
Control-Flow Analysis in Cubic Time

Flemming Nielson1 and Helmut Seidl2

1 Computer Science Department, Aarhus University (Bldg. 540), Ny Munkegade,
DK-8000 Aarhus C, Denmark, fn@daimi.au.dk

2 FB IV – Informatik, Universität Trier, D-54286 Trier, Germany,
seidl@uni-trier.de

Abstract. It is well-known that context-independent control flow anal-
ysis can be performed in cubic time for functional and object-oriented
languages. Yet recent applications of control flow analysis to calculi of
computation (like the π-calculus and the ambient calculus) have reported
considerably higher complexities. In this paper we introduce two general
techniques, the use of Horn clauses with sharing and the use of tiling
of Horn clauses, for reducing the worst-case complexity of analyses. Ap-
plying these techniques to the π-calculus and the ambient calculus we
reduce the complexity from O(n5) to O(n3) in both cases.

Keywords: Program analysis, Horn clauses with sharing, tiling of Horn
clauses, π-calculus, ambient calculus, 0-CFA.

1 Introduction

Program analyses often can be separated into two phases. In the first phase, the
program to be analyzed is translated into a suitable constraint system describing
safe information about the program, and where the unknowns represent the
desired information. In the second phase, a solution for the unknowns (typically
the least) is produced by an appropriate constraint solver.

Accordingly, there are also two common sources of inefficiency for a program
analyzer constructed in this way. Clearly, efficiency cannot be hoped for if already
the presentation of the system itself is extremely large. Therefore, a constraint
formalism should be chosen which is expressive enough to represent the generated
constraints succinctly. Even so, efficiency might be lost when the constraint
formalism is “stronger than necessary”, meaning that the solving procedure for
the selected class of constraints incurs a large though otherwise unnecessary
overhead.

As an example, consider the analysis of the π-calculus as presented in [2]. For
a program of size n this analysis succeeds in generating a constraint system of
size O(n3) using set inclusion constraints. Thus from a practical point of view,
even if a cubic worst case behavior is inevitable, such an extensive constraint
system is unsatisfactory as it prohibits simpler programs to be analyzed faster.
Actually, the presentation of the analysis used in [2] is even less likely to scale
to larger programs as the generated constraint system, when fed into an off-the-
shelf solver, would consume O(n5) steps of solving time in the worst case. In a

similar way, the analysis of the ambient calculus as presented in [10] generates a
constraint system of size O(n4) using set membership constraints and the same
O(n5) worst case constraint solving time.

The goal of this paper is to improve on these methods. As a general frame-
work within which these problems can be addressed, we propose the concept of
Horn clauses with sharing (HCS’s for short). While being much more succinct
than classical Horn clauses, they still admit rather efficient constraint solving
techniques. We demonstrate the usefulness of this concept in several ways. By
using Horn clauses with sharing instead of ordinary ones we are able to generate
linear size constraint systems for analyses of the π-calculus and for the ambient
calculus as they have been published in the literature. By using state-of-the-art
solvers for Horn clauses with sharing, we bring down the complexity of the 0-
CFA analysis of the π-calculus as presented in [2] from O(n5) to O(n3). It turns
out that these methods still do not suffice to get a similar improvement for the
ambient calculus. Therefore, we develop tiling as a source-to-source transforma-
tion of Horn clauses; indeed, tiling may be of independent interest also for other
applications. In our application it allows us to reduce the complexity for the
ambient calculus from O(n5) to O(n3) as well. In practical terms, O(n3) is likely
to be sufficiently good that it will be possible to analyse medium-sized programs
whereas lower complexities are called for to analyse large programs.

2 Horn Clauses with Sharing

There are several formalisms around in which to specify constraints for program
analyses; two of the more widely used ones are conditional set constraints (see
e.g. [1]) and Horn clauses (see e.g. [7]). We base our work on Horn clauses in
order to build on the techniques for complexity estimation presented in [7].

A system of Horn clauses (abbreviated: HC’s) usually is a set of implications
where the conclusion is a single relation, and the antecedent is a conjunction of
relations. In order to facilitate the introduction of sharing we shall represent a
system of Horn clauses as a formula derived by the nonterminal clause′ in the
grammar below:

pre′ ::= R (x1, · · · , xk) | pre′1 ∧ pre′2
clause

′ ::= R (x1, · · · , xk) | 1 | clause
′

1 ∧ clause
′

2

| pre′ ⇒ R (x1, · · · , xk) | ∀x : clause′

Here we assume that we are given a fixed countable set X = {x, x1, · · ·} of
variables and a finite ranked alphabet R = {R, R1, · · ·} of relation symbols of
predicates. In this notation we are explicit about the otherwise implicit universal
quantification in Horn clauses, and 1 is the always true clause.

To obtain Horn clauses with sharing (abbreviated: HCS’s) we extend this
formalism by allowing

• disjunctions and existential quantification in pre-conditions, and
• conjunctions of clauses in conclusions.

Disjunctions have been added merely for technical convenience. Existential quan-
tification in pre-conditions, however, allows us to limit the scopes of variables,
whereas conjunctions of clauses in conclusions allow us to merge multiple con-
clusions without the technical inconvenience of introducing auxiliary predicates.
The set of HCS’s are defined by the nonterminal clause in the grammar below:

pre ::= R (x1, · · · , xk) | pre1 ∧ pre2 | pre1 ∨ pre2 | ∃x : pre

clause ::= R (x1, · · · , xk) | 1 | clause1 ∧ clause2

| pre ⇒ clause | ∀x : clause

Occurrences of R(· · ·) in pre-conditions are also called queries, whereas the others
are called assertions of predicate R.

