
Electronic Notes in Theoretical Computer Science 62 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume62.html 17 pages

Cryptographic Analysis in Cubic Time

Flemming Nielson 1 Hanne Riis Nielson 2

Informatics and Mathematical Modelling, Richard Petersens Plads bldg. 321, The
Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.

Helmut Seidl 3

FB IV – Informatik, Universität Trier, D-54286 Trier, Germany.

Abstract

The spi-calculus is a variant of the polyadic π-calculus that admits symmetric cryp-
tography and that admits expressing communication protocols in a precise though
still abstract way. This paper shows that context-independent control flow analy-
sis can be calculated in cubic time despite the fact that the spi-calculus operates
over an infinite universe of values. Our approach is based on Horn Clauses with
Sharing and we develop transformations to pass from the infinite to the finite and
to deal with the polyadic nature of input and output. We prove that this suffices
for obtaining a cubic time implementation without sacrificing precision and without
making simplifying assumptions on the nature of keys.

1 Introduction

The polyadic π-calculus [9] has been widely used to describe communication
protocols. The spi-calculus [1,2] is an extension that has been used to describe
and analyse communication protocols based on symmetric cryptography.

More specifically the spi-calculus (see Section 2) contains an explicit op-
eration for encryption (turning plaintext into ciphertext) whereas decryption
(turning ciphertext into plaintext) is handled more implicitly by a matching
operation. This means that the syntax enforces a distinction between cleartext
and plaintext, in that decryption only succeeds when applied to ciphertext,
unlike what is the case for the low-level primitives implementing symmetric
cryptography.

1 E-mail: nielson@imm.dtu.dk. This work was supported in part by the Danish Natural
Science Research Council.
2 E-mail: riis@imm.dtu.dk
3 E-mail: seidl@uni-trier.de

c©2002 Published by Elsevier Science B. V.

Nielson et al.

The spi-calculus takes the view 4 that encryption and decryption are per-
fect. On the one hand, decrypting a message M encrypted with a key K,
always succeeds when the key K is used for decryption and gives the correct
message M. On the other hand, decryption does not succeed when attempted
with a key K′ distinct from K; in particular, it does not erroneously “succeed”
although producing a distinct message M′.

This paper considers the context-independent control flow analysis (or 0-
CFA) developed in [4,6]. It is specified (in Section 2) as a Flow Logic [10] and
operates over an infinite space of values. This makes it harder to implement
the analysis than is the case for the π-calculus upon which it is modelled [5].
Indeed, it is not a priori clear that the analysis can be implemented without
loss of precision and in cubic time.

As a first step we show (in Section 3) how to transform the analysis from
operating over an infinite universe to operating over a finite universe. We per-
form this step explicitly because we find general logical formulae, in particular
Horn Clauses with Sharing or our more recent extension to Alternation-free
Least Fixed Point Logic [13], to be so expressive that they are not easily
mapped into set-constraints or similar formalisms where this technique is al-
ready well-known. We show (in Proposition 3.1) that this transformation is
not only correct but that it also incurs no lack of precision.

As a second step we show (in Section 4) how to deal with the polyadic
nature of input and output by encoding multi-ary relations using fixed-arity
relations. Again we show (in Proposition 4.1) that this transformation is not
only correct but that it also incurs no lack of precision.

The final analysis has been transformed into Horn Clauses with Sharing
(see Section 5) and implemented using our Succinct Solver. The theoretical
evaluation of its run-time shows that it performs in cubic time (see Proposition
5.2) and empirical measurements show that it behaves quite well in practice.

2 The Spi-Calculus

Introduction to the spi-calculus. The polyadic spi-calculus [1,2] extends the
π-calculus with primitives for encryption and decryption and this facilitates
expressing cryptographic protocols in a rather direct manner. The syntax of
expressions (E ∈ E), terms (M, N ∈ M) and processes (P, Q ∈ P) are given
by:

4 It is beyond the scope of the present paper to discuss whether or not this assumption
is realistic and whether or not probabilistic reasoning can be used to the same effect. As
a consequence, encrypted messages cannot be decrypted even by brute-force attack, unless
the key is known.

2

Nielson et al.

E ::= M l

M, N ::= n | x | (E1, E2) | 0 | suc(E) | {E1, · · · , Ek}E

P, Q ::= 0 | E〈E1, · · · , Ek〉.P | E(xβ1

1 , · · · , xβk

k).P | P1|P2 | (νnχ)P |

[E1 is E2]P | !P | let (xβx, yβy) = E in P |

case E of 0 : P suc(xβ) : Q | case E of {xβ1

1 , · · · , xβk

k }E′ in P

The spi-calculus extends the π-calculus with numbers and pairs and distin-
guishes between names and variables; the term {E1, · · · , Ek}E represents the
ciphertext obtained by encrypting E1, · · · , Ek under the symmetric key E. The
process (ignoring the superscript annotations) let (x, y) = E in P behaves as
P [V1/x, V2/y] if E is (V1, V2); the process case E of 0 : P suc(x) : Q behaves
as P if E is 0, and as Q[V/x] if E is suc(V); case E of {x1, · · · , xk}E′ in P
attempts to decrypt E with the key E ′: if E has the form {V1, · · · , Vk}V and
if E ′ has the value V , then the process behaves as P [V1/x1, · · · , Vk/xk]; other-
wise all the processes above are stuck (i.e. cannot execute) in accordance with
the assumption of perfect cryptography. We refer to [1,2,4,6] for a formal
semantics of the spi-calculus.

Control flow analysis. The formulation of the control flow analysis is facil-
itated by annotating the relevant objects of a process. This is done by as-
signing “labels” (ranged over by l, l′, li ∈ L) to the occurrences 5 of terms in
order to indicate program points; by assigning “variable types” (ranged over
by β, β′ ∈ B) to the binding occurrences of variables within input actions;
and by assigning “channel types” (ranged over by χ, χ′ ∈ C) to the binding
occurrences of names within restrictions. These annotations are not changed
by α-conversion.

