (IPL), 91(5):233–244, 2004.

15. M. Müller-Olm and H. Seidl. Precise Interprocedural Analysis through Linear Algebra. In
31st ACM Symp. on Principles of Programming Languages (POPL), pages 330–341, 2004.

16. M. Müller-Olm and H. Seidl. A Generic Framework for Interprocedural Analysis of Nu-
merical Properties. In12th Static Analysis Symposium (SAS), pages 235–250. LNCS 3672,
Springer-Verlag, 2005.

17. M. Müller-Olm and H. Seidl. Analysis of Modular Arithmetic. In European Symposium on
Programming (ESOP), pages 46–60. Springer Verlag, LNCS 3444, 2005.

18. M. Petter. Berechnung von polynomiellen Invarianten, 2004. Diploma Thesis.
19. J. R. Reif and H. R. Lewis. Symbolic Evaluation and the Global Value Graph. In4th ACM

Symp. on Principles of Programming Languages POPL’77, pages 104–118, 1977.
20. E. Rodriguez-Carbonell and D. Kapur. An Abstract Interpretation Approach for Automatic

Generation of Polynomial Invariants. In11th Int. Symp. on Static Analysis (SAS), pages
280–295. Springer-Verlag, LNCS 3146, 2004.

21. E. Rodriguez-Carbonell and D. Kapur. Automatic Generation of Polynomial Loop Invari-
ants: Algebraic Foundations. InInt. ACM Symposium on Symbolic and Algebraic Computa-
tion 2004 (ISSAC04), pages 266–273, 2004.

22. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear Loop Invariant Generation
using Gröbner Bases. InACM Symp. on Principles of Programming Languages (POPL),
pages 318–329, 2004.