Given a universe U of atomic values (or atoms) together with interpreta-
tions ρ and σ for relation symbols and free variables, respectively, we define the
satisfaction relations (ρ, σ) |= pre and (ρ, σ) |= clause as follows (where t is a
pre-condition or clause):

(ρ, σ) |= 1 iff true
(ρ, σ) |= R (x1, · · · , xk) iff (σ x1, · · · , σ xk) ∈ ρ R

(ρ, σ) |= pre1 ∨ pre2 iff (ρ, σ) |= pre1 or (ρ, σ) |= pre2

(ρ, σ) |= t1 ∧ t2 iff (ρ, σ) |= t1 and (ρ, σ) |= t2
(ρ, σ) |= pre ⇒ clause iff (ρ, σ) |= clause whenever (ρ, σ) |= pre

(ρ, σ) |= ∀x : clause iff (ρ, σ ⊕ {x 7→ a}) |= clause for all a ∈ U
(ρ, σ) |= ∃x : pre iff (ρ, σ ⊕ {x 7→ a}) |= pre for some a ∈ U

In the sequel, we will view the free variables occurring in a HCS (or HC) as con-
stant symbols or atoms from the finite universe U . Thus, given an interpretation
σ of the constant symbols in clause, we call an interpretation ρ of the relational
symbols R a solution provided (ρ, σ) |= clause.

Let ∆σ = {ρ | (ρ, σ) |= clause} denote the set of solutions of clause (given a
fixed σ). Then ∆σ is partially ordered in the natural way by the componentwise
ordering ⊑. It is standard (see e.g. [9, Subsection 3.2.3]) that ∆σ is a Moore
family, i.e. closed under greatest lower bounds ⊓, and we conclude that ∆σ has
a least element which we call the least solution of clause. It is well-known [7, 5]
that in the case of HC’s this solution can be computed efficiently. The following
result establishes a similar result1 for HCS’s.

Proposition 1. Given an interpretation of the constant symbols, the least so-
lution of a HCS formula c1 ∧ · · · ∧ cm can be computed in time

O(N r1 · n1 + · · · + N rm · nm)

where N is the number of atoms in U , ni is the size of ci, and ri is the maximal
nesting depth of quantifiers in ci.

Proof. See Appendix A for an algorithm whose worst case complexity is as
stated. We are currently experimenting with a solver having the same worst
case complexity but a potentially much lower best case complexity.

1 All our complexity bounds refer to the RAM model with a uniform cost measure.

3 The Virtues of Sharing

We now show how sharing facilitates developing a cubic time algorithm for per-
forming control flow analysis [3, 2] for the π-calculus [8].

3.1 Example: The π-calculus

Introduction to the π-calculus. Let N be an infinite set of names ranged over by
a, b, · · · , x, y, · · · and let τ be a distinguished element not in N . Then processes
P ∈ P are built from names according to the following syntax:

P ::= 0 | µ.P | P + P | P |P | (νxχ)P | [x = y]P | !P
µ ::= x(yβ) | xy | τ

The prefix µ is the first atomic action that the process µ.P can perform. The
input prefix x(yβ) binds the name y in the prefixed process and corresponds
to a name y that is received along the link named x. The superscript β is a
“variable type”; we write B for the set of variable types. The output prefix xy

does not bind the name y and corresponds to the name y that is sent along x.
The silent prefix τ denotes an action which is invisible to an external observer
of the system.

Turning to the processes, P + Q behaves either as P or as Q whereas P |Q
performs P and Q simultaneously and also allows them to communicate with
each other (as when one performs an input and the other an output on the same
common link). The restriction operator (νxχ)P binds the name x in the process
P that it prefixes, in such a way that x is a unique name in P that is different
from all external names. The agent (νxχ)P behaves as P except that sending
along x and receiving along x is blocked. The superscript χ is a “channel type”
in the manner of the “variable type” discussed above; we write C for the set of
channel types. Matching [x = y]P is an if-then operator: process P is activated
if x = y. Finally, replication !P behaves as P |P | · · · as many times as needed.

Flow Logic specification of 0-CFA. The result of control flow analyzing a process
P is a pair (R, K) (called (ρ, κ) in [3, 2]). The first component, R : B → ℘(C),
is an abstract environment which gives information about the set of channels to
which names can be bound. The second component, K : C → ℘(C), is an abstract
channel environment which gives information about the set of channels that can
flow over given channels. The correctness of a proposed solution (R, K) is vali-
dated by a set of clauses operating upon judgments of the form, (R, K) |=me P ,
where the functionality of R : B → ℘(C) is extended2 to R : (B ∪ C) → ℘(C)
by stipulating that ∀χ ∈ C : R(χ) = {χ}. As in [3, 2] the control flow analysis
is developed relative to a “marker environment” me : N → (B ∪ C) that maps
names to their variable type (in B) or channel type (in C) as appropriate; in the

2 This seemingly ad-hoc definition is made because the π-calculus does not make a
syntactic distinction between “variables” and “channels”.