A process P is analysed with respect to a type environment me (that
maps names and variables to their channel and variable types). To state
the functionality of the analysis result we use the powerset ℘(V al) of sets
of abstract values, ranged over by W , where the infinite set V al of abstract
values, ranged over by w, v, is inductively defined:

V al = C∪{0}∪

(

{suc} × V al

)

∪

(

{pair} × V al × V al

)

∪

(

{enc} × V al+
)

The intended analysis estimate is a triple (R, K, C) where:

• R : B → ℘(V al) is the abstract environment that maps variable types to
the sets of abstract values that they can be bound to.

5 We use the label l to refer to the term M l; other authors prefer to dispense with labels
and instead to use notation like ⌊M⌋ to refer to the term M ; the choice is largely a matter
of preference.

3

Nielson et al.

(R, K, C) |=me nl iff {me(n)} ⊆ C(l)

(R, K, C) |=me xl iff R(me(x)) ⊆ C(l)

(R, K, C) |=me (M l1
1 , M l2

2)l iff
(R, K, C) |=me M l1

1 ∧ (R, K, C) |=me M l2
2 ∧

PAIR(C(l1), C(l2)) ⊆ C(l)

(R, K, C) |=me 0l iff {0} ⊆ C(l)

(R, K, C) |=me suc(M l0)l iff (R, K, C) |=me M l0 ∧ SUC(C(l0)) ⊆ C(l)

(R, K, C) |=me {M l1
1 , · · · , M lk

k }l
N le

iff

∧k
i=1(R, K, C) |=me M li

i ∧

(R, K, C) |=me N le∧

ENC{C(l1), · · · , C(lk)}C(le) ⊆ C(l)

(R, K, C) |=me 0 iff true

(R, K, C) |=me M l〈N l1
1 , · · · , N lk

k 〉.P iff

(R, K, C) |=me M l∧

∧k
i=1(R, K, C) |=me N li

i ∧

C(l) 6= ∅ ⇒ (R, K, C) |=me P∧

∀χ ∈ C(l) : C(l1) × · · · × C(lk) ⊆ K(χ)

(R, K, C) |=me M l(xβ1

1 , · · · , xβk

k).P iff

(R, K, C) |=me M l∧

C(l) 6= ∅ ⇒ (R, K, C) |=me[x̃ 7→β̃] P∧

∀χ ∈ C(l) : ∀(w1, · · · , wk′) ∈ K(χ) :

k = k′ ⇒ ∧k
i=1{wi} ⊆ R(βi)

(R, K, C) |=me P1|P2 iff (R, K, C) |=me P1 ∧ (R, K, C) |=me P2

(R, K, C) |=me (νnχ)P iff (R, K, C) |=me[n 7→χ] P

(R, K, C) |=me !P iff (R, K, C) |=me P

(R, K, C) |=me [M l1
1 is M l2

2]P iff
(R, K, C) |=me M l1

1 ∧ (R, K, C) |=me M l2
2 ∧

C(l1) ∩ C(l2) 6= ∅ ⇒ (R, K, C) |=me P

(R, K, C) |=me
let (xβx , yβy) = M l

in P
iff

(R, K, C) |=me M l∧

C(l) 6= ∅ ⇒ (R, K, C) |=me[x7→βx,y 7→βy] P∧

∀ pair(w1, w2) ∈ C(l) :

{w1} ⊆ R(βx) ∧ {w2} ⊆ R(βy)

(R, K, C) |=me
case M l of

0 : P suc(xβ) : Q
iff

(R, K, C) |=me M l∧

0 ∈ C(l) ⇒ (R, K, C) |=me P∧

(∃ suc(w) : suc(w) ∈ C(l)) ⇒ (R, K, C) |=me[x7→β] Q∧

∀ suc(w) ∈ C(l) : {w} ⊆ R(β)

(R, K, C) |=me

case M l of

{xβ1

1 , · · · , xβk

k }N ld

in P

iff

(R, K, C) |=me M l ∧ (R, K, C) |=me N ld∧

(∃ enc{w1, · · · , wk′}we
∈ C(l) : k = k′∧

we ∈ C(ld)) ⇒ (R, K, C) |=me[x̃ 7→β̃] P∧

∀ enc{w1, · · · , wk′}we
∈ C(l) :

(k = k′ ∧ we ∈ C(ld)) ⇒ ∧k
i=1 {wi} ⊆ R(βi)

Table 1
Flow Logic for the spi-calculus (adapted from [4,6]).

4

Nielson et al.

• K : C → ℘(V al∗) is the abstract channel environment that maps channel
types to the sets of tuples of abstract values that can be communicated over
them.

• C : L → ℘(V al) is the abstract cache that maps labelled terms to the sets
of abstract values that the term can evaluate to.

The acceptability of an estimate (R, K, C) is defined by the judgements:

(R, K, C) |=me P and (R, K, C) |=me M

The analysis of expressions and of processes is given in Table 1 and makes use
of the following shorthands:

• suc(w) for (suc, w), and SUC(W) for {suc(w)|w ∈ W};

• pair(w1, w2) for (pair, w1, w2), and
PAIR(W1, W2) for {pair(w1, w2)|w1 ∈ W1, w2 ∈ W2};

• enc{w1, · · · , wk}w0
for (enc, (w1, · · · , wk, w0)), and

ENC{W1, · · · , Wk}W0
for {enc{w1, · · · , wk}w0

|w0 ∈ W0, · · · , wk ∈ Wk}.

