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We consider integer arithmetic modulo a power of 2 as provided by mainstream programming
languages like Java or standard implementations of C. The difficulty here is that the ring Zm of

integers modulo m = 2w, w > 1, has zero divisors and thus cannot be embedded into a field. Not
withstanding that, we present intra- and interprocedural algorithms for inferring for every program
point u, affine relations between program variables valid at u. If conditional branching is replaced

with nondeterministic branching, our algorithms are not only sound but also complete in that they
detect all valid affine relations in a natural class of programs. Moreover, they run in time linear
in the program size and polynomial in the number of program variables and can be implemented
by using the same modular integer arithmetic as the target language to be analyzed. We also

indicate how our analysis can be extended to deal with equality guards even in an interprocedural
setting.
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1. INTRODUCTION

Analyses for automatically finding linear invariants in programs have been studied
for a long time [Karr 1976; Granger 1991; Gulwani and Necula 2003; Leroux 2003;
Reps et al. 2003; Müller-Olm and Seidl 2004d,2004b]. With the notable exception
of an analysis by Granger [1991], however, none of these analyses can find out that
the linear invariant 21 · x − y = 1 holds upon termination of the Java program in
Figure 1. Why is this? In order to allow implementing arithmetic operations by the
efficient instructions provided by processors, Java, like other common programming
languages, performs arithmetic operations for integer types modulo m = 2w where
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2 · M. Müller-Olm and H. Seidl

class Eins {

public static void main(String [] argv) {

int x = 1022611261;

int y = 0;

if (argv.length > 0) {

x = 1;

y = 20;

}

System.out.println("" + (21*x-y));

}

}

Fig. 1. Analyses of linear invariants are incomplete.

w = 32, if the result expression is of type int, and w = 64, if the result expression
is of type long [Gosling et al. 1996, p. 32]. The invariant 21 · x − y = 1 is valid
because 21 ∗ 1022611261 = 1 modulo 232. In order to work with mathematical
structures with good properties, analyses for finding linear invariants typically in-
terpret variables by members from a field, e.g., the set Q of rational numbers [Karr
1976; Müller-Olm and Seidl 2004d,2004a], or Zp = Z/(pZ) for prime numbers p
[Gulwani and Necula 2003]. As illustrated by the above example, such analyses are
inherently incomplete with respect to the modulo interpretation used in practice.
Worse, analyses based on Zp for a fixed prime p alone may yield unsound results.1

In the small flow graph in Figure 2, for instance, x is a constant at program point
2 if variables take values in Zp for a prime number p > 2, but it is not a constant
if variables take values in Zm as p equals 0 modulo p but not modulo m. Interest-
ingly, the given problem is resolved by Granger’s analysis, which not only detects
all affine relations between integer variables but also all affine congruence relations.
On the other hand, Granger’s analysis is just intraprocedural and a polynomial-
time version of his analysis has been presented only recently [Müller-Olm and Seidl
2005a].

Practically important examples of affine relations that are valid modulo 2w but
missed by analyses over fields are properties about divisibility modulo powers of 2.
Such properties could, e.g., be useful for checking correct alignment of computed
addresses. Note that a number x is divisible by 2w′

for w′ < w if and only if
2w−w′

· x = 0 modulo 2w. A number x is even (odd), for instance, iff 2w−1 · x = 0
(or 2w−1 ·x = 1, respectively). Tom Reps reports that they observed and exploited
such properties in their implementation of our analysis in the Codesurfer/x86 tool
[Reps et al. 2006; Reps 2006].

In this paper we present intra- and interprocedural analyses that are sound and
that interpret completely all assignments with affine right hand sides with respect
to arithmetic modulo powers of 2. Our analyses are thus tightly tailored for the
arithmetic used in mainstream programming languages. For this arithmetic, our
analyses are more precise than analyses based on computing over Q or Zp, and,
in contrast to analyses based on computing over Zp with a fixed prime p, they are

1If the primes of the analysis are chosen randomly, the resulting analysis is “probabilistically
sound” [Gulwani and Necula 2003].
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Fig. 2. Zp interpretation is unsound.

sound w.r.t. this arithmetic. Technically, our new analyses are based on the meth-
ods from linear algebra that we have studied previously [2004a; 2004d]. The major
new difficulty is that unlike Q and Zp, Zm is no longer a field. In particular, Zm

has zero divisors implying that not every non-zero element is invertible. Therefore,
Zm cannot be embedded into a field. Consequently results from linear algebra over
fields do not apply to sets of vectors and matrices over Zm. However, these sets
are still modules over Zm. An extensive account of linear algebra techniques for
modules over abstract rings can, e.g., be found in [Hafner and McCurley 1991; Stor-
johann 2000]. Here, we simplify the general techniques to establish the properties
of Zm that suffice to implement similar algorithms as in [2004a; 2004d].

Besides the soundness and completeness issues discussed above, there is another
advantage of our analyses that is perhaps even more important from a practical
point of view than precision. For any algorithm based on computing in Q, we must
use some representation for rational numbers. When using floating point numbers,
we must cope with rounding errors and numerical instability. Alternatively, we may
represent rational numbers as pairs of integers. Then we can either use integers of
bounded size as provided by the host language or represent integers by arbitrarily
long bit strings. In the first case we must cope with overflows in the second one
the sizes of our representations may explode. On the other hand, when computing
over Zp, p a prime, special care is needed to get the analysis right. The algorithms
proposed in this paper, however, can be implemented using the modulo arithmetic
provided by the host language itself. In particular, without any additional effort
this totally prevents explosion of number representations, rounding errors, and
numerical instability.

This paper is based on [Müller-Olm and Seidl 2005b]. Beyond that conference
version we have the following contributions: firstly, we unify the intra- and interpro-
cedural algorithm. Now, also the interprocedural algorithm works by forward itera-
tion such that in absence of procedures it specializes directly to the intraprocedural
algorithm. Secondly, we explicate the semi-naive analysis algorithms. Thirdly, we
discuss an intra- and interprocedural extension to equality guards. Here, we show
that precise analysis of affine relations becomes DEXPTIME-complete in general
and still remains PSPACE-complete in absence of procedures. As a way out, we
present an approximate treatment of affine equality guards both in the intra- and
interprocedural setting. We also indicate that the new analyses provide extra useful
information beyond analyses over Q alone, for instance, whether or not a variable
is always a multiple of 2.
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The paper is organized as follows. In Section 2, we investigate the properties
of the ring Zm for powers m = 2w and provide basic techniques for dealing with
generating systems of Zm-modules. In particular we show how to compute (a finite
description of) all solutions of a homogeneous system of linear equations over Zm.
These descriptions enable an implementation of our algorithms within Zm arith-
metic without consulting external references. Then we show how these insights
can be used to construct sound and complete program analyses. In Section 3, we
introduce basic notions about affine programs and define the collecting semantics
of such programs. In Section 4, we argue that, for determining sets of valid affine
relations, it suffices to consider the linear hull of the (extended) program states
reaching individual program points. In Section 5, we therefore provide efficient
algorithms for computing these linear hulls. In Section 6, we provide matching
upper and lower complexity bounds for the precise verification of equality invari-
ants and then indicate how the interprocedural analysis of affine relations can be
enhanced to approximately take equality guards into account. Finally, in Section 7,
we summarize and explain further directions of research.

2. THE MODULAR RING FOR POWERS OF 2

In [Hafner and McCurley 1991; Storjohann 2000], efficient methods are developed
for computing various normal forms of matrices over principal ideal rings (PIR’s).
Here, we are interested in the residue class ring Zm where m is a power of two
which is a special case of a PIR. Accordingly, the general methods from [Hafner and
McCurley 1991; Storjohann 2000] are applicable. For our choice of m, however, the
ring Zm has a special structure. In this section, we show how this structure can be
exploited to obtain specialized algorithms in which the computation of (generalized)
gcd’s (greatest common divisors) is abandoned. Since the abstract values of our
program analyses will be submodules of ZN

m for suitable N , we also determine the
exact maximal length of a strictly ascending chain of such submodules. Since we
need effective representations of modules, we provide algorithms for dealing with
sets of generators. We also show how to solve homogeneous systems of linear
equations over Zm without gcd computations. In the sequel, let m = 2w, w ≥ 1.
We begin with the following observation.