(R,K) |=me 0 iff true

(R,K) |=me τ.P iff (R,K) |=me P

(R,K) |=me xy.P iff (R,K) |=me P ∧

∀χ ∈ R(me(x)) : R(me(y)) ⊆ K(χ)

(R,K) |=me x(yβ).P iff (R,K) |=me[y 7→β] P ∧

∀χ ∈ R(me(x)) : K(χ) ⊆ R(β)

(R,K) |=me P1 + P2 iff (R,K) |=me P1 ∧ (R, K) |=me P2

(R,K) |=me P1|P2 iff (R,K) |=me P1 ∧ (R, K) |=me P2

(R,K) |=me (νxχ)P iff (R,K) |=me[x 7→χ] P

(R,K) |=me [x = y]P iff (R(me(x))∩ R(me(y)) 6= ∅

⇒ (R,K) |=me P

(R,K) |=me !P iff (R,K) |=me P

Table 1. Flow Logic for the π-calculus (taken from [2]).

interest of simplicity we sometimes simplify explanation by pretending that me

is the identity.
The Control Flow Analysis is given by the Flow Logic in Table 1. All the rules

dealing with a compound process require that the components are validated,
apart from the one for matching. Moreover, the second conjunct of the rule for
output requires that the set of channels that can be communicated along each
element of R(x) (pretending here that me is the identity) includes the channels
to which y can evaluate. Symmetrically, the rule for input demands that the set
of channels that can pass along x is included in the set of channels to which y

can evaluate. The condition for matching says that the continuation P needs to
be validated if there is at least one channel to which both x and y can evaluate.
Similar “reachability” considerations can be performed also for input and output
without invalidating Theorem 1 below. We refer to [2] for further explanation of
the analysis and for proofs of its semantic correctness.

An algorithm for obtaining the least solution in3 time O(n5) in the size n of
processes is given in [2].

Horn Clauses with Sharing for 0-CFA. To generate HCS’s corresponding to the
Flow Logic specification in Table 1 we shall perform the following systematic
transformations in order to adhere to the format of Horn clauses with sharing:

• A set inclusion of the form X ⊆ Y is expressed using set memberships of the
form ∀u : u ∈ X ⇒ u ∈ Y .

3 In [3] it is conjectured that the constraints can be solved in O(n3) bit-vector opera-
tions which corresponds to overall time O(n4) but no algorithm is given.

G[[0]]me = 1

G[[τ.P]]me = G[[P]]me

G[[xy.P]]me = G[[P]]me ∧

∀u : ∀v : (R(u, me(x)) ∧ R(v, me(y))) ⇒ K(v, u)

G[[x(yβ).P]]me = G[[P]]me[y 7→β] ∧

∀u : ∀v : (R(u, me(x)) ∧ K(v, u)) ⇒ R(v, β)

G[[P1 + P2]]me = G[[P1]]me ∧ G[[P2]]me

G[[P1|P2]]me = G[[P1]]me ∧ G[[P2]]me

G[[(νxχ)P]]me = G[[P]]me[x 7→χ] ∧ R(χ, χ)

G[[[x = y]P]]me = (∃u : R(u, me(x)) ∧ R(u, me(y))) ⇒ G[[P]]me

G[[!P]]me = G[[P]]me

Table 2. Horn Clauses with Sharing for the π-calculus.

• A set membership of the form u ∈ R(v) is written using a binary predicate
of the form R(u, v).

To obtain a finite algorithm we shall restrict our attention to a finite universe, C⋆,
containing all the relevant channels; this corresponds to the set U⋆∩C considered
in [2]. The constraint generation in Table 2 differs from the one in [2] because
Horn clauses with sharing facilitate a more succinct representation of constraints.
In particular, in the clause [x = y]P we directly generate the condition (∃u :
R(u, x) ∧ R(u, y)) (once more pretending that me is the identity) shared for all
of P without the need to duplicate it for each individual constraint (as would
be needed to generate constraints in the form of Horn clauses). Also we enforce
the convention that R(χ) = {χ} by generating the constraint χ ∈ R(χ) when
appropriate; the desired equality then holds in the least solution.

We state without proof that the two formulations of the analysis are equiv-
alent (using the notational conventions explained above):

Lemma 1. (R, K) |=me P holds if and only if G[[P]]me.

For a universe of size O(n) we prove in Theorem 1 below that the resulting
constraints can be solved in cubic time.

3.2 The Complexity of Constraint Specifications

The complexity of the control flow analysis can be established by applying Propo-
sition 1 to the constraints generated for a program but it is more convenient to
argue directly in terms of the constraint generation function itself. As will be-
come clear in the next section it is convenient to define a constraint specification

to be a triple (T , α, c) where T is a compositionally defined constraint generation
function (like G in Table 2), c is a global constraint (absent above, hence could be
taken to be 1), and α is an initial context for the constraint generation function.
Here, contexts are supposed to consist of a bounded number of atoms from the
universe together with a bounded number of functions to extract atoms from
pieces of syntax (like me above). Given a program P the constraint generated
then is T [[P]]α ∧ c.

A constraint specification (T , α, c) is said to be linear HCS if each defining
equation of T takes the form

T [[φ′(P1, · · · , Pm′)]]α′ = c′ ∧
m′′∧

i=1

p′i ⇒ T [[Pi]]α′

i

where m′′ ≤ m′, the Pi are distinct and non-overlapping components of the
program φ′(P1, · · · , Pm′) and α′

i is computed from α′ and φ′; the formulae c′ and
p′i chosen for φ′ may contain free variables z̃ occurring in α′ or extracted from
φ′ (using the extraction functions in α′). The constraint specification is linear
HC when additionally all clauses (c′, p′i and c) are formulae of HC.

A constraint specification (T , α, c) is said to have cost coefficient r if r is
minimal such that each defining equation of T have quantifiers nested at most
to depth r − 1 and if the global constraint c has quantifiers nested at most to
depth r; note that r will always be greater than zero.