All rules for validating a compound term or process require that the com-
ponents are validated (except when it is blatantly clear that they are un-
reachable). The rules for an expression M l demand that C(l) contains all the
abstract values associated with M . Moreover, the rule for output requires
that the sets of k−tuples of abstract values associated with each component
of the object can be passed on each channel associated with the subject.
Symmetrically, the rule for input requires that for each k−tuple of abstract
values passing along the subject, the corresponding components are included
among the values of x1, · · · , xk. The last three rules ask that for each abstract
value associated with the expression to decompose, its sub-components are
contained, componentwise, in x1, · · · , xk.

The above analysis has been adapted from [4,6] where further explanations
and proofs of semantic correctness can be found. They also establish that

{(R, K, C) | (R, K, C) |=me P} is a Moore family

meaning that it is closed under greatest lower bounds; it follows that its least
element, ⊓{(R, K, C) | (R, K, C) |=me P}, itself safisfies the acceptability
judgement.

The analysis is closest to the presentation in [4] in that it avoids the no-
tion of history-free cryptography studied in [6]. Since we do not deal with the
dynamic semantics we have dispensed with the syntactic extensions “abstrac-
tion” and “concretion” used in the semantics.

5

Nielson et al.

3 From the Infinite to the Finite

It is not immediate how to implement the analysis in Table 1 because it
operates over sets of values of unbounded size; we therefore explicitly massage
the specification to obtain Table 2 that operates only over a finite universe.
The motivation behind the development performed here is the observation
that grammar-based or tree-automata based approaches to describing infinite
sets of values by finite representations works in the case of model-checking [8]
and set-constraints [3]. In essence we show that Table 1 may be viewed as
defining a finite tree-grammar with nonterminals of the form R(β), K(κ) and
C(l) despite the use of intersections of sets.

So instead of using the set V al of abstract values we shall be using the set

DV al = C ∪ {0} ∪

(

{suc} × L

)

∪

(

{pair} × L × L

)

∪

(

{enc} × L+

)

of descriptions of values that only records the “top-level” structure of terms;
then R : B → ℘(DV al), K : C → ℘(DV al∗) and C : L → ℘(DV al).
The specification of the new analysis is given in Table 2 writing |=′

me P for
(R, K, C) |=′

me P to save space. Also we write [[[C]]](l) for the tree-language
generated by the nonterminal C(l) and the test k = k′ has been made implicit
(by only considering the possibility that k′ equals k). To avoid confusion we
shall later write R′, K ′ and C ′ for R, K and C as they relate to Table 2 (unless
there is no risk of confusion).

In preparation for establishing the relationship between the specifications
of Tables 1 and 2, and for formally defining the notation used in Table 2,
we define three auxiliary operations. First, define the “one-level” extension
G# : DV al → ℘(V al) of a function G : L → ℘(V al) as follows:

G#[[χ]] = {χ}

G#[[0]] = {0}

G#[[suc(l0)]] = SUC(G(l0))

G#[[pair(l1, l2)]] = PAIR(G(l1), G(l2))

G#[[enc{l1, · · · , lk}l0]] = ENC({G(l1), · · · , G(lk)}G(l0))

Second, the pointwise extension of G# : DV al → ℘(V al) to sequences of

elements from DV al is denoted G# : DV al∗ → ℘(V al∗) and is defined by:

G#[[(w1, · · · , wk)]] = G#[[w1]] × · · · × G#[[wk]]

Third, define the pointwise extension H† : ℘(DV al) → ℘(V al) of a function
H : DV al → ℘(V al) as follows:

H†(W) =
⋃

w∈W

H(w)

6

Nielson et al.

|=′

me nl iff {me(n)} ⊆ C(l)

|=′

me xl iff R(me(x)) ⊆ C(l)

|=′

me (M l1
1 , M l2

2)l iff |=′

me M l1
1 ∧ |=′

me M l2
2 ∧ {pair(l1, l2)} ⊆ C(l)

|=′

me 0l iff {0} ⊆ C(l)

|=′

me suc(M l0)l iff |=′

me M l0 ∧ {suc(l0)} ⊆ C(l)

|=′

me {M l1
1 , · · · , M lk

k }l
N le

iff
∧k

i=1 |=′

me M li
i ∧ |=′

me N le∧

{enc{l1, · · · , lk}le} ⊆ C(l)

|=′

me 0 iff true

|=′

me M l〈N l1
1 , · · · , N lk

k 〉.P iff
|=′

me M l ∧ ∧k
i=1 |=′

me N li
i ∧ ([[[C]]](l) 6= ∅ ⇒|=′

me P) ∧

∀χ ∈ C(l) : C(l1) × · · · × C(lk) ⊆ K(χ)

|=′

me M l(xβ1

1 , · · · , xβk

k).P iff
|=′

me M l ∧ ([[[C]]](l) 6= ∅ ⇒|=′

me[x̃ 7→β̃]
P)∧

∀χ ∈ C(l) : ∀(w1, · · · , wk) ∈ K(χ) : ∧k
i=1{wi} ⊆ R(βi)

|=′

me P1|P2 iff |=′

me P1∧ |=′

me P2

|=′

me (νnχ)P iff |=′

me[n 7→χ] P

|=′

me !P iff |=′

me P

|=′

me [M l1
1 is M l2

2]P iff |=′

me M l1
1 ∧ |=′

me M l2
2 ∧ ([[[C]]](l1) ∩ [[[C]]](l2) 6= ∅ ⇒|=′

me P)

|=′

me

let (xβx , yβy) = M l

in P
iff

|=′

me M l ∧ ([[[C]]](l) 6= ∅ ⇒|=′

me[x7→βx,y 7→βy] P)∧

∀ pair(l1, l2) ∈ C(l) : (C(l1) ⊆ R(βx) ∧ C(l2) ⊆ R(βy))

|=′

me

case M l of

0 : P suc(xβ) : Q
iff

|=′

me M l ∧ (0 ∈ C(l) ⇒|=′

me P)∧

((∃ suc(l0) : suc(l0) ∈ C(l) ∧ [[[C]]](l0) 6= ∅) ⇒|=′

me[x7→β] Q)∧

∀ suc(l0) ∈ C(l) : C(l0) ⊆ R(β)

|=′

me

case M l of

{xβ1

1 , · · · , xβk

k }N ld

in P

iff

|=′

me M l∧ |=′

me N ld∧

((∃ enc{l1, · · · , lk}le ∈ C(l) : [[[C]]](le) ∩ [[[C]]](ld) 6= ∅ ∧

∧k
i=1[[[C]]](li) 6= ∅) ⇒|=′

me[x̃ 7→β̃]
P)∧

∀ enc{l1, · · · , lk}le ∈ C(l) :

([[[C]]](le) ∩ [[[C]]](ld) 6= ∅) ⇒ ∧k
i=1C(li) ⊆ R(βi)

Table 2
Flow Logic over a finite universe for the spi-calculus.