Lemma 2.1. Assume a ∈ Zm is different from 0. Then we have:

(1 ) If a is even, then a is a zero divisor, i.e., a ·b = 0 (modulo m) for some b ∈ Zm

different from 0.

(2 ) If a is odd, then a is invertible, i.e., a · b = 1 modulo m for some b ∈ Zm. The
inverse of a can be computed in time O(log(w)).

Proof. Let a = 2 ·a′. Then a · 2w−1 = 2w ·a′ = 0 (modulo m) which proves (1).
For (2), assume a is odd. For x, y ∈ {0, . . . ,m − 1}, a · x = a · y (modulo m)

implies a · (x − y) = 0 (modulo m) and, as the absolute value of x − y is strictly
smaller than 2m and a does not contain a factor 2, this implies x−y = 0, i.e., x = y.
Hence the mapping that maps x to a · x (modulo m) is injective on {0, . . . ,m − 1}
and hence also bijective. Therefore, there is a number b with a · b = 1 (modulo m),
the multiplicative inverse of a in Zm.
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The multiplicative inverse of an odd number a in Zm can be computed by New-
ton’s method by iteratively calculating the sequence

xn+1 = xn · (2 − a · xn) (modulo m)

starting from any odd number x0, e.g., x0 = 1. This sequence stabilizes after
O(log(w)) iterations with the multiplicative inverse of a [Warren 2003, pp. 195-
196].

Example 2.2. Consider w = 32 and a = 21. We use the familiar notation of Java
int values as elements in the range [−231, 231 − 1]. Starting from x0 = 1 we obtain
the sequence x1 = −19, x2 = −7619, x3 = −1219047619, x4 = x5 = 1022611261.
Hence b = 1022611261 is the multiplicative inverse of a in Zm for m = 232.

All algorithms developed in this section avoid computing inverses. Thus, there
is no need to compute inverses in the program analysis algorithms developed in
Section 5. Nevertheless, the observations of Lemma 2.1 are needed for our reasoning,

For a ∈ Zm, we define the rank of a as r ∈ {0, . . . , w} iff a = 2r · a′ for some
invertible element a′. In particular, the rank is 0 iff a itself is invertible, and the
rank is w iff a = 0 (modulo m). Note that the rank of a can be computed by
determining the length of suffix of zeros in the bit representation of a. If there is no
hardware support for this operation, it can be computed with O(log(w)) arithmetic
operations using a variant of binary search.

A subset M ⊆ ZN
m of vectors2 [x1, . . . , xN ]t with entries xi in Zm is a Zm-module

iff it is closed under vector addition and scalar multiplication with elements from
Zm. A subset G ⊆ M is a set of generators of M iff M = {

∑l
i=1 rigi | l ≥ 0, ri ∈

Zm, gi ∈ G}. Then M is generated by G and we write M = 〈G〉.
For a non-zero vector x = [x1, . . . , xN ]t, we call i the leading index iff xi 6= 0 and

xi′ = 0 for all i′ < i. In this case, xi is the leading entry of x. A set of non-zero
vectors is in echelon form iff for all distinct vectors x, x′ ∈ G, the leading indices
of x and x′ are distinct. Every set G in echelon form contains at most N elements.
We define the rank of a set G in echelon form of cardinality s as the sum of the
ranks of the leading entries of the vectors of G plus (N − s) · w (to account for
N − s zero vectors). Note that this deviates from the common notion of the rank
of a matrix.

Assume that we are given a set G ⊆ ZN
m in echelon form together with a new

vector x. Our goal is to construct a set Ḡ in echelon form generating the same
Zm-module as G ∪ {x}. If x is the zero vector, then we simply can choose Ḡ = G.
Otherwise, let i and d · 2r (d invertible) denote the leading index and leading entry
of x, respectively. We distinguish several cases:

(1) The leading indices of all vectors x′ ∈ G are different from i. Then we choose
Ḡ = G ∪ {x}. Note that the rank of Ḡ is strictly smaller than the rank of G
due to the additional summand in the definition of the rank.

(2) i is the leading index of some y ∈ G where the leading entry equals d′ · 2r′

(d′

invertible).

2The superscript “t” denotes the transpose operation which mirrors a matrix at the main diagonal
and changes a row vector into a column vector (and vice versa).
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(a) If r′ ≤ r, then we compute x′ = d′ · x − 2r−r′

d · y. Thus, the ith entry
of x′ equals 0. This operation is called a reduction step applied to x. We
proceed with G and x′.

(b) If r′ > r, then no reduction step can be applied to x. Instead, we construct
a new set G′ by replacing y with the vector x. Then we apply a reduction
step to y w.r.t. G′, i.e., we compute y′ = d · y − 2r′−rd′ · x. Thus, the ith

entry of y′ equals 0, and we proceed with G′ and y′. Note that the rank of
G′ is strictly smaller than the rank of G.

Both vectors x′ and y′ to be reduced further in (a) or (b), respectively, have a
strictly greater leading index than x. This implies termination of the algorithm
after at most N reduction steps.

Eventually, we arrive at a set Ḡ in echelon form generating the same Zm-module
as G ∪ {x}.

Example 2.3. In order to keep the numbers small, we choose here and in the
following examples of this section w = 4, i.e., m = 16. Consider the vectors
x = [2, 6, 9]t and y = [0, 2, 4]t with leading indices 1 and 2 and both with leading
entry 2. Thus, the set G = {x, y} is in echelon form. Let z = [1, 2, 1]t. We want
to construct a set of generators in echelon form equivalent to G ∪ {z}. Since the
leading index of z equals 1, we compare the leading entries of x and z. The ranks
of the leading entries of x and z are 1 and 0, respectively. Therefore, we exchange
x in the generating set with z while continuing with x′ = x − 2 · z = [0, 2, 7]t.
The leading index of x′ has now increased to 2 . Comparing x′ with the vector
y, we find that the leading entries have identical ranks. Thus, we can subtract a
suitable multiple of y to bring the second component of x′ to 0 as well. We compute
x′′ = x′ − 1 · y = [0, 0, 3]t. We finally return Ḡ = {z, y, x′′} as the set in echelon
form generating the same module as G ∪ {z}.

If the set Ḡ computed by the algorithm for G and x equals G, then the algo-
rithm performs a sequence of reduction steps which are solely applied to x which
ultimately results in the 0 vector. If this is the case, we call x reducible. If x is
reducible, then x is contained in the Zm-module generated by G. Note, however,
that the converse might not be true in general. Thus, x being not reducible w.r.t.
a set G of generators in echelon form does not necessarily imply that x 6∈ 〈G〉.

Example 2.4. Consider a set of generators consisting of the single vector z =
[8, 1, 3]t, and let x = [0, 2, 6]t. Obviously, x is not reducible w.r.t. {z}. On the other
hand, x = 2 · z. Thus x is contained in the module generated by {z}.

In order to allow us to use reduction for deciding module membership, we work
with special sets of generators called saturated sets. We call a set of generators
G in echelon form saturated iff 2w−r · x is reducible w.r.t. G\{x} for every x ∈ G
where r is the rank of the leading entry of x. Then we have:

Lemma 2.5. Assume G ⊆ ZN
m is a saturated set of generators in echelon form

of rank r. Then the following holds for every vector x ∈ ZN
m:

(1 ) x ∈ 〈G〉 iff x is reducible.

(2 ) For G and x, a saturated set Ḡ of generators can be constructed such that
〈G ∪ {x}〉 = 〈Ḡ〉.
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Let r′ denote the rank of the resulting saturated set Ḡ. Then r′ ≤ r where
r′ = r iff G = Ḡ iff x is reducible w.r.t. G. Moreover, the algorithm runs in
time O((r − r′ + 1) · N · (N + log(w))).