Proposition 2. Given a linear HCS constraint specification (T , α, c) of cost
coefficient r, a program P of size O(n) and a universe of size O(n); the constraint
T [[P]]α ∧ c has size O(n) and its least solution can be found in time O(nr). ⊓⊔

Proof. Clearly T [[P]]α has size O(n) with quantifiers nested at most to depth
r − 1 and c has size O(1) with quantifiers nested at most to depth r. The result
then follows from Proposition 1. ⊓⊔

Theorem 1. Control Flow Analysis for the π-calculus (as in [2]) can be done
in cubic time. ⊓⊔

Proof. Clearly (G, me,1) is a linear HCS constraint specification with cost coeffi-
cient 3. Also the universe has size linear in the program because it only consists
of entities explicitly mentioned in the program. The result then follows from
Proposition 2. ⊓⊔

4 The Virtues of Tiling

We now show how tiling facilitates developing a cubic time algorithm for per-
forming control flow analysis [10] for the ambient calculus [4].

4.1 Example: The Ambient Calculus

Introduction to mobile ambients. The syntax of processes P ∈ Proc, capabilities
M ∈ Cap and namings N ∈ Nam is given by:

P ::= (ν nµ)P restriction
| 0 inactivity
| P | P ′ composition
| !P replication
| N l[P] ambient
| M. P movement

M ::= intN enter N

| outtN exit N

| opentN open N

N ::= n name

Processes contain a number of constructs known from the π-calculus; an example
is the restriction operator where µ ∈ SNam is the “ambient type” (in the man-
ner of the “variable type” and “channel type” considered above) called “stable
name” in [10]. The final two constructs are unique to the ambient calculus. An
ambient is a process operating inside a named border. Movement of ambients is
governed by capabilities. The in-capability directs the enclosing ambient to en-
ter a sibling named N . The out-capability directs the enclosing ambient to move
out of its parent named N . The open-capability dissolves the border around a
sibling ambient named N . Finally, namings are names. Much as in [10] we have
placed labels l ∈ ALab on ambients and labels t ∈ TLab on capabilities (or
transitions) in order to have explicit notation for the various subterms.

Flow Logic specification. An ambient will be identified by its label l ∈ ALab and
a transition by its associated capability type m̃ ∈ SCap called “stable capability”
in [10]; capability types are given by

m̃ ::= intµ | outtµ | opentµ

and correspond to capabilities except that names have been replaced by ambient
types. The analysis records which ambients and transitions occur inside what
ambients in the component I : ALab → ℘(ALab ∪ SCap). We also use the
“inverse” mapping I−1 : (ALab ∪ SCap) → ℘(ALab) that returns the set of
ambients in which the given ambient or transition might occur; formally z ∈ I(l)
if and only if l ∈ I−1(z).

Each occurrence of an ambient has an ambient type and to keep track of this
information the analysis also contains the component H : ALab → ℘(SNam).
As above we use the “inverse mapping” H−1 : SNam → ℘(ALab) that returns
the set of ambients that might have the given ambient type.

The acceptability of the analysis is defined by the following four predicates
defined by the Flow Logic in Table 3:

(I, H) |=l
me P for checking a process P ∈ Proc;

(I, H) |>me M : M̃ for translating a capability M ∈ Cap into a
set M̃ ∈ ℘(SCap) of capability types;

(I, H) ‖≡me N : Ñ for decoding a naming N ∈ Nam into a set
Ñ ∈ ℘(SNam) of ambient types;

(I, H) |≡l m̃ for checking a capability type. m̃ ∈ SCap.

(I,H) |=l
me (ν nµ)P iff (I, H) |=l

me[n7→µ] P

(I,H) |=l
me 0 iff true

(I,H) |=l
me P | P ′ iff (I, H) |=l

me P ∧ (I, H) |=l
me P ′

(I,H) |=l
me !P iff (I, H) |=l

me P

(I, H) |=l
me N l′ [P] iff (I, H) |=l′

me P ∧ l′ ∈ I(l) ∧
(I, H) ‖≡me N : Ñ ∧ Ñ ⊆ H(l′)

(I,H) |=l
me M. P iff (I, H) |=l

me P ∧
(I, H) |>me M : M̃ ∧ ∀m̃ ∈ M̃ : (I, H) |≡l m̃

(I, H) |>me intN : M̃ iff (I, H) ‖≡me N : Ñ ∧ M̃ ⊇ {intµ | µ ∈ Ñ}

(I, H) |>me outtN : M̃ iff (I, H) ‖≡me N : Ñ ∧ M̃ ⊇ {outtµ | µ ∈ Ñ}

(I, H) |>me opentN : M̃ iff (I, H) ‖≡me N : Ñ ∧ M̃ ⊇ {opentµ | µ ∈ Ñ}

(I, H) ‖≡me n : Ñ iff Ñ ⊇ {me(n)}

(I, H) |≡l intµ iff intµ ∈ I(l) ∧
∀la ∈ I−1(intµ) : ∀l′a ∈ I−1(la) :

∀l′′a ∈ I(l′a) ∩ H−1(µ) : la ∈ I(l′′a)

(I,H) |≡l outtµ iff outtµ ∈ I(l) ∧
∀la ∈ I−1(outtµ) : ∀l′a ∈ I−1(la) ∩ H−1(µ) :

∀l′′a ∈ I−1(l′a) : la ∈ I(l′′a)

(I, H) |≡l opentµ iff opentµ ∈ I(l) ∧
∀la ∈ I−1(opentµ) : ∀l′a ∈ I(la) ∩ H−1(µ) :

∀l′ ∈ I(l′a) : l′ ∈ I(la)

Table 3. Flow Logic for the ambient calculus (taken from [10]).