Given a function C : L → ℘(DV al) we are now ready to formally define
the function [[[C]]] : L → ℘(V al) used in Table 2 and informally specified above.
It is inductively defined by the equation

[[[C]]] = [[[C]]]#† ◦ C

which is equivalent to setting [[[C]]](l) =
⋃

w∈C(l)[[[C]]]#(w) for all l ∈ L. In

other words, [[[C]]] intuitively is the language generated by the tree-grammar

7

Nielson et al.

C. Finally, we define a concretization function γ by

γ(R, K, C) = ([[[C]]]#† ◦ R, [[[C]]]#† ◦ K, [[[C]]]#† ◦ C)

= ([[[C]]]#† ◦ R, [[[C]]]#† ◦ K, [[[C]]])

and use it to state that the analysis in Table 1 computes the same least
solution as the one in Table 2:

Proposition 3.1

γ

(

⊓{(R′, K ′, C ′) | (R′, K ′, C ′) |=′
me P}

)

= ⊓{(R, K, C) | (R, K, C) |=me P}

Proof. The proof is given in Appendix A. 2

4 Getting Rid of Polyvariance

Assuming that the arity of the polyadic operations (i.e. encryption and de-
cryption as well as input and output) is bounded by some constant, one can
show that the formulation of Table 2 can be implemented in polynomial time,
by using the techniques of Section 5 for translating it to linear Horn Clauses
with Sharing [12]. To obtain a guaranteed cubic time algorithm we begin by
taking a closer look at how to deal with the polyadicity of input and output.

For this we replace the abstract channel environment K ′ : C → ℘(DV al∗)
of Section 3 with a component

• K ′′ : C ×N×N → ℘(DV al) such that v ∈ K ′(χ, i, k) whenever v is the i’th
component of a k-tuple in K ′(χ).

(As before we shall sometimes write K for K ′′ when no confusion is likely to
arise.) Formally the relationship between the two notions of abstract channel
environment can be captured by a concretization function γ′ defined by:

γ′(R, K ′′, C) = (R, K ′, C) where K ′(χ) = {(v1, · · · , vk) | ∀i : vi ∈ K ′′(χ, i, k)}

Due to its pointwise definition it induces an abstraction function α′ such
that (α′, γ′) is a Galois connection. We shall say that a triple (R, K ′′, C)
is well-formed whenever α′(γ′(R, K ′′, C)) = (R, K ′′, C); this just means that
no K ′′(χ, i, k) is empty for 1 ≤ i ≤ k unless all of K(χ, 1, k), · · · , K ′′(χ, k, k)
are, and that K ′′(χ, i, k) is empty for i > k.

To make this work we need to change the clauses for analysing input and
output; this results in a new specification |=′′ that differs from |=′ as follows

8

Nielson et al.

(writing K for K ′′):

|=′′
me M l〈N l1

1 , · · · , N lk
k 〉.P iff |=′′

me M l ∧
∧k

i=1 |=′′
me N li

i ∧ ([[[C]]](l) 6= ∅ ⇒|=′′
me P) ∧

(
∧k

i=1 C(li) 6= ∅) ⇒
∧k

i=1 ∀χ ∈ C(l) : C(li) ⊆ K(χ, i, k)

|=′′
me M l(xβ1

1 , · · · , xβk

k).P iff |=′′
me M l ∧ ([[[C]]](l) 6= ∅ ⇒|=′′

me[x̃7→β̃]
P) ∧

∧k
i=1 ∀χ ∈ C(l) : K(χ, i, k) ⊆ R(βi)

The formal relationship between the two analyses can now be stated:

Proposition 4.1

γ′

(

⊓{(R, K ′′, C) | (R, K ′′, C) |=′′
me P}

)

= ⊓{(R, K ′, C) | (R, K ′, C) |=′
me P}

Proof. The proof is in four parts. First, it is a straightforward structural
induction on P and M to prove that

(R, K ′′, C) |=′′
me P ⇔ (γ′(R, K ′′, C)) |=′

me P

(R, K ′′, C) |=′′
me M ⇔ (γ′(R, K ′′, C)) |=′

me M

whenever (R, K ′′, C) is well-formed.

Second, we establish that ⊓{(R, K ′′, C) | (R, K, C) |=′′
me P} is well-formed.

The proof is by contradiction. So suppose that the least (R, K ′′, C) satisfying
|=′′

me P is not well-formed.

One possibility is that there exists χ, k, i ≤ k and j ≤ k such that
K ′′(χ, i, k) = ∅ but K ′′(χ, j, k) 6= ∅. By the choice of (R, K ′′, C) there must
be a constraint that forces K ′′(χ, j, k) to be non-empty; by inspection of the
clauses it is clear that this constraint must be imposed by the analysis of
output where it takes the form

(

k
∧

i=1

C(li) 6= ∅) ⇒
k

∧

i=1

∀χ ∈ C(l) : C(li) ⊆ K ′′(χ, i, k).

However, then it is clear that also K ′′(χ, i, k) must be non-empty, thereby
establishing the desired contradiction.