Proof. Obviously, if x is reducible then x is also contained in 〈G〉. For the
reverse implication, assume that x ∈ 〈G〉. Let G = {z1, . . . , zk}. Since x ∈ 〈G〉,

x =
∑k

i=1 aizi for suitable ai ∈ Zm. We perform induction on the cardinality k
of the set G. If k = 0, x equals the zero vector and the assertion is trivially true.
Therefore, assume k > 0 and zk is the vector with minimal leading index. If ak = 0,
the assertion follows by the induction hypothesis. Otherwise, ak = a′ · 2r 6= 0 for
some odd number a′. Let i be the leading index and b = b′ · 2s the leading entry
of zk for some odd number b′. Note that the ith entry of x is a′ · b′ · 2s+r. We
distinguish two cases.

If s+ r < w, the vector x′ = b′ ·x− 2r ·a′ · b′ · zk = b′ · (x−akzk) is obtained from
x in a single reduction step. This vector x′ is contained in the module generated by
G′ = {z1, . . . , zk−1}. By induction hypothesis, x′ is reducible w.r.t. G′. Therefore,
x is also reducible w.r.t. G.

If on the other hand, s + r ≥ w, the vector akzk is a multiple of the vector
z′ = 2w−s · zk. As G is saturated, z′ is reducible w.r.t. G′ = {z1, . . . , zk−1}. Thus,
z′ and hence also akzk is contained in the module generated by G′. Therefore, akzk

can be represented as akzk =
∑k−1

i=1 cizi. This means that x =
∑k−1

i=1 (ai + ci)zi

and therefore is contained in 〈G′〉. Hence, the assertion again follows by induction
hypothesis. This proves the first assertion.

For the second assertion, we simply apply our reduction algorithm to x and G. If
x is found reducible, then nothing must be done. Otherwise, after a few reduction
steps, x has been reduced to x′ with leading index i and leading entry b · 2r for
some odd b. We consider two cases.

If no generator in G has leading index i, then we add x′ to G. The leading entry
of x′ is annihilated by multiplication with 2w−r. Therefore, we recursively apply
the algorithm to G ∪ {x′} and the vector x′′ = 2w−rx′. Note that either x′′ is
already the empty vector or has a leading index greater than i and thus in effect is
only reduced further w.r.t. G.

Now assume on the other hand, that there is a vector z ∈ G with the same
leading index i and leading entry c · 2s, c odd, where s > r (otherwise x is simply
reduced further). Then we add x′ to G and remove z, and now continue with first
calling the algorithm for G \ {z} ∪ {x′} and x′′ = 2w−rx′, followed by a call for the
resulting saturated set of generators together with z.

This algorithm initiates reduction of additional vectors x′′ in order to saturate the
computed set of generators whenever a vector in the set of generators is replaced
by another one. As each replacement reduces the rank of the set of generators,
the number of these additional vectors is bounded by the decrease in rank of the
resulting saturated set of generators. Moreover, a reduction sequence applied to
a single vector has at most length N where each reduction step requires O(1)
computation of ranks together with O(N) arithmetic operations. This gives the
complexity estimation in the second assertion.

Accordingly, we obtain the following theorem:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Theorem 2.6. (1 ) Every Zm-module M ⊆ ZN
m is generated by some saturated

set G of generators of cardinality at most N .

(2 ) Given a set G′ of generators of cardinality s, a saturated set G of cardinality
at most N can be computed in time O((s + wN) · N · (N + log(w))) such that
〈G〉 = 〈G′〉.

(3 ) Every strictly increasing chain of Zm-modules M0 ⊂ M1 ⊂ . . . ⊂ Ms ⊆ ZN
m,

has length s ≤ wN .

Proof. The second statement follows from our construction of saturated sets of
generators in echelon form from Lemma 2.5. Starting from the empty set, which is
in echelon form by definition, we successively add the vectors in G′. The complexity
is then estimated by summing up the operations of these s inclusions. The given
estimate exploits that the sum of the rank differences is bounded by the maximal
rank wN as ranks are non-negative.

The first statement trivially follows from the second because M is a finite gener-
ator of itself. It remains to consider the third statement. Assume that Mi ⊂ Mi+1

for i = 0, . . . , s − 1. Consider finite sets Gi of generators for Mi. We construct a
sequence of (saturated) sets in echelon form generating the same modules as fol-
lows. G′

0 is the saturated set in echelon form constructed from G0. For i > 0, G′
i is

obtained from G′
i−1 by successively adding the vectors in Gi to the set G′

i−1. Since
Mi−1 6= Mi, the set G′

i−1 is necessarily different from the set G′
i for all i = 1, . . . , s.

Therefore, the ranks of the G′
i are strictly decreasing. Since the maximal possible

rank is wN and ranks are non-negative, the third statement follows.

It is well-known that the submodules of ZN
m are closed under intersection. Or-

dered by set inclusion they thus form a complete lattice Sub(ZN
m), like the linear

subspaces of FN for a field F. However, while the height of the lattice of linear
subspaces of FN is N for dimension reasons, the height of the lattice of submodules
of ZN

m is precisely wN . By Theorem 2.6, wN is an upper bound for the height
and it is not hard to actually construct a chain of this length. An example is
this, where ej denotes the jth unit vector: 〈0〉 ⊂ 〈2w−1e1〉 ⊂ 〈2w−2e1〉 ⊂ · · · ⊂
〈20e1〉 ⊂ 〈e1, 2

w−1e2〉 ⊂ 〈e1, 2
w−2e2〉 ⊂ · · · ⊂ 〈e1, 2

0e2〉 ⊂ 〈e1, e2, 2
w−1e3〉 ⊂ · · · ⊂

〈e1, . . . , eN 〉 . The least element of Sub(ZN
m) is {0}, the greatest element is ZN

m

itself. The least upper bound of two submodules M1,M2 is given by

M1 ⊔ M2 = 〈M1 ∪ M2〉 = {m1 + m2 | mi ∈ Mi} .

We turn to the computation of the solutions of homogeneous systems of linear
equations in N variables over Zm. Here, we consider only the case where the
number of equations is at most as large as the number of variables. By adding extra
equations with all coefficients equal to zero, we can assume that every such system
has precisely N equations. Such a system can be denoted as Ax = 0 where A is a
square (N × N)-matrix A = [aij ]1≤i,j≤N with entries aij ∈ Zm, x = [x1, . . . ,xN ]t

is a column vector of unknowns and and 0 = [0, . . . , 0]t is the zero vector. Let LA

denote the set of all solutions of Ax = 0.
Let us first consider the case where the matrix A is diagonal, i.e., aij = 0 for all

i 6= j. The following lemma deals completely with this case.

Lemma 2.7. Assume A is a diagonal (N×N)-matrix over Zm where the diagonal
elements are given by aii = di · 2

wi for invertible di (wi = w means aii = 0).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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The set of solutions of the homogeneous system Ax = 0 is the Zm-module gen-
erated from the vectors: lj = 2w−wiej for j = 1, . . . , N where ej is the jth unit
vector.

Proof. It is easily checked that A lj = 0 for j = 1, . . . , N . For proving that
these solutions indeed generate LA assume that y = [y1, . . . , yN ]t is an arbitrary
solution of the homogeneous system. Then in particular, aii · yi = di · 2

wi · yi = 0
for every i. Thus, yi must be an annihilator of 2wi which means that yi = y′

i ·2
w−wi

for some y′
i. Consequently, we can write the vector y also as the linear combination

y = y′
1 · l1 + . . . + y′

N · lN . We conclude that y is in the Zm-module generated by
the vectors l1, . . . , lN .

In contrast to equation systems over fields, a homogeneous system Ax = 0 thus
may have non-trivial solutions, even if all entries aii are different from 0. Note that
the set of generators in item (2) for the Zm-module LA is trivially saturated. Note
also, that sets of generators for homogeneous systems can be computed without
computing inverses.

Example 2.8. Let w = 4, i.e., m = 16, and

A =

[

2 0
0 8

]

Then the Zm-module of solutions of Ax = 0 is generated by the two vectors l1 =
[8, 0]t and l2 = [0, 2]t.

For the case where the matrix A is not diagonal, we adapt the concept of invertible
column and row transformations known from linear algebra to bring A into diagonal
form. More precisely, we have:

Lemma 2.9. Let A denote an arbitrary (N×N)-matrix over Zm. Then we have:

(1 ) A can be decomposed into matrices: A = L · D · R where D is diagonal and
L,R are (N × N)-matrices that are invertible over Zm.