Much as before a marker environment me : Nam →fin SNam is used for map-
ping names to ambient types. We refer to [10] for further explanation of the
analysis and for proofs of its semantic correctness.

An algorithm for obtaining the least solution in4 time O(n5) is given in [10].

Constraint generation. To generate the constraints as simply as possible we note
that in the communication-free fragment of the mobile ambients studied here
the only possible naming (N) is a name (n). Thus namings can be replaced by
names everywhere and this makes the judgement (I, H) ‖≡me n : Ñ dispensable
(essentially by always choosing for Ñ the least choice {me(n)}).

In a similar way we can dispense with the judgement (I, H) |>me M : M̃ if
we arrange that the translation from names to ambient types also becomes the
duty of the judgement (I, H) |≡l m̃ that thus takes the form (I, H) |≡l

me M .

4 In [10] it is conjectured that a more sophisticated implementation will be able to
achieve O(n4) but no details are provided.

G[[(ν nµ)P]]lme = G[[P]]lme[n7→µ]

G[[0]]lme = 1

G[[P | P ′]]lme = G[[P]]lme ∧ G[[P ′]]lme

G[[!P]]lme = G[[P]]lme

G[[nl′ [P]]]lme = G[[P]]l
′

me ∧ I(l′, l) ∧ H(me(n), l′)

G[[M. P]]lme = G[[P]]lme ∧ G′[[M]]lme

G′[[intn]]lme = I(intme(n), l) ∧
∀la : ∀l′a : ∀l′′a : (I(intme(n), la) ∧ I(la, l′a) ∧

I(l′′a, l′a) ∧ H(me(n), l′′a)) ⇒ I(la, l′′a)

G′[[outtn]]lme = I(outtme(n), l) ∧
∀la : ∀l′a : ∀l′′a : (I(outtme(n), la) ∧ I(la, l′a) ∧

H(me(n), l′a) ∧ I(l′a, l′′a)) ⇒ I(la, l′′a)

G′[[opentn]]lme = I(opentme(n), l) ∧
∀la : ∀l′a : ∀l′ : (I(opentme(n), la) ∧ I(l′a, la) ∧

H(me(n), l′a) ∧ I(l′, l′a)) ⇒ I(l′, la)

Table 4. Horn Clauses for the ambient calculus.

This leaves us with the judgements (I, H) |=l
me P and (I, H) |≡l

me M and
they give rise to constraint generation functions G[[P]]lme and G′[[M]]lme, respec-
tively. To satisfy the Horn clause format we perform the following systematic
transformations:

• A set membership involving an “inverse” relation of the form u ∈ R−1(v) is
rewritten to the form v ∈ R(u) thus avoiding “inverse” relations.

• As in Subsection 3.1 a set membership of the form u ∈ R(v) is written using
a binary predicate of the form R(u, v).

Using the notational conventions explained above we state without proof that
the formulations of Tables 3 and 4 are equivalent:

Lemma 2. (I, H) |=l
me P holds if and only if G[[P]]lme.

Clearly (G, (l, me),1) is a linear HCS constraint specification with cost coefficient
4 that operates over a universe of size linear in the size of the program so that
by Proposition 2 the constraints can be solved in time O(n4); we now develop
the notion of tiling in order to obtain a cubic bound.

4.2 Tiling of Constraint Specifications

Tiling applies to a linear HC constraint specification and systematically rewrites
it into another with the aim of eventually reducing the cost coefficient. There
are two main tricks to be played when tiling a constraint specification (T , α, c):

• to remove quantifiers in c or in the defining equations of T , and

• to transfer sub-formulae from a defining equation of T into the global con-
straint c.

We first apply the techniques to the analysis of the mobile ambients and then
show how to perform it in general.

Theorem 2. Control Flow Analysis for the mobile ambients (as in [10]) can be
done in cubic time.

Proof. The constraint specification (H, (l, me), cH) of Table 5 has cost coefficient
3 and so by Proposition 2 we can solve H[[P]]lme ∧ cH in cubic time.

It remains to show that the least solution to H[[P]]lme ∧ cH equals the least
solution to G[[P]]lme (ignoring the auxiliary relations). The key idea to reducing
the complexity is to ensure that the formulae generated are “tiled” such that
subformulae with three nested quantifiers are only generated a constant number
of times whereas subformulae with two nested quantifiers may be generated a
linear number of times.

Concentrating on the clause for in-capabilities we note that it establishes that
la and l′′a are siblings because they have the same parent (namely l′a). Imagine
that we have a relation S for expressing the sibling relation: S(la, l′′a) if and
only if ∃l′a : I(la, l′a)∧ I(l′′a, l′a). Then the clause for G′[[intn]]lme is equivalent to
the formula:

I(intme(n), l) ∧
∀la : ∀l′′a : (I(intme(n), la) ∧ S(la, l′′a) ∧ H(me(n), l′′a)) ⇒ I(la, l′′a)

Indeed the relation S can be obtained by generating the Horn clause

∀la : ∀l′a : ∀l′′a : (I(la, l′a) ∧ I(l′′a, l′a)) ⇒ S(la, l′′a)

and taking the least solution (assuming that this is the only clause defining S).
The clause for out-capabilities has a slightly different structure so here we

make use of a predicate O(la, l′a) for indicating when la may be a candidate for
moving out of l′a. Similarly in the clause for open-capabilities we make use of a
predicate P (l′a, la) for indicating when l′a may be a candidate for being opened
inside la. This concludes the proof. ⊓⊔

In fact it is not necessary to have any deep insights in the analysis in order
to perform tiling. To make this clear we now develop a purely mechanical notion
of tiling, 7−→, such that Theorem 2 follows from merely noting that, except for
a few additional simplifications,

(G, (l, me),1) 7−→⋆ (H, (l, me), cH)

and then relying on Proposition 3 below.