Another possibility is that there exists χ, k, i > k such that K ′′(χ, i, k) 6= ∅.
As before there must be a constraint that forces K ′′(χ, i, k) to be non-empty;
however, inspection of the clauses shows this to be impossible.

Third, to prove “⊒” in the statement of the Proposition, we note that

γ′(⊓{(R, K ′′, C) | (R, K ′′, C) |=′′
me P}) |=′

me P

as follows because {(R, K ′′, C) | (R, K ′′, C) |=′′
me P} is a Moore family, because

⊓{(R, K ′′, C) | (R, K ′′, C) |=′′
me P} is well-formed and because of the “if and

only if” established above.

9

Nielson et al.

Fourth, to prove “⊑” in the statement of the Proposition, simply note that

γ′(α′(⊓{(R, K ′, C) | (R, K ′, C) |=′
me P})) = ⊓{(R, K ′, C) | (R, K ′, C) |=′

me P}

α′(⊓{(R, K ′, C) | (R, K ′, C) |=′
me P}) |=′′

me P

because {(R, K ′, C) | (R, K ′, C) |=′
me P} is a Moore family, α′(⊓{(R, K ′, C) |

(R, K ′, C) |=′
me P} is well-formed and because of the “⇔” established above.2

The intuitive content of Proposition 4.1 is that the “relational formulation”
(see e.g. [11]) of output in Table 2 is only “apparent” in that it considers all
possible combinations of values; hence the “relational formulation” can be
converted into an “independent attribute formulation” as illustrated above,
without any loss of precision.

5 Horn Clauses with Sharing

Review of Horn Clauses with Sharing. The set of Horn Clauses with Sharing
was introduced in [12] as a useful subset of the Alternation-free Least Fixed
Point Logic implemented in our Succinct Solver. Horn Clauses with Sharing
may be viewed as extending Horn Clauses by more powerful preconditions and
conclusions; they are formally defined by the nonterminal clause generated by
the grammar:

pre ::= R (x1, · · · , xk) | pre1 ∧ pre2 | pre1 ∨ pre2 | ∃x : pre

clause ::= R (x1, · · · , xk) |

1 | clause1 ∧ clause2 | pre ⇒ clause | ∀x : clause

where R is a k-ary relation symbol for k ≥ 1, x, x1, · · · denote arbitrary vari-
ables, and 1 is the always true clause.

Given a universe U of atomic values and interpretations ρ and σ for relation
symbols and free variables, respectively, we define the satisfaction relation

(ρ, σ) |= t

(t a pre-condition or clause) as follows:

(ρ, σ) |= 1 iff true

(ρ, σ) |= R (x1, · · · , xk) iff (σ x1, · · · , σ xk) ∈ ρR

(ρ, σ) |= ∃x : pre iff (ρ, σ ⊕ {x 7→ a}) |= pre for some a ∈ U

(ρ, σ) |= ∀x : t iff (ρ, σ ⊕ {x 7→ a}) |= t for all a ∈ U

(ρ, σ) |= t1 ∧ t2 iff (ρ, σ) |= t1 and (ρ, σ) |= t2
(ρ, σ) |= pre1 ∨ pre2 iff (ρ, σ) |= pre1 or (ρ, σ) |= pre2

(ρ, σ) |= pre ⇒ clause iff (ρ, σ) |= clause whenever (ρ, σ) |= pre

We view the free variables occurring in a Horn Clause with Sharing as constant
symbols from the universe U . Thus, given an interpretation σ of the constant

10

Nielson et al.

H[[nl]]me = C(me(n), l)

H[[xl]]me = ∀u : R(u, me(x)) ⇒ C(u, l)

H[[(M l1
1 , M l2

2)l]]me = H[[M l1
1]]me ∧H[[M l2

2]]me ∧ C(pair(l1, l2), l)

H[[0l]]me = C(0, l)

H[[suc(M l0)l]]me = H[[M l0]]me ∧ C(suc(l0), l)

H[[{M l1
1 , · · · , M lk

k }l
N le

]]me = ∧k
i=1H[[M li

i]]me ∧H[[N le]]me ∧ C(enc({l1, · · · , lk}le), l)

H[[0]]me = 1

H[[M l〈N l1
1 , · · · , N lk

k 〉.P]]me =

H[[M l]]me ∧ ∧k
i=1 H[[N li

i]]me ∧ (NC(l) ⇒ H[[P]]me) ∧

((∧k
i=1NC(li)) ⇒ ∧k

i=1∀v : (C(v) ∧ C(v, l) ⇒

∀ui : C(ui, li) ⇒ K(ui, v, i, k)))

H[[M l(xβ1

1 , · · · , xβk

k).P]]me =

H[[M l]]me ∧ (NC(l) ⇒ H[[P]]me[x̃7→β̃]) ∧

∧k
i=1∀v : (C(v) ∧ C(v, l) ⇒

∀ui : K(ui, v, i, k) ⇒ R(ui, βi))

H[[P1|P2]]me = H[[P1]]me ∧H[[P2]]me

H[[(νnχ)P]]me = H[[P]]me[n 7→χ]

H[[!P]]me = H[[P]]me

H[[[M l1
1 is M l2

2]P]]me = H[[M l1
1]]me ∧H[[M l2

2]]me ∧ (NCC(l1, l2) ⇒ H[[P]]me)

H[[
let (xβx , yβy) = M l

in P
]]me =

H[[M l]]me ∧ (NC(l) ⇒ H[[P]]me[x7→βx,y 7→βy]) ∧

∀ pair(l1, l2) : (C(pair(l1, l2), l) ⇒

(∀u : C(u, l1) ⇒ R(u, βx))∧

(∀u : C(u, l2) ⇒ R(u, βy)))