(2 ) W.r.t. this decomposition, x is a solution of A x = 0 iff x = R−1x′ for a
solution x′ of the system D x = 0.

(3 ) The matrix D together with the matrix R−1 can be computed in time O(log(w) ·
N3). Computation of inverses is not needed for determining D and R−1.

Proof. In order to argue that every matrix A can indeed be decomposed into a
product A = L ·D ·R for a diagonal matrix D and invertible matrices L,R over Zm,
we recall the corresponding technique over fields from linear algebra first. Recall
that the idea for fields is to successively select a non-zero pivot element (i, j) in
the current matrix. Since every non-zero element in a field is invertible, the entry
d at (i, j) has an inverse d−1. By multiplying the row with d−1, one can bring
the entry at (i, j) to 1. Then one can apply column and row transformations to
bring all other elements in the same column or row to zero. Finally, by exchanging
suitable columns or rows, one can bring the former pivot entry into the diagonal. In
contrast, when computing in the ring Zm, we do not have inverses for all non-zero
elements, and even if there are inverses, we would like to avoid their construction.
Therefore, we refine the selection rule for the pivot element (i, j) by always selecting
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an entry d = 2rd′ (where d′ is invertible) with minimal rank r. Since r has been
chosen minimal, all other elements in row i and column j are multiples of 2r.
Therefore, all these entries can be brought to 0 by multiplying the corresponding
row or column with d′ and then subtracting a suitable multiple of the ith row or
jth column, respectively. These elementary transformations are invertible since d′

is invertible. Finally, by suitable exchanges of columns or rows, the entry (i, j) can
be moved into the diagonal. As in the classical construction for fields, the inverses
of the chosen elementary column transformations are collected in the matrix R.
while the inverses of the chosen elementary row transformations are collected in the
matrix L. All the elementary transformations applied in this algorithm (exchange
of columns or rows, multiplication with an invertible element, or adding a multiple
of one column/row to another one) are also invertible over Zm.

Now it should be clear how the matrix D together with the matrix R−1 can be
computed. The matrix R−1 is obtained by starting from the unit matrix and then
performing the same sequence of column operations on it as on A. In particular,
this provides us with the complexity bound as stated in item (3).

From the decomposition, item (2) follows exactly as in the field case: Ax = 0 iff
L ·D ·R x = 0 iff D ·R x = L−1 0 = 0 iff x = R−1 x′ for a solution x′ of D x = 0.

Putting Theorem 2.6, Lemma 2.7 and Lemma 2.9 together we obtain:

Theorem 2.10. A saturated set G of generators in echelon form for the set LA

of solutions of a homogeneous equation system A x = 0 over Zm can be computed
without resorting to computation of inverses in time O(w · N2 · (N + log(w)).

Proof. In order to justify the complexity estimate, we summarize the algorithm
for homogeneous equation systems. First, we compute the matrices D and R−1 of
the decomposition A = L · D · R in time O(log(w) · N3) according to Lemma 2.9.
Secondly, we compute the vectors l1, . . . , lN that generate the set of solutions of
D x = 0 according to Lemma 2.7. Thirdly, we compute xi = R−1 li for i = 1, . . . , N
such that, by Lemma 2.9 and linearity, {x1, . . . , xN} generates the set of solutions of
Ax = 0. Clearly, the effort of Steps 2 and 3 is majorized by the first step. Finally,
we compute a saturated set of generators in echelon form for the set of solutions of
Ax = 0 from {x1, . . . , xN} according to Theorem 2.6 in time O(w ·N2 ·(N+log(w)).
Indeed, the effort for this last step majorizes the effort for the other steps.

Note that Theorem 2.10 is concerned with computing a set of generators in very
specific format, a saturated set in echelon form. The reason is that we do not
just want to determine any solution by forming linear combinations. Instead, we
insist on a representation G of the Zm-module of all solutions of the homogeneous
system which additionally allows us to decide quickly whether any given vector z is
a solution or not. In fact, the latter check simply amounts to reducing z w.r.t. G.

Example 2.11. Consider, for w = 4, i.e., m = 16, the equation system with the
two equations

12x1 + 6x2 = 0
14x1 + 4x2 = 0
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We start with the matrix of coefficients A0, and the identity matrix T0 that is to
become the transformation matrix R−1:

A0 =

[

12 6
14 4

]

, T0 =

[

1 0
0 1

]

We cannot use (1, 1) with entry 12 as a pivot, since the rank of 12 exceeds the ranks
of 14 and 6. Therefore we choose (1, 2) with entry 6. We bring the entry at (2, 2)
to 0 by multiplying the second row with 3 and subtracting the first row twice in
A0:

A1 =

[

12 6
2 0

]

, T1 =

[

1 0
0 1

]

By subtracting the second column twice from the first one in A1 and T1, we obtain:

A2 =

[

0 6
2 0

]

, T2 =

[

1 0
14 1

]

Now, we exchange the columns 1 and 2 in A2 and T2:

A3 =

[

6 0
0 2

]

, T3 =

[

0 1
1 14

]

Both diagonal elements of A3 have rank 1. Therefore, according to Lemma 2.7,
the two vectors l1 =

[

8
0

]

and l2 =
[

0
8

]

generate the module of solutions of the

homogeneous system A3 x = 0. Consequently, the two vectors x1 = T3 l1 =
[

0
8

]

and x2 = T3 l2 =
[

8
0

]

generate the module of solutions of the homogeneous system
A0 x = 0 (Lemma 2.9). In this example, the set of generators G = {x1, x2} is
already saturated and in echelon form. We conclude that the set of solutions of
A0 x = 0 (over Z16) is

L =

{[

8a

8b

]

| a, b ∈ Z16

}

=

{[

0

0

]

,

[

0

8

]

,

[

8

0

]

,

[

8

8

]}

3. THE GENERAL SET-UP

In the last section, we have proposed algorithms for reducing sets of generators of
Zm-modules and for solving systems of (homogeneous) linear equations over Zm.
Now, we use these algorithms in order to construct sound and complete analyses of
affine relations over Zm.

Programs are modeled by systems of non-deterministic flow graphs that can
recursively call each other as in Figure 3. Let X = {x1, . . . ,xk} be the set of
(global) variables the program operates on. Here, we assume that the variables
take values in Zm for m = 2w. In the programs we analyze, we assume the basic
statements to be either affine assignments of the form xj := t0 +

∑k
i=1 tixi (with

ti ∈ Zm for i = 0, . . . , k and xj ∈ X) or non-deterministic assignments of the form
xj :=? (with xj ∈ X). It is to reduce the number of program points in the example,
that we annotated the edges in Figure 3 with sequences of assignments. Also, we
use assignments xj := xj which have no effect onto the program state as skip-
statements and omit these in pictures. For the moment, skip-statements are used to
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0

1

2

3

4

5

6

q :

q()

x2 := x1 + x2

x1 := 7654321 ∗ x1

x1 := 69246289 ∗ x1

x2 := x1 + x2

Main :

q()

x2 := 0
x1 := 5

Fig. 3. An interprocedural program.

abstract guards. Later, we will present methods which treat affine equality guards
more precisely. Non-deterministic assignments xj :=? can be used for handling
read statements and as a safe abstraction of statements which our analysis cannot
handle precisely, for example of assignments xj := t with non-affine expressions t.

In this setting, an affine program comprises a finite set Proc of procedure names
with one distinguished procedure Main. Execution starts with a call to Main.
Each procedure q ∈ Proc is specified by a distinct edge-labeled control flow graph
with a single start point stq and a single return point retq where each edge (u, s, v)
has a label s which is either a procedure name q or a deterministic or nondetermin-
istic assignment. Later, we will also consider edges labeled with equality guards.