Tiling individual constraints. We begin by considering a tiling transformation
on certain individual constraints. It takes the form c

o
7→ c1&c2 where the idea

is that c should be replaced by c1 and that c2 should be moved out to the
global constraint; the superscript o will be 0 when the constraint c occurs in the

H[[(ν nµ)P]]lme = H[[P]]lme[n7→µ]

H[[0]]lme = 1

H[[P | P ′]]lme = H[[P]]lme ∧ H[[P ′]]lme

H[[!P]]lme = H[[P]]lme

H[[nl′ [P]]]lme = H[[P]]l
′

me ∧ I(l′, l) ∧ H(me(n), l′)

H[[M. P]]lme = H[[P]]lme ∧ H′[[M]]lme

H′[[intn]]lme = I(intme(n), l) ∧
∀la : ∀l′′a : (I(intme(n), la) ∧ S(la, l′′a) ∧

H(me(n), l′′a)) ⇒ I(la, l′′a)

H′[[outtn]]lme = I(outtme(n), l) ∧
∀la : ∀l′a : (I(outtme(n), la) ∧ I(la, l′a) ∧

H(me(n), l′a)) ⇒ O(la, l′a)

H′[[opentn]]lme = I(opentme(n), l) ∧
∀la : ∀l′a : (I(opentme(n), la) ∧ I(l′a, la) ∧

H(me(n), l′a)) ⇒ P (l′, la)

cH = ∀la : ∀l′a : ∀l′′a : (I(la, l′a) ∧ I(l′′a, l′a)) ⇒ S(la, l′′a) ∧
∀la : ∀l′a : ∀l′′a : (O(la, l′a) ∧ I(l′a, l′′a)) ⇒ I(la, l′′a) ∧
∀la : ∀l′a : ∀l′ : (P (l′a, la) ∧ I(l′, l′a)) ⇒ I(l′, la)

Table 5. Tiled Horn Clauses for the ambient calculus.

global constraint and 1 when it occurs in a defining equation for the constraint
specification.

The intention is to reduce the quantifier depth of c by possibly generat-
ing additional “cheap” clauses; in intuitive terms, reduction of quantifier depth
means reducing the number of variables that are “simultaneously active” when
expressing the analysis. The general form of a formula c to be tiled is

c = ∀y1 : · · · ∀yk : pre′ ⇒ R(w̃)

where w̃ may contain bound variables from y1, · · · , yk as well as variables occur-
ring in the program; we shall write z̃ for the latter. To define the transformation
we first introduce two auxiliary concepts. We shall say that a bound variable yi is
a candidate in case it does not occur in w̃; similarly, we shall say that the special
symbol � is a candidate in case no symbol from z̃ occurs in w̃. Furthermore, we
say that two distinct bound variables yi and yj are neighbours in case there is a
query R′(· · ·) in pre′ that mentions both yi and yj ; similarly, we shall say that
a bound variable yi and the special symbol � are neighbours in case there is a
query R′(· · ·) in pre′ that mentions both yi and some variable from z̃.

There are three rules defining c
o
7→ c1&c2, each one removing a candidate

having at most 2 neighbours. The first rule removes a bound variable that is a
neighbour of �:

∀y1 : · · · ∀yk : pre′ ⇒ R(w̃)
o
7→ (∀y′

1 : · · · ∀y′

k−1
: Afresh(x1, · · · , xd, z̃) ∧ pre′2 ⇒ R(w̃))∧

(∀y : ∀x1 : · · · ∀xd : pre′1 ⇒ Afresh(x1, · · · , xd, z̃))
& 1

if y is a candidate with neighbour list x1, · · · , xd, � and o + k ≥ 4, d ≤ 1

Here y is a bound variable and y′
1, . . . , y

′

k−1
is an enumeration of the remaining

bound variables. Furthermore, pre′1 denotes the conjunction of all queries from
pre′ containing y, pre′2 denotes the conjunction of the remaining ones, and z̃ is an
enumeration of the program variables occurring in pre′1. The auxiliary relation
Afresh is chosen fresh for each use of the rule.

The next rule removes a bound variable that is not a neighbour of �:

∀y1 : · · · ∀yk : pre′ ⇒ R(w̃)
o
7→ ∀y′

1 : · · · ∀y′

k−1
: Afresh(x1, · · · , xd) ∧ pre′2 ⇒ R(w̃)

& ∀y : ∀x1 : · · · ∀xd : pre′1 ⇒ Afresh(x1, · · · , xd)
if y is a candidate with neighbour list x1, · · · , xd and o + k ≥ 4, d ≤ 2

As before, y is a bound variable and y′
1, . . . , y

′
k−1

is an enumeration of the re-
maining bound variables. Also pre′1 denotes the conjunction of all queries from
pre′ containing y, pre′2 denotes the conjunction of the remaining ones, and the
auxiliary relation Afresh is chosen fresh for each use of the rule.