H[[
case M l of

0 : P suc(xβ) : Q
]]me =

H[[M l]]me ∧ (C(0, l) ⇒ H[[P]]me) ∧

((∃ suc(l0) : C(suc(l0), l) ∧ NC(l0)) ⇒ H[[Q]]me[x7→β]) ∧

∀ suc(l0) : C(suc(l0), l) ⇒ (∀u : C(u, l0) ⇒ R(u, β))

H[[

case M l of

{xβ1

1 , · · · , xβk

k }N ld

in P

]]me =

H[[M l]]me ∧H[[N ld]]me ∧

((∃ enc{l1, · · · , lk}le : C(enc{l1, · · · , lk}le , l) ∧ NCC(le, ld) ∧

∧k
i=1NC(li)) ⇒ H[[P]]me[x̃7→β̃]) ∧

∀ enc{l1, · · · , lk}le : (C(enc({l1, · · · , lk}le), l) ∧ NCC(le, ld))

⇒ ∧k
i=1∀u : C(u, li) ⇒ R(u, βi)

Table 3
Horn Clauses with Sharing for the spi-calculus.

symbols, in the clause clause, we call an interpretation ρ of the relational
symbols R a solution provided (ρ, σ) |= clause.

Transformation to Horn Clauses with Sharing. Table 3 contains the constraint
generation function corresponding to Table 2. Set inclusions have been ex-
panded to set memberships using an additional universal quantifier and a set
membership of the form u ∈ R(v) has been written using a binary predicate

11

Nielson et al.

∀l1, l2 : (∃ u : C(u) ∧ C(u, l1) ∧ C(u, l2)) ⇒ NCC(l1, l2)

∀l1, l2 : (C(0, l1) ∧ C(0, l2)) ⇒ NCC(l1, l2)

∀l1, l2 : (∃ suc(u1), suc(u2) :

C(suc(u1), l1) ∧ C(suc(u2), l2) ∧ NCC(u1, u2)) ⇒ NCC(l1, l2)

∀l1, l2 : (∃ pair(u11, u12), pair(u21, u22) :

C(pair(u11, u12), l1) ∧ C(pair(u21, u22), l2)∧

NCC(u11, u21) ∧ NCC(u12, u22)) ⇒ NCC(l1, l2)

∀l1, l2 : (∃ enc{u11, · · · , u1k}u1
, enc{u21, · · · , u2k}u2

:

C(enc{u11, · · · , u1k}u1
, l1) ∧ C(enc{u21, · · · , u2k}u2

, l2)∧

NCC(u11, u21) ∧ · · · ∧ NCC(u1k, u2k) ∧ NCC(u1, u2)) ⇒ NCC(l1, l2)

Table 4
Axiomatization of NCC.

of the form R(u, v). Also we are now explicit about variables such as χ that
were only supposed to range over channels in C. (The predicate C is assumed
to be predefined; alternatively it could be updated in the clause for restriction
where a new channel is introduced.)

For readability, as well as for ease of complexity estimation, we have re-
tained the use of function symbols like pair; this could be avoided by (i)
using an additional ternary relation Rpair, (ii) defining Rpair(l1, l2, pair(l1, l2))
whenever the pair pair(l1, l2) is constructed, and (iii) extracting the com-
ponents of all pairs in C(·, l) by quantifying over all l1, l2, lpair such that
C(lpair, l) ∧ Rpair(l1, l2, lpair).

Finally we have had to code the tests [[[C]]](l) 6= ∅ and [[[C]]](le)∩[[[C]]](ld) 6= ∅
using the primitives allowed. We therefore introduce the auxiliary predicates
NC(l) and NCC(le, ld) and axiomatize them inductively by considering each
of the five diffferent formations of values in DV al; this encoding is global and
should not be repeated for each syntactic component. The axiomatization of
NCC can be found in Table 4; the axiomatization of NC can be obtained by
merely removing the variables occurring in the second parameter of NCC.

Proposition 5.1

⊓{(R, K ′′, C) | (R, K ′′, C) |=′′
me P} = ⊓{(R, K ′′, C) | (R, K ′′, C) fulfills H[[P]]me}

Proof. It suffices to prove that

(R, K ′′, C) |=′′
me P ⇔ (R, K ′′, C) fulfills H[[P]]me

(R, K ′′, C) |=′′
me M ⇔ (R, K ′′, C) fulfills H[[M]]me

12

Nielson et al.

by induction in P and M ; for this we use that [[[C]]](l) 6= ∅ is equivalent to
NC(l) and [[[C]]](le) ∩ [[[C]]](ld) 6= ∅ is equivalent to NCC(le, ld). 2

Theoretical Complexity. The complexity estimate is based on Horn Clauses
with Sharing [12]. For this to work we view the analysis as not quantifying
wildly over sequences of variables such as l1, · · · , lk, le but only over occurrences
of enc{·l1 , · · · , ·lk}·le as they occur in the program since there are only linearly
many such candidates.

Also we need to modify the axiomatization of the predicate NCC in Table
4 to avoid having quantifiers nested to depth 4. It turns out that the notion of
tiling developed in [12] is useful for this; more specifically the axiomatization
of Table 5 is obtained by applying the second variant of tiling developed in
[12]. Clearly their least solutions define the same predicates NCC.

Proposition 5.2 ⊓{(R, K ′′, C) | (R, K ′′, C) fulfills H[[P]]me} can be computed
in cubic time.

Proof. The clause H[[P]]me has size O(n) for a process of size n and the
quantifiers have nesting depth at most 2. The global axiomatization of NC
and NCC have size O(1) and nesting depth at most 3 (when axiomatized as
in Table 5). For a universe of size O(n) the resulting constraints can be solved
in time O(n3) according to Proposition 2 of [12]. 2

Empirical Validation. A slightly optimized version of the analysis has been
implemented using our Succinct Solver [13]. To explain the main modification
note that the computation of NCC is needlessly expensive in that it computes
the entire relation even though typically only a small fraction of it is needed.