The basic approach of [Müller-Olm and Seidl 2004d; 2004a; 2005b] which we take
up here for the analysis of modular arithmetic, is to construct a precise abstract
interpretation of a constraint system characterizing the concrete program seman-
tics. Similar to [Granger 1991; Müller-Olm and Seidl 2004a; 2005a; Müller-Olm
et al. 2005], we find it convenient to start from the collecting semantics. For that,
we model a state attained by program execution when reaching a program point
or procedure by a k-dimensional (column) vector x = [x1, . . . , xk]t ∈ Zk

m of ring
elements where xi is the value assigned to variable xi. For convenience, we con-
sider extended states [1, x1, . . . , xk]t containing an extra component 1. Then every

assignment xj := t, xj ∈ X, t ≡ t0 +
∑k

i=1 tixi, induces a linear transformation
[[xj := t]] : Zk+1

m → Zk+1
m of the extended state which is described by the matrix:

[[xj := t]] =





Ij 0
t0 . . . tj−1 tj . . . tk

0 Ik−j





where Ij is the identity matrix in Zj2

m . This definition is readily extended to sets of
extended states. Composition of transformations is captured by matrix multipli-
cation. Since linear mappings are closed under composition, the effect of a single

run can be represented by one matrix in Z
(k+1)2

m . Since in general, procedures have
multiple runs, we model their semantics by sets of linear transformations. These
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are characterized by the constraint system S:

[S1] S(stq) ⊇ {Ik+1}

[S2] S(v) ⊇ {[[xj := t]]} · S(u) for edge (u,xj := t, v)

[S3] S(v) ⊇ {[[xj := c]] | c ∈ Zm} · S(u) for edge (u,xj :=?, v)

[S4] S(v) ⊇ S(retq) · S(u) for edge (u, q, v)

In these constraints we write · for the pointwise extension of matrix multiplication
to sets of matrices. The set of effects of complete runs through the procedure q is
captured by the set of transformations accumulated for the return point retq of q.
According to S1, this accumulation starts at the start point stq with the identity
transformation. The constraints S2 and S3 deal with affine and nondeterministic
assignments, respectively, while the constraints S4 correspond to calls.

Given the effects of procedures, we characterize the sets of extended states reach-
ing program points and procedures by the constraint system R:

[R1] R(stMain) ⊇ {1} × Zk
m

[R2] R(stq) ⊇ R(u) for edge (u, q, )

[R3] R(v) ⊇ [[xj := t]](R(u)) for edge (u,xj := t, v)

[R4] R(v) ⊇
⋃

{[[xj := c]](R(u)) | c ∈ Zm} for edge (u,xj :=?, v)

[R5] R(v) ⊇ S(retq)(R(u)) for edge (u, q, v)

Here, application of matrices to vectors is extended to sets in the obvious way.
The constraint R1 indicates that we start before the call of Main with the full (ex-
tended) state space. The constraints R2 indicate that the extended states reaching
the start point of a procedure includes all extended states reaching its calls. The
constraints R3 through R5 then are completely analogous to a usual forward prop-
agating definition of the intraprocedural collecting semantics only that at a call edge
the set of transformations obtained for the called procedure is applied (constraints
R5).

By the fixpoint theorem of Knaster-Tarski, the constraint systems S and R have
least solutions. For convenience, we denote the components of these least solutions
by S(u), and R(u), respectively (u a program point).

4. THE LINEAR ABSTRACTION

The definition of affine relations over Zm is completely analogous to affine relations
over fields. So, an affine relation over Zk

m is an equation a0 +a1x1 + . . .+akxk = 0
for some ai ∈ Zm. As for fields, we represent such a relation by the column vector
a = [a0, . . . , ak]t. Instead of a vector space, the set of all affine relations now forms a
Zm-module isomorphic to Zk+1

m . We say that the extended vector y ∈ Zk+1
m satisfies

the affine relation a iff a · y = 0 where “·” denotes the scalar product. We say that
the affine relation a is valid for a set X ⊆ Zk+1

m of extended states iff a · x = 0 for
all x ∈ X. We observe that a is valid for the set X iff a is valid for the Zm-module
〈X〉 generated by X. This follows since the set of states x which satisfy a itself is
a Zm-module.

We conclude that it does not make any difference whether we determine the
affine relations valid for the states in R(u), i.e., the extended states reaching the
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program point u, or for the states in the linear closure of R(u). Therefore, we
consider the abstraction αZm

which abstracts a set V ⊆ Zk+1
m of extended states by

the Zm-linear closure of V :

αZm
(V ) = 〈V 〉 = {λ1v1 + . . . + λsvs | s ≥ 0, λi ∈ Zm, vi ∈ V }

Due to the extension of states by an extra 0-th component, the abstraction adds all
linear combinations of vectors in V with the understanding that only those vectors
in the closure are meaningful whose 0-th component equals 1.

The linear abstraction has been extensively studied for different rings. In [Granger
1991], it is used with the ring Z to analyze linear congruence relations. In [Müller-
Olm and Seidl 2004a], this abstraction is applied for fields to speed up Karr’s
analysis [Karr 1976] of affine relations. Note, however, that our interprocedural
analyses of affine relations [Müller-Olm and Seidl 2004d; 2005b] over fields and
modular rings Zm, m = 2w, do not directly rely on abstractions of the collecting
semantics but on linear abstractions of sets of weakest precondition transformers.

Assume that the Zm-module 〈R(u)〉 is generated by the finite set G ⊆ Zk+1
m .

Then we can determine the set of all valid linear relations at X as the set of all
solutions of the homogeneous system of equations:

a · x = 0 , x ∈ G

where a = [a0, . . . ,ak] is a row vector of variables. Together with Theorem 2.10 we
obtain:

Theorem 4.1. Assume we are given a generating system G of cardinality at
most k + 1 for the Zm-module 〈R(u)〉. Then we have:

(1 ) The affine relation a ∈ Zk+1
m is valid at u iff a · x = 0 (modulo Zm) for all

x ∈ G.

(2 ) A saturated set of generators in echelon form for the Zm-submodule of all affine
relations valid at program point u can be computed in time O(w · k2 · (k +
log(w))).

Once we are given a set G of generators for the Zm-module R♯(v), we can also
easily determine all valid affine relations modulo any other m′ = 2w′

for 1 ≤ w′ < w.
For this we determine the Zm′-module of all vectors a ∈ Zk+1

m′ that satisfy a ·x′ = 0
(modulo Zm′) for all the vectors x′ obtained from the vectors x ∈ G by reading
the components modulo m′. This module can again be computed by solving the
corresponding homogeneous equation system, this time over Zm′ .

We are left with the task of computing, for every program point u, a generating
system for 〈R(u)〉. Following the approach in [Müller-Olm and Seidl 2004a; 2005a],
we compute this submodule of Zk+1

m as an abstract interpretation of the constraint
system R for the collecting semantics, i.e., the set of extended states reaching
program point u. This is elaborated in the next section.

5. CONSTRUCTING INTERPROCEDURAL ANALYSES

We have seen that for affine programs, the effects of procedures are given by sets
of linear transformations, or matrices. As matrices can be viewed as vectors with
quadratically many components, we can use the same abstraction α for effects as
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for sets of extended state vectors. By applying αZm
to the constraint systems S

and R, we obtain constraint systems S♯ and R♯:

[S♯1] S♯(stq) ⊒ 〈{Ik+1}〉

[S♯2] S♯(v) ⊒ 〈{[[xj := t]]}〉 · S♯(u) for edge (u,xj := t, v)

[S♯3] S♯(v) ⊒ 〈{[[xj := 0]], [[xj := 1]]}〉 · S♯(u) for edge (u,xj :=?, v)

[S♯4] S♯(v) ⊒ S♯(retq) · S♯(u) for edge (u, q, v)

As in [Müller-Olm and Seidl 2004d; 2004a], the abstract effect of a non-deterministic
assignment xj :=? can be modeled by the span of the two transformations [[xj := 0]]
and [[xj := 1]].