The final rule could perhaps be said to remove � by transferring the program
independent parts of the clause into the global constraint:

∀y1 : · · · ∀yk : pre′ ⇒ R(w̃)
o
7→ ∀x1 : · · · ∀xd : pre′1 ⇒ Afresh(x1, · · · , xd)

& ∀y1 : · · · ∀yk : Afresh(x1, · · · , xd) ∧ pre′2 ⇒ R(w̃)
if � is a candidate with neighbour list x1, · · · , xd and o = 1, d ≤ 2

As before pre′1 denotes the conjunction of all queries from pre′ containing some
program variable (from z̃), pre′2 denotes the conjunction of the remaining ones,
and the auxiliary relation Afresh is chosen fresh for each use of the rule. (The
condition o = 1 merely says that the rule cannot be applied to the global con-
straint.)

Tiling constraint specifications. The tiling transformation (T , α, c) 7−→ (T ′, α′, c′)
on constraint specifications is defined by the following rules:

(T , α, · · · ∧ c ∧ · · ·) 7−→ (T , α, · · · ∧ c1 ∧ c2 ∧ · · ·)

if c
1
7→ c1&c2

(T , α, c) 7−→ (T ′, α, c ∧ c2)

if c′
0
7→ c1&c2 and T ′ is as T except that

T [[φ′(P1, · · · , Pm)]]α′ = · · · ∧ c′ ∧ · · · ∧
∧m′′

i=1
pre′i ⇒ T [[Pi]]α′

i

T ′[[φ′(P1, · · · , Pm)]]α′ = · · · ∧ c1 ∧ · · · ∧
∧m′′

i=1
pre′i ⇒ T ′[[Pi]]α′

i

The following result establishes the correctness of the tiling transformation; since
tiling is not able always to reduce the complexity to cubic it is important also
to show that the non-determinism is purely benign:

Proposition 3. Let (T , α, c) be a linear CH constraint specification of cost co-
efficient r. If (T , α, c) 7−→ (T ′, α′, c′) then

• (T ′, α′, c′) is a linear CH constraint specification of cost coefficient r′ ≤ r.
• For all programs P the least solution to T ′[[P]]α′ ∧ c′ equals the least solution

to T [[P]]α ∧ c (ignoring the auxiliary relations introduced).

The 7−→ rewrite relation is terminating and if some maximal reduction sequence
leads to cost coefficient r′ then so do all.

Proof. See Appendix B.

5 Conclusion

The search for the techniques reported here was partly stimulated by the The-
orem of Robertson and Seymour (see e.g. [6]) that says that for a large class of
properties of graphs (essentially those that are closed under taking subgraphs)
it can be decided in cubic time whether or not a graph has the property. While
not immediately applicable to the problem of control flow analysis for calculi of
computation it nonetheless motivates careful scrutiny of those instances where
more than cubic time seems to be needed. Indeed we managed to reduce two
previously published bounds from a higher polynomial to cubic and we are cur-
rently working on extending the techniques to deal also with the full ambient
calculus where communication is admitted.

References

1. A. Aiken. Introduction to set constraint-based program analysis. Science of Com-
puter Programming, 35:79–111, 1999.

2. C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis for the π-
calculus with applications to security. Information and Computation, (to appear),
2001.

3. C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Control flow analysis for the
π-calculus. In Proceedings of CONCUR’98, volume 1466 of LNCS, pages 84–98.
Springer-Verlag, 1998.

4. L. Cardelli and A. D. Gordon. Mobile ambients. In Proceedings of FoSSaCS’98,
volume 1378 of LNCS, pages 140–155. Springer-Verlag, 1998.

5. W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. Journal of Logic Programming, 3:267–284, 1984.

6. J. van Leeuwen. Graph Algorithms. Handbook of Theoretical Computer Science,
A:525–631, 1990.

7. D. McAllester. On the complexity analysis of static analyses. In 6th Static Analysis
Symposium (SAS), pages 312–329. LNCS 1694, Springer Verlag, 1999.

8. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (I and II).
Information and Computation, 100(1):1–77, 1992.

9. F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999.

10. F. Nielson, H. Riis Nielson, R. R. Hansen, and J. G. Jensen. Validating firewalls
in mobile ambients. In Proceedings of CONCUR’99, volume 1664 of LNCS, pages
463–477, 1999.

11. J. Rehof and T. Mogensen. Tractable constraints in finite semilattices. Science of
Computer Programming (SCP), 35(1):191–221, 1999.

12. M. Yannakakis. Graph-theoretic concepts in database theory. In 9th ACM Symp.
on Principles of Database Systems (PODS), pages 230–242, 1990.

A Proof of Proposition 1

The proof proceeds in three phases. First we transform c = c1 ∧ · · · ∧ cn to c̃ by
replacing every universal quantification ∀x : clause by the conjunction of all N

possible instantiations of clause and every existential quantification ∃x : pre by
the disjunction of all N possible instantiations of pre. The resulting clause c̃ is
logically equivalent to c, has size

O(N r1 · n1 + · · · + N rm · nm) (1)

and is boolean; the latter just means that there are no variables or quantifications
and all literals are viewed as nullary predicates.

For the second phase we now describe a transformation F 7−→ F1, . . . , Fl that
for each boolean HCS formula F , produces a sequence of boolean “almost-HC”
formulae F1, . . . , Fl. The transformation first replaces all top-level conjunctions
in F with “,”. Then it proceeds by successively replacing clauses occurring in
the sequence with sequences of simpler ones.

pre ⇒ clause1 ∧ clause2 7−→ pre ⇒ Afresh,

Afresh ⇒ clause1, Afresh ⇒ clause2

pre1 ⇒ pre2 ⇒ clause 7−→ pre1 ∧ pre2 ⇒ clause

pre ⇒ 1 7−→ 1

Here Afresh is a new fresh nullary predicate generated for each application of
the relevant transformation. The transformation is completed, with result F̃ , as
soon as none of these rewrite rules can be applied. Clearly the conjunction of the
resulting formulae F̃ is logically equivalent to F (ignoring the fresh predicates).