We deal with this using a general transformation akin to the magic set
transformation for Prolog: whenever NCC(x, y) is wanted in a precondi-
tion (being reachable after pre has succesfully been passed) we replace it by
NCC!(x, y), we add the clause pre ⇒ NCC?(x, y), and we modify the axiom-
atization of NCC to yield an axiomatization of NCC! that only computes the
result for values set by NCC?.

We have tested the analysis on a scalable version of the Wide-Mouth-
Frog communication protocol as described in [1]. The empirical measurements
indicate good practical performance. In fact a system with 15 producers and
15 consumers can be analysed in about a minute.

6 Conclusion

We have shown that the versatility of Horn Clauses with Sharing suffice for
obtaining an implementation of the context-independent control flow analysis
[4,6] in cubic time despite the fact that the original specification operates
over an infinite space of structured data values — without sacrificing any
precision. Two key transformations allowed this to be accomplished: (i) an

13

Nielson et al.

∀l1, l2, u : C(u) ∧ C(u, l1) ∧ C(u, l2) ⇒ NCC(l1, l2)

∀l1, l2 : C(0, l1) ∧ C(0, l2) ⇒ NCC(l1, l2)

∀l1, l2, suc(u1) : C(suc(u1), l1) ∧ NCC ′(suc(u1), l2) ⇒ NCC(l1, l2)

∀l2, suc(u1), suc(u2) : C(suc(u2), l2) ∧ NCC(u1, u2) ⇒ NCC ′(suc(u1), l2)

∀l1, l2, pair(u11, u12) :

C(pair(u11, u12), l1) ∧ NCC ′(pair(u11, u12), l2) ⇒ NCC(l1, l2)

∀l2, pair(u11, u12), pair(u21, u22) :

C(pair(u21, u22), l2) ∧ NCC(u11, u21) ∧ NCC(u12, u22)

⇒ NCC ′(pair(u11, u12), l2)

∀l1, l2, enc{u11, · · · , u1k}u1
:

C(enc{u11, · · · , u1k}u1
, l1) ∧ NCC ′(enc{u11, · · · , u1k}u1

, l2) ⇒ NCC(l1, l2)

∀l2, enc{u11, · · · , u1k}u1
, enc{u21, · · · , u2k}u2

:

C(enc{u21, · · · , u2k}u2
, l2) ∧ NCC(u11, u21) ∧ · · · ∧ NCC(u1k, u2k) ∧ NCC(u1, u2)

⇒ NCC ′(enc{u11, · · · , u1k}u1
, l2)

Table 5
Tiled axiomatization of NCC.

explicit concretization function linking the infinite universe to a finite universe
of tree-grammars (thus adapting the treatment of set-constraints to the more
general logical formulae used here), and (ii) an explicit Galois connection
encoding the apparent “relational formulation” of the polyadic constructs for
communciation in terms of a cheaper “independent attribute formulation”.
The transformations are relevant also for other analyses of polyadic calculi
operating over infinite universes.

A Proof of Proposition 3.1

γ

(

⊓{(R′, K ′, C ′) | (R′, K ′, C ′) |=′
me P}

)

= ⊓{(R, K, C) | (R, K, C) |=me P}

Proof. Part 1: “⊒” holds. For this it suffices to show that the analysis in
Table 1 is approximated by the one in Table 2 in the sense of [7]; this means
that

(R′, K ′, C ′) |=′
me P ⇒ (γ(R′, K ′, C ′)) |=me P

(R′, K ′, C ′) |=′
me M ⇒ (γ(R′, K ′, C ′)) |=me M

and may be proved by structural induction in P and M . (We note that
the converse implications do not necessarily hold due to the lack of unique
representations in DV al of values in V al.) We consider a few illustrative

14

Nielson et al.

cases and write (R, K, C) for γ(R′, K ′, C ′).

In the case of the constant zero we use that [[[C ′]]]#† is monotonic so that
{0} ⊆ C ′(l) implies that [[[C ′]]]#†{0} ⊆ [[[C ′]]]#†(C ′(l)); since [[[C ′]]]#†{0} = {0}
and [[[C ′]]]#†(C ′(l)) = [[[C ′]]](l) = C(l) the result follows. In the case of successor
we proceed as for constants and additionally use that [[[C ′]]]#†({suc(l0)}) =
SUC([[[C ′]]](l0)).

In the case of output the reachability test [[[C ′]]](l) 6= ∅ in Table 2 is equiv-
alent to the test C(l) 6= ∅ in Table 1. Similarly in the case of matching where
the reachability test [[[C ′]]](l1)∩ [[[C ′]]](l2) 6= ∅ in Table 2 is equivalent to the test
C(l1) ∩ C(l2) 6= ∅ in Table 1.

In the case of branching upon the value of an integer we use that 0 ∈ C ′(l)
if and only if 0 ∈ [[[C ′]]](l) so that the test 0 ∈ C(l) in Table 1 can be written as
0 ∈ C ′(l) also in Table 2. Similarly the test (∃w : suc(w) ∈ C(l)) in Table 1
is equivalent to (∃w : suc(w) ∈ [[[C ′]]](l)) which is equivalent to (∃l0 : suc(l0) ∈
C ′(l) ∧ ∃w : w ∈ [[[C ′]]](l0)) and to the formulation actually used in Table 2.

Finally in the case of decryption we use that the reachability condition

(∃enc{w1, · · · , wk}we
∈ [[[C ′]]](l) : we ∈ [[[C ′]]](ld))

that could have been used in Table 2 is in fact equivalent to the condition

((∃enc{l1, · · · , lk}le ∈ C ′(l) : [[[C ′]]](le) ∩ [[[C ′]]](ld) 6= ∅ ∧ ∧k
i=1[[[C

′]]](li) 6= ∅)

actually used; similarly that the condition we ∈ [[[C ′]]](ld) is in fact equivalent
(given the assumptions on we) to the condition [[[C ′]]](le)∩[[[C ′]]](ld) 6= ∅ actually
used.