The constraint system S♯ closely resembles the corresponding constraint systems
as presented in [Müller-Olm and Seidl 2004d] and [Müller-Olm and Seidl 2005b].
There, however, the accumulated transformations are interpreted as weakest pre-
condition transformers and therefore accumulated from the rear. The constraint
system now accumulates values in a forward fashion. Accordingly, the second con-
straint system R♯ is in the spirit of the forward intraprocedural accumulation as
used, e.g., in [Müller-Olm and Seidl 2004a]. Thus, in contrast to [Müller-Olm and
Seidl 2004d; 2005b], the second constraint system directly speaks about abstract
sets of values and not about abstract sets of transformations:

[R♯1] R♯(stMain) ⊒ Zk+1
m

[R♯2] R♯(stq) ⊒ R♯(u) for edge (u, q, )

[R♯3] R♯(v) ⊒ [[xj := t]] (R♯(u)) for edge (u,xj := t, v)

[R♯4] R♯(v) ⊒ [[xj := 0]] (R♯(u))⊔

[[xj := 1]] (R♯(u)) for edge (u,xj :=?, v)

[R♯5] R♯(v) ⊒ S♯(retq)(R
♯(u)) for edge (u, q, v)

By the fixpoint theorem of Knaster-Tarski, the constraint systems S♯ and R♯ have
least solutions. Again, we denote the components of these least solutions by S♯(u)
and R♯(u), respectively (u a program point). Abstracting the collecting semantics
according to constraint system R♯ has the advantage that it relies on matrices only
for procedure calls. This means that we can take advantage from any improvements
on the abstractions, e.g., for guards g = 0 (g an affine combination) or non-affine
assignments which have been proposed for intraprocedural analysis [Karr 1976;
Granger 1991].

We verify that the abstraction commutes with application and with composition
of transformations. By linearity we have:

Lemma 5.1. Let V ⊆ Zk+1
m be a set of vectors and M,M1,M2 ⊆ Z

(k+1)2

m sets of
matrices. Then we have

(1 ) 〈{Ax | x ∈ V,A ∈ M}〉 = 〈{Ax | x ∈ 〈V 〉, A ∈ 〈M〉}〉 and

(2 ) 〈{A1 A2 | Ai ∈ Mi}〉 = 〈{A1 A2 | Ai ∈ 〈Mi〉}〉.

By the fixpoint transfer lemma, we obtain from Lemma 5.1, for the constraint
systems S♯ and R♯:

Theorem 5.2. For every program point u,
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(1 ) S♯(u) = 〈S(u)〉 as well as

(2 ) R♯(u) = 〈R(u)〉.

Theorem 5.2 gives a precise characterization of the linear closure of the collecting
semantics through a constraint system. Note that a similar characterization also
holds when the program is assumed to take values not in Zm but in a field or in
the ring Z or, more generally, in an arbitrary principal ideal ring R [Müller-Olm
and Seidl 2005a]. In case of the ring Zm we have seen that the maximal length of
a strictly ascending chain of sub-modules of Zr

m is bounded by r ·w. Furthermore,
we recall that every Zm-submodule M of Zr

m can be represented as M = 〈G〉 for a
saturated set G of at most r generators. In order to decide whether a submodule
〈G〉 is included in another submodule 〈G′〉 it suffices to test whether each vector
v ∈ G is included in 〈G′〉. For this test we can simply use our reduction algorithm
if the set G′ is in saturated echelon form. Therefore, Theorem 5.2 gives rise to an
effective analysis over Zm.

Summarizing, we have:

Theorem 5.3. Assume p is an affine program with n edges. Then the least
solutions of the constraint systems S♯ and R♯ are computable.

In absence of procedures, the algorithm uses O(n ·w ·k2 · (k+log(w))) operations.
In presence of procedures, the algorithm uses O(n · w · k7 · (k + log(w))).

Proof. In order to argue about the complexity of the analysis, we will not ana-
lyze an ordinary worklist-based fixpoint algorithm, since this would result in much
too conservative estimations. Instead, we prefer to consider a semi-naive iteration
strategy here [Paige and Koenig 1982; Balbin and Ramamohanarao 1987; Fecht
and Seidl 1998]. The corresponding semi-naive fixpoint algorithm for computing
S♯(u) for all program points u is shown in Figure 4.

In order to deal uniformly with calls of procedures q as well as deterministic or
non-deterministic assignments xj := t and xj :=?, we introduce sets MS♯(s) where

MS♯(q) = S♯(retq)

MS♯(xj := t) = {[[xj := t]]
♯
}

MS♯(xj :=?) = {[[xj := 0]]
♯
, [[xj := 1]]

♯
}

Informally, the algorithm works as follows. It maintains a workset W holding
pairs (u,M) where u is a node whose set of generators has changed through addition
of the matrix M . The fixpoint variables are initialized by setting all entry nodes of
procedures to the sets {Ik+1} and all other variables to the empty set. Accordingly,
the workset initially receives the elements (stq, Ik+1), q ∈ Proc. In the main loop,
the algorithm successively takes pairs (u,M) out of the workset and propagates the
new value for u to all uses of the variable S♯(u) until the workset is empty.

If u is the exit point of the procedure q, then the new matrix M must be prop-
agated to all edges (u′, q, v) at which q is called by constraint S♯4. At every such
edge, the algorithm computes the set new = {M · M1 | M1 ∈ S♯(u′)} consisting of
all products of M with matrices in the current set for the entry point of the edge u′.
This set consists of all candidate matrices potentially to be added to the set S♯(v).
Thus, we successively check for every M2 ∈ new whether or not it is contained in
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W = ∅ ;

forall (u ∈ N) S♯(u) = ∅;
forall (q ∈ Proc) {

S♯(stq) = {Ik+1};
W = W ∪ {(stq , Ik+1)};

}
while (W 6= ∅) {

(u, M) = Extract(W );
if (u ≡ retq with q ∈ Proc) {

forall (u′, v with (u′, q, v) ∈ E) {
new = {M · M1 | M1 ∈ S♯(u′)};
forall (M2 ∈ new)

if (M2 6∈ 〈S♯(v)〉) {
S♯(v) = Add(S♯(v), M2);
W = W ∪ {(v, M2)};

}
}

}
forall (s, v with (u, s, v) ∈ E) {

new = {M1 · M | M1 ∈ M
S♯ (s)};

forall (M2 ∈ new)
if (M2 /∈ 〈S♯(v)〉) {

S♯(v) = Add(S♯(v), M2);

W = W ∪ {(v, M2)};
}

}
}

Fig. 4. The semi-naive fixpoint algorithm for S♯.

the module generated by S♯(v). If not, then we add it to S♯(v) and insert the pair
(v,M2) into the workset.

Then we consider all out-going edges (u, s, v) of u. First, we compute the set
new = {M1 · M | M1 ∈ MS♯(s)}. With this set new , we then proceed as above,
i.e., we iteratively check for every M2 in new whether or not it is contained in the
module generated by S♯(v). If not, then we add it to S♯(v) and insert the pair
(v,M2) into the workset.

We make three technical remarks. First, in the real implementation we do not
need to resort to some kind of set implementation for the workset W . Instead,
an ordinary list will do for W , since the same pair (r,M) is never inserted into
W twice. Second, the Zm-modules S♯(u) are represented as a saturated set of
generators (of cardinality at most (k + 1)2) in echelon form. Whenever a new
matrix M is checked for containment in 〈S♯(u)〉, we compute a new saturated
set G of generators in echelon form for S♯(u) ∪ {M} by means of the algorithm
from Theorem 2.6. If the new set equals the old one, we know for sure that M
is contained in 〈S♯(u)〉. Otherwise, the new set is different from G and and has
lower rank. Since the maximal rank of a triangular set of vectors (with (k + 1)2

components) is (k + 1)2 ·w, we conclude that the number of insertions of pairs into
W is bounded by n·(k+1)2 ·w. In particular, this implies that the algorithm always
terminates. Moreover, for every edge it performs at most 2 · w · (k + 1)4 matrix
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forall (u ∈ N) R♯(u) = ∅;
R♯(stMain) = {e0, . . . , ek};
W = {(stMain, e0), . . . , (stMain, ek)} ;
while (W 6= ∅) {

(u, x) = Extract(W );

forall (s, v with (u, s, v) ∈ E) {
if (s ∈ Proc)

if (x /∈ 〈R♯(sts)〉) {
R♯(sts) = Add(R♯(sts), x);

W = W ∪ {(sts, x)};
}

new = {M x | M ∈ M
S♯ (s)};

forall (x′ ∈ new) {
if (x′ /∈ 〈R♯(v)〉) {

R♯(v) = Add(R♯(v), x′);
W = W ∪ {(v, x′)};
}

}
}

}

Fig. 5. The semi-naive fixpoint algorithm for R♯.

multiplications and at most as many additions of a vector to a triangular set. The
matrix multiplications can be performed in time O(w · k7). By our considerations
for Theorem 2.6, the insertions need O(w ·k6 · (k2 +log(w))) arithmetic operations.
Multiplying that with the number of fixpoint variables, we arrive at the complexity
statement.