To show that this process terminates and that the size of F̃ is at most a
constant times the size of the input formula F , we assign a cost to the formu-
lae. Let us define the cost of a sequence of clauses as the sum of costs of all
occurrences of predicate symbols and operators (excluding “,”). In general, the
cost of a symbol or operator is 1 — except implications “⇒” which count 2, and
conjunctions in conclusions which count 8. Then the first rule decreases the cost
from k + 10 to k + 9, the second rule decreases the cost from k + 4 to k + 3,
whereas the third rule decreases the cost from k + 3 to 1 (for suitable values of
k). Since the cost of the initial sequence is at most 8 times the size of F , only a
linear number of rewrite steps can be performed. Since each step increases the

size at most by a constant, we conclude that the F̃ has increased just by a con-
stant factor. Consequently, when applying this transformation to c̃, we obtain a
boolean formula without sharing of size as in (1).

Finally, the third phase consists in solving the resulting system of boolean
Horn clauses (possibly with disjunctions). This can be done in linear time using
the techniques in e.g. [11]. Alternatively one can remove also the disjunctions,
by replacing each pre1 ∨ pre2 by Afresh and two new clauses pre1 ⇒ Afresh and
pre2 ⇒ Afresh. Assigning all symbols a cost of 1 — except disjunction that counts
6 — suffices for showing that the size does not increase by more than a constant
factor here as well. The resulting system can then be solved in linear time by
the classical techniques of e.g. [5].

B Proof of Proposition 3

It is straightforward to prove that (T ′, α′, c′) is a linear CH constraint specifica-
tion of cost coefficient r′ ≤ r and that the least solution to T ′[[P]]α′ ∧ c′ equals
the least solution to T [[P]]α ∧ c (ignoring the auxiliary relations introduced).

The key ingredient in showing that 7−→ is terminating is to note that
o
7→ is

only applied to formula whose cost coefficient is at least 4, that the cost coefficient
is reduced by 1, and that all auxiliary clauses generated have cost coefficient at
most 3.

The key ingredient in showing that all maximal transformation sequences of
7−→ lead to the same cost coefficient is to note that

o
7→ is confluent. To show

this we develop a simple graph model and then prove a diamond property. The
undirected graph gc associated with a clause

c = ∀y1 : · · · ∀yk : pre′ ⇒ R(w̃)

has nodes {y1, · · · , yk, �} and edges between any two nodes that are neighbours
(in the sense of Subsection 4.2). We now present three reduction rules on undi-
rected graphs which allow the removal of candidate nodes (in the sense of Sub-
section 4.2).

Formally, let gi = (Vi, Ei), i = 1, 2, denote two undirected finite graphs and
let Y be the complement of the set of candidate nodes. We say that g1 can be
reduced to g2 (by removal of vertex v), i.e., g1 →v g2, provided that v ∈ V1\Y
and V2 = V1\{v}, and one of the following conditions are satisfied:

• deg v = 0 and E2 = E1; or
• deg v = 1 and E2 = E1\{e} where e is the unique edge incident with v; or
• deg v = 2 and E2 = (E1\{e1, e2}) ∪ {e} where ei = {ui, v}, i = 1, 2 are the

two unique edges incident with v, and e = {u1, u2}.

Whenever one of the rules of Subsection 4.2 is applied the effect on the undirected
graph is recorded by one of the rules above (ignoring the clauses with cost
coefficient at most 3) and vice versa. In particular, this graph formalization
reveals that our tiling technique can be seen as a generalization of the reduction
of “chain queries” in Datalog as considered in [12].

Let g denote a finite undirected graph with n nodes. Since every reduction
step decreases the number of vertices by 1, we conclude that every maximal
sequence of reduction steps has length at most n − |Y |. Since the reduction is
terminating, Proposition 3 follows from the following 1-step diamond property:

Lemma 3. Assume that for finite undirected graphs g0, g1, g2, and vertices v1 6=
v2, we have g0 →v1

g1 and g0 →v2
g2. Then there is a finite undirected graph g3

such that also g1 →v2
g3 and g2 →v1

g3:

v2

g0

g2

g3

g1

v1

v1v2

Proof. Lemma 3 is proved by case distinction on the various possibilities of
relative positions of v1 and v2 in g0. In case, v1 and v2 are not neighbours in
g0, the property holds, since their reductions do not interfere. Therefore assume
that v1 and v2 are neighbours in g0, i.e., {v1, v2} is an edge in g0. Then either
both have degree 2, or, one of them has degree 2 whereas the other has degree
1, or both have degree 1. Assume for example that v1 and v2 have degrees 2 and
1, respectively. Then there must be an edge {u, v1} in g0 for some u 6= v2:

u v2v1

Reduction of v1 results in a graph g1 where v1 has been removed and the two
edges {u, v1} and {v1, v2} have been replaced with an edge {u, v2}:

u v2

In particular, the degree of v2 is still 1. Accordingly, reduction of v2 results in a
graph g2 where v1 has been removed together with the edge {v1, v2}:

u v1

In particular, the degree of v1 has decreased to 1. Thus, reduction of v2 in g1 as
well as reduction of v1 in g2 results in the same graph g3 which can be obtained
from g1 by removing both v1 and v2 together with the edges {v1, v2} and {u, v1}:

u

The cases where v1 and v2 are neighbours and both have degree 2 or 1 is similar.
This concludes the proof of Lemma 3. ⊓⊔