Part 2: “⊑” holds. For this we recall that it is completely standard, e.g. [11,
Subsection 3.1.2], to view Tables 1 and 2 as defining monotone functions F
(or Fme,P) and F ′ (or F ′

me,P) operating over complete lattices such that

(R, K, C) |=me P ⇔ Fme,P (R, K, C) ⊑ (R, K, C)

and similarly for F ′. Subsequently we shall write lfp(F) = (Rlfp, Klfp, Clfp) and
lfp(F ′) = (R′

lfp, K
′
lfp, C

′
lfp). From Tarski’s Theorem it follows that the desired

result amounts to

γ(R′
lfp, K

′
lfp, C

′
lfp) ⊑ (Rlfp, Klfp, Clfp).

Restricting 6 the sets B, C and L to be finite sets containing all relevant entities
in P and me and restricting the arity of arguments to enc to the maximal one
found in P it is clear that F ′ operates over a complete lattice of finite size.
It follows that (R′

lfp, K
′
lfp, C

′
lfp) = F ′n(⊥,⊥,⊥) for some natural number n.

Writing

γlfp(R
′, K ′, C ′) = (C#†

lfp ◦ R′, C#†
lfp ◦ K ′, C#†

lfp ◦ C ′)

6 Otherwise we could establish continuity and resort to transfinite induction.

15

Nielson et al.

we then show that γlfp(F
′n(⊥,⊥,⊥)) ⊑ (Rlfp, Klfp, Clfp) by induction in n.

The base case is immediate since γlfp(⊥,⊥,⊥) = (⊥,⊥,⊥). For the
inductive step it suffices to assume that γlfp(R

′, K ′, C ′) ⊑ (Rlfp, Klfp, Clfp)
and to show that γlfp(R

′′, K ′′, C ′′) ⊑ (Rlfp, Klfp, Clfp) where (R′′, K ′′, C ′′) =
F ′(R, K, C); this amounts to a straightforward structural induction on P (with
an auxiliary induction on M) using that (Rlfp, Klfp, Clfp) is a fixed point of F .
We have now established the intermediate result that

γlfp(R
′
lfp, K

′
lfp, C

′
lfp) ⊑ (Rlfp, Klfp, Clfp).

To obtain the desired result, with γlfp replaced by γ, we define an operator
〈· · ·〉k for “truncating” functions producing sets of elements of V al to include
only elements of depth at most k. It then suffices to prove

∀k : (〈[[[C ′
lfp]]]

#†◦R′
lfp〉k, 〈[[[C

′
lfp]]]

#†◦K ′
lfp〉k, 〈[[[C

′
lfp]]]

#†◦C ′
lfp〉k) ⊑ (〈Rlfp〉k, 〈Klfp〉k, 〈Clfp〉k)

because all structures in V al are finite.

We proceed by induction in k. The base case has k = 1 and is immediate
because 〈[[[C ′

lfp]]]
#† ◦ C ′

lfp〉1 = 〈C#†
lfp ◦ C ′

lfp〉1 ⊑ 〈Clfp〉1 using the intermediate
result, and similarly for the other two components. For the inductive step we
calculate:

〈[[[C ′
lfp]]]

#† ◦ C ′
lfp〉k+1 = 〈[[[C ′

lfp]]]〉
#†
k ◦ C ′

lfp (property of 〈· · ·〉k+1)

= 〈[[[C ′
lfp]]]

#† ◦ C ′
lfp〉

#†
k ◦ C ′

lfp (definition of [[[· · ·]]])

⊑ 〈Clfp〉
#†
k ◦ C ′

lfp (induction hypothesis)

= 〈C#†
lfp ◦ C ′

lfp〉k+1 (property of 〈· · ·〉k+1)

⊑ 〈Clfp〉k+1 (the intermediate result)

and similarly for the other two components; this completes the proof. 2

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46:749–
786, 1999. A preliminary version appeared in Proceedings of Theoretical Aspects
of Computer Software, LNCS, Springer-Verlag, 1997.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols - The Spi
calculus. Information and Computation, 148:1–70, January 1999.

[3] A. Aiken. Introduction to set constraint-based program analysis. Science of
Computer Programming (SCP), 35(2):79–111, 1999.

[4] C. Bodei. Security Issues in Process Calculi. PhD thesis, Department of
Computer Science, University of Pisa, 2000.

16

Nielson et al.

[5] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis for the
π-calculus with applications to security. Information and Computation, 165:68–
92, 2001.

[6] C. Bodei, P. Degano, H. Riis Nielson, and F. Nielson. Static analysis for secrecy
and non-interference in networks of processes. In Proc. PACT’01, number 2127
in Lecture Notes in Computer Science, pages 27–41. Springer-Verlag, 2001.

[7] R. R. Hansen, J. G. Jensen, F. Nielson, and H. Riis Nielson. Abstract
Interpretation of Mobile Ambients. In Proceedings of SAS’99, volume 1694
of LNCS, pages 134–148. Springer-Verlag, 1999.

[8] D. Lugiez and Ph. Schnoebelen. The regular viewpoint on pa-processes. In
9th Int. Conference on Concurrency (CONCUR), pages 50–66. LNCS 1466,
Springer Verlag, 1998.

[9] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (I and II).
Information and Computation, 100(1):1–77, 1992.

[10] F. Nielson and H. Riis Nielson. Flow logics and operational semantics.
Electronic Notes of Theoretical Computer Science, 10, 1998.

[11] F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999.

[12] F. Nielson and H. Seidl. Control flow analysis in cubic time. In Proceedings of
ESOP’01, volume 2028 of LNCS, pages 252–268. Springer-Verlag, 2001.

[13] F. Nielson and H. Seidl. Succinct solvers. Technical Report 01-12, University
of Trier, Germany, 2001.

17