Having thus computed the values, S♯(u), u a program node, it remains to de-
termine the values R♯(u). Again we use semi-naive iteration to compute the least
solution of R♯. The algorithm is shown in Figure 5. It proceeds in the same spirit
as the algorithm for computing the values S♯(u). This time, however, we compute
with submodules of Zk+1

m . In fact, this algorithm is the straight-forward extension
of the improved version of Karr’s intraprocedural algorithm as presented in [Müller-
Olm and Seidl 2004a]. According to this algorithm, the set R♯(stMain) for the start
point of the main procedure is initialized with the unit vectors {e0, . . . , ek}. The
new vectors in the reachability set of a node u are then propagated along every
outgoing edge of u. The extension consists in additionally taking procedure calls
into account. This means that the new vectors arriving at the start edge u of a
call to procedure q must also be propagated to the start point stq of the called
procedure. Also, the new vectors arriving at u must be transformed by the set of
generators for S♯(retq) to determine the new contributions for the end point of the
calling edge.

In absence of procedure calls, a similar complexity estimation can be applied as
in [Müller-Olm and Seidl 2004a]. the only difference is that the maximal length of
a strictly ascending chain now can be a factor w larger.

In presence of procedure calls, a new vector for a program point u amounts for
every outgoing edge to at most (k + 1)2 matrix vector multiplications and likewise
O((k + 1)2) updates of saturated sets in echelon form. Since there are at most
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n ·w ·(k+1) possible increments, we obtain the complexity O(n ·w ·k3 ·(k+log(w)))
for the second phase. Since this complexity is dominated by the complexity of
computing the least solution of S♯, the assertion of the theorem follows.

Example 5.4. Consider the interprocedural program from Figure 3 and assume
that we want to infer all valid affine relations modulo Zm for m = 232, and let c
abbreviate 7654321. The linear transformation induced by s1 ≡ x1 := 7654321 ·
x1;x2 := x1 + x2 and s2 ≡ x1 := 69246289 · x1;x2 := x1 + x2 are:

B1 =





1 0 0
0 c 0
0 c 1



 B2 =





1 0 0
0 c−1 0
0 c−1 1





since c · 69246289 = 1 mod 232. For S♯(3), we find the matrices Ik+1 and

P1 = B2 · B1 =





1 0 0
0 1 0
0 c + 1 1





None of these is subsumed by the other. The corresponding saturated set of gener-
ators in echelon form is given by G1 = {Ik+1, P} where

P =





0 0 0
0 0 0
0 c + 1 0





The next iteration then results in the matrix

P2 = B2 · P1 · B1 =





1 0 0
0 1 0
0 (c + 1)2 1





Since P2 = Ik+1 +(c+1) ·P , computing a saturated set G2 of generators in echelon
from for G1 together with P2 will result in G2 = G1, and the fixpoint iteration
terminates.

In order to determine the affine closure of the collecting semantics, e.g., for the
endpoint 6 of Main, we find that R♯(4) is generated by the vectors e0, e1, e2.
Successively applying the transformers for x1 := 5; and x2 := 0 to e0 results in the
vector:

b0 =





1
5
0





whereas applying this sequence of transformers to the vectors e1, e2 contributes the
zero vector only. Therefore, {b0} constitutes a set of generators for R♯(5) which
is obviously in saturated echelon form. Using the set {Ik+1, P} of generators for
S♯(3), we thus obtain for R♯(6) the vector b0 together with:

b1 = P b0 =





0
0

5c + 5




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This gives us the following equations for the affine relations at the exit of Main:

a0 + 5a1 = 0
(5c + 5)a2 = 0

Solving this equation system over Zm according to Theorem 2.10 shows that the
set of all solutions is generated by:

a =





−5
1
0



 a′ =





0
0
231





The vector a means −5+x1 = 0 or, equivalently, x1 = 5. The vector a′ means that
231 · x2 = 0 or, equivalently, x2 is even. Both relations are non-trivial and could
not have been derived by using the corresponding analysis over Q.

6. GUARDS

A draw-back of the interprocedural analyses of Section 5 is that conditional branch-
ing is abstracted by non-deterministic choice. A natural class of guards to be taken
into account in the context of the linear abstraction are affine equality guards of the
form g = 0 for g ≡ g0 + g1x1 + . . . + gkxk. Over infinite fields, already the problem
of deciding whether a variable x always equals 0 or not at a given program point u
(i.e. validity of the affine relation x = 0 at u) is undecidable in presence of equality
guards [Müller-Olm and Seidl 2004a]. Of course, if variables take values in a finite
structure like Zm, m = 2w, the problem becomes trivially decidable, as in principle
we can compute the collecting semantics completely. However, as we show next,
the problem still stays computationally hard, even in absence of procedures.

xj = 1
xj := a1

xj = 0
xj := a0

fq,j :

xj := 0 xj := 1

f
q
(0)
2 ,j0

() f
q
(1)
1 ,j1

() f
q
(1)
2 ,j1

()f
q
(0)
1 ,j0

()

Fig. 6. Procedure constructed for an existential state q with successors q
(b)
1 , q

(b)
2 (b ∈ {0, 1}).

Specifically, we show interprocedural constant detection is DEXPTIME-complete
while intraprocedural constant detection is still PSPACE-complete in presence of
equality guards. We have:
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xj := 1xj := 0

xj = 1
xj := a1

xj = 0
xj := a0

fq,j :

f
q
(0)
1 ,j0

()

f
q
(0)
2 ,j0

()

f
q
(1)
1 ,j1

()

f
q
(1)
2 ,j1

()

Fig. 7. Procedure constructed for a universal state q with successors q
(b)
1 , q

(b)
2 (b ∈ {0, 1}).

Theorem 6.1. Determining for affine programs over Zm with equality guards
whether at program end, the equality x1 = 0 holds or not, is DEXPTIME-complete
in general. For programs without procedures, this problem is still PSPACE-complete.

Proof. Let us first consider the upper complexity bounds. In absence of pro-
cedures, we can simulate an execution of the program in polynomial space. By
guessing such a run we can falsify the equality x1 = 0 whenever possible. Since
PSPACE is closed under complement, the upper bound for intraprocedural analysis
follows.

For the exponential upper bound, we rely on a straight-forward representation of
effects of procedures through value-tables. Each entry contains the set of possible
variable assignments after a call. It is readily checked that all these tables together
can be computed in deterministic exponential time and the assertion in presence of
procedures follows as well.

For a proof of the exponential lower bound, we consider a linear-space bounded
alternating Turing machine. Whether or not such a machine M accepts an input w
is DEXPTIME-hard [Chandra et al. 1981]. For simplicity we may assume that the
tape of M always has length n and that the tape alphabet is just {0, 1}. We con-
struct an affine program with guards that has an execution iff M has an accepting
run from its initial configuration. The n cells of the tape are represented by the
variables x1, . . . ,xn. For every pair of a state q and a head position j ∈ {1, . . . , n},
we introduce a procedure fq,j . W.l.o.g. we assume that M has no transitions in
an accepting state, and that M in every non-accepting state first reads the cell
at the current head position and then depending on the outcome, moves its head
and either selects one of two successor states or continues independently with two
successor states. The first kind of behavior is chosen for existential states, while the
latter applies to universal states. Assume that q is an existential state which when
reading b, sets the j-th cell to ab, moves the head position to jb and proceeds with

one of the states q
(b)
1 , q

(b)
2 . Then the corresponding simulating procedure is shown

in Figure 6. Similarly, the procedure for a universal state q is shown in Figure 7.
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When reading b, the machine M in state q then sets the j-th cell to ab, moves the

head position to jb and proceeds with the states q
(b)
1 , q

(b)
2 in parallel. The program

in Figure 7 calls the corresponding procedures one after the other in order to ensure
that both execution of M succeed. Finally, the procedure fq,j for an accepting state
q immediately returns, i.e., consists of a single program point only. Note that, ac-
cording to Figures 6 and 7, after the recursive calls, we reverse the modification of
the variable in question. By this, we guarantee that, whenever a call of a procedure
fq,j terminates, it will leave the values of the variables unchanged. Assume now
that we want to check whether the machine M halts when started on the initial
configuration which consists of the tape w = x1 . . . xn, head position 1 and the ini-
tial state q0. Then we construct a main program which initializes the variables xj

to xj , then calls the procedure fq0,1 and finally sets x1 :=?. The resulting program
can reach the end of the main procedure iff M has an accepting run when started
in the initial configuration. Since the equality x1 = 0 only holds at program exit
if the program exit is not reachable, we conclude that x1 = 0 hold iff M does not
accept w. This proves the DEXPTIME-hardness for the general case.

Now consider a linear-space bounded Turing machine M having existential states
only. Deciding whether or not there is an accepting computation for such a machine
is just a PSPACE-hard problem. Please note that in the corresponding simulation
of such a machine by affine programs, the construction of Figure 7 is not needed.
Therefore the program contains no consecutive calls such that we can abandon the
reconstruction of the original values of the variables xj after calls. This makes all
procedure calls within the fq,j tail-recursive. Thus, the resulting program can also
be realized by a single control-flow graph. This observation implies the lower bound
for affine programs without procedures.

We remark that the upper bound also holds for more general programs where,
e.g., also multiplication in expressions is allowed, and also for arbitrary affine rela-
tions. On the other hand, the lower bound construction only builds on the existence
of two distinct values 0 and 1 and thus also holds for any other nontrivial finite
data domain. In summary, we conclude that any efficient analysis of programs with
guards must be approximate.

Intraprocedurally, an approximative treatment of equality guards has been con-
sidered both by Karr for fields [Karr 1976] and by Granger for Z [Granger 1991].
In both cases, the effect of such a guard amounts to intersection of linear spaces of
extended states. This idea also works for Zm-modules of extended states:

[[g = 0]]
♯
M = M ⊓ 〈{[x0, . . . , xk]t |

k
∑

j=0

gjxj = 0}〉

Computing this intersection can be reduced to solving a homogeneous linear equa-
tion system: Assume M = 〈G〉 where G is a finite set of generators. Let V denote
a matrix containing the vectors of G as column vectors. Then we obtain a system
of generators for [[g = 0]]

♯
M by solving the homogeneous system of equations:

(g′ V ) · y = 0

for the row vector g′ = [g0, . . . , gk] and a column vector y = [y1, . . . ,yq]
t of vari-

ables. It expresses that V y is a linear combination of the vectors in G that satisfies
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g = 0. Consequently, if Y = {y1, . . . , ym} is a set of generators for the Zm-module
of solutions, the intersection is generated by the set {V · y1, . . . , V · ym}.

An unsatisfiable guard such as 2 = 0 could still result in a nonempty intersection.
In this case, however, it does not contain any extended state. More generally, we
can improve the transformer [[g = 0]]

♯
by checking whether or not the resulting Zm-

module M ′ = [[g = 0]]
♯
M contains a vector with 0th component 1. If this is not

the case, the Zm-module M ′ does not represent any concrete extended state and
therefore safely can be replaced by the trivial Zm-module 〈 〉.

Assume that the Zm-module M ′ is generated by the finite set G′ of generators.
In order to decide whether M ′ contains at least one extended state, we observe that
the following three statements are equivalent:

(1) M ′ contains a vector with 0th component 1;

(2) M ′ contains a vector whose 0th component is odd;

(3) G′ contains a vector whose 0th component is odd

where the third property is obviously the easiest to verify.

Example 6.2. Consider the guard 2 = 0. The Zm-module of all solutions of this
equation is generated by the vectors 2w−1 ·e0 and the unit vectors ei for i = 1, . . . , k,
if k is the number of variables. Each of these vectors has an even 0th component.
Accordingly, this Zm-module does not contain extended states as elements.

Summarizing, we have a method for dealing with guards intraprocedurally. It
is not obvious, though, how intersections can be lifted to the transformer level to
obtain an interprocedural generalization of this method. Therefore, we suggest to
postpone the decision taken at the guard. Instead of performing the intersection,
we introduce an extra indicator variable for every guard expression in the program.
More precisely, assume that the edges with guards are numbered k+1, . . . ,m. Then
we instrument the original program by introducing fresh variables xk+1, . . . ,xm,
one for each guard. Initially, all these variables are assumed to have values 0. At
the jth guard g = 0, we place the assignment xj := g. This corresponds to the
matrix:









Ik+1 0
0 Ij−k−1 0 0

g0 . . . gk 0 0 0
0 0 0 Im−j









The extra values stored in the indicator variables are then used for an improved
treatment of calls in the constraint system R♯. As an invariant, we insist in R

♯
R

that all indicator variables have values 0, since this is the case for all program runs
permitted by the guards. Thus the first constraint now reads:

[R♯1] R♯(stMain) ⊒ Zk+1
m × {0m−k}

Accordingly, we modify the constraints for calls to:

[R♯5] R♯(v) ⊒ [[xm = 0]]
♯
(. . . [[xk+1 = 0]]

♯
(S♯(retq)(R

♯(u))) . . .) for edge (u, q, v)

Thus, having applied the transformations from S♯(retq), we select just those vec-
tors from the result whose indicator variables all equal 0. These can be determined
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by solving an appropriate homogeneous system of linear equations. Altogether, we
obtain an enhanced interprocedural analysis which deals with equality guards and
conservatively extends the corresponding intraprocedural analysis. Note that an
analogous technique can also be applied to other value domains such as fields or
general PIRs [Müller-Olm and Seidl 2005a].

7. CONCLUSION

We have presented a sound interprocedural algorithm for computing valid affine
relations in affine programs over rings Zm where m = 2w. This algorithm spe-
cializes to a more efficient intraprocedural algorithm for programs without proce-
dures. In absence of guards, our techniques could be shown to be complete. Be-
yond that, we also considered affine programs enhanced with equality guards and
showed that there the verification of non-trivial equalities immediately becomes in-
tractable . Therefore, we provided methods for approximately dealing with equality
guards both intra- and interprocedurally. These techniques allow us to analyze in-
teger arithmetic in programming languages like Java precisely (up to abstraction
of guards and non-linear statements). Our new algorithms are obtained from the
corresponding algorithms in [Müller-Olm and Seidl 2004d; 2004a; 2005a] by replac-
ing techniques for vector spaces with techniques for Zm-modules. The difficulty
here is that for m = 2w with w > 1, the ring Zm has zero divisors which implies
that not every element in the ring is invertible. Interestingly, the analysis using
modular arithmetic allows us not only to determine all affine relations modulo the
given power 2w but with little extra effort also all relations which are valid for
any smaller power of 2. We achieve the same complexity bounds as in the case of
fields — up to one extra factor w due to the increased height of the used complete
lattices. Interestingly, there is no need to compute multiplicative inverses in our
program analysis algorithms.

Our algorithms have the clear advantage that their arithmetic operations can
completely be performed within the ring Zm of the target language to be analyzed.
All problems with excessively long numbers are thus resolved. In [Müller-Olm and
Seidl 2004c] we also show how to extend the analyses to Zm for an arbitrary m > 2.

We remark that in [Müller-Olm and Seidl 2004d], we have shown how the linear
algebra methods over fields can be extended to handle local variables and return
values of procedures besides just global variables. These techniques immediately
carry over to arithmetic in Zm. The same is true for the generalization to the
inference of all valid polynomial relations up to a fixed degree bound described
for the intraprocedural case over fields in [Müller-Olm and Seidl 2004a]. The key
idea is to extend state vectors by further derived components and to apply the
linear abstraction on these extended vectors. In an interprocedural algorithm, the
matrices collected as summaries for procedures would have to transform extended
vectors.

One method to deal with inequalities instead of equalities is to use polyhedra
for abstracting sets of vectors [Cousot and Halbwachs 1978]. It is a challenging
question how to combine this abstraction with modular arithmetic.
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