
Suint Solvers
Flemming Nielson1 and Helmut Seidl21 Informatis & Mathematial Modelling, Tehnial University of Denmark, DK-2800 Kongens Lyngby,Denmark, nielson�imm.dtu.dk2 Universit�at Trier, FB IV { Informatik, D-54286 Trier, Germany, seidl�uni-trier.de

Abstrat. We develop a solver algorithm whih allows to eÆiently ompute the optimalmodel of a very expressive fragment of prediate logi. The suint formulation of thealgorithm is due to the disiplined use of ontinuations and memoisation. This failitatesgiving a preise haraterisation of the behaviour of the solver and to develop a omplexityalulation whih allows to obtain its formal omplexity. Pratial evaluations on a ontrol-ow analysis of the ambient alulus shows a good math between theory and pratie.
Keywords: Program analysis, Least Fixpoint Logi, topdown �xpoint omputation, ambientalulus.
1 IntrodutionFuntional languages are seldomly used for expressing algorithmi insights beause most algo-rithm designers prefer to express their insights in imperative languages and �nd it easier toperform the analysis of worst-ase and average-ase omplexity with respet to a �rst-order im-perative model of omputation. As is lear to any funtional programmer suh algorithms an beoded in funtional languages but this is somewhat besides the point of the algorithm designer.Indeed it is hard to ritiise the algorithm designer for the hoies made: The use of imperativelanguages makes it easier to ommuniate with olleagues working on algorithms (simply beausethis is the ommon language of the �eld) and it makes it easier to perform the omplexity analysisdue to the simpler and more diret layout of data in store (thus avoiding the need to onsiderrun-time staks, losures and garbage olletion) in aordane with well-established models ofomputation (like Turing Mahines, the RAM model with uniform ost or logarithmi ost et.).Despite our sympathy with the traditional viewpoints of algorithm designers we feel theymiss an important onsideration: Algorithms need to be used by well-eduated programmers andthere is little value in developing an advaned algorithm if the prospetive programmers annotunderstand it or annot see how to adapt it to their needs. Given the limited abilities of humansto grasp many onepts at the same time it is important to pay attention to the notation usedfor expressing the algorithmi insights. (Behavioural psyhologists typially �nd that a human isonly able to grasp the interplay of about seven onepts at any point in time.) Indeed, \a notationis important for what it leaves out" [15, page 33℄ beause then more suint spei�ations anbe developed that only fous on those key insights that have to be grasped at the same time.This is where funtional programming enters the piture. More spei�ally we onsider an eagerfuntional language (sine lazy languages are even further removed from the RAM model et.)with imperative features (to maintain ontrol over the sharing of results of omputations) andontinuations.This paper takes the approah outlined to develop a state-of-the-art onstraint solver. Weonsider the alternation-free fragment of Least Fixpoint Logi (ALFP) in lausal form. This logi is

more expressive than, e.g., Datalog [7, 10℄ but still allows for polynomial model-heking routines.Formulas in this fragment naturally arise in the spei�ation of stati analyses of programs (see,e.g. [11, 12℄). Here, we onsider the systemati design of a �xpoint engine for this logi. We buildon known approahes for sub-logis like [11, 12℄ for Datalog. Like MAllester in [11℄, we aim at analgorithm whih makes omputing the result as heap as heking of the result. Furthermore, thealgorithm should be simple, i.e., work almost without pre-proessing of formulas, and preditable,i.e., its omplexity behaviour should be easily omputable.More spei�ally we laim the following general advantages of our approah:{ The spei�ation logi is muh more expressive than the fragment of set onstraints as pro-vided by BANE [1℄ or Datalog as, e.g., advoated by MAllester | yet our solver an bepresented in less than a page of SML pseudo-ode.{ On the Datalog fragment, our solver ahieves the best known theoretial bounds for orre-sponding solvers.{ The solver has a very modular design | allowing for a rapid implementation and simpleexplanation. In partiular, the use of reursion and ontinuations allowed us to disregard anumber of lassial tehniques (the use of work-lists, the identi�ation of strong omponentset.) without penalties in performane.{ The solver has a very regular struture allowing an abstrat haraterisation of its behaviour| thereby paving the way for prediting also its best-ase omputational performane whensolving formulas.The development builds on previous insights on using funtional programming for implementingstate-of-the-art solvers [6, 9, 8℄ ahieving only a few of the above advantages.In Setion 2 we present the fragment of prediate logi onsidered and de�ne its semantis.In Setion 3 we then develop the solver, explain the algorithmi tehniques needed for obtaininggood performane, and illustrate the modularity of its design. In Setion 5 we give an overallharaterisation of its behaviour and use this to obtain a formal omplexity result that is validatedpratially in Setion 6. Setion 7 onludes and the appendies ontain proofs of the main results.
2 Alternation-free Least Fixpoint LogiIn this setion, we introdue alternation-free Least Fixpoint Logi in lausal form (abbreviated:ALFP) as our onstraint formalism. Here, we build on Horn lauses with sharing as onsideredin [12℄ and extend them further by allowing also universal quanti�ation in pre-onditions andnegation. Thus, ALFP formulas extend Horn lauses (with expliit quanti�ation) in that weadditionally allow{ both existential and universal quanti�ation in pre-onditions;{ negated queries;{ disjuntions of preonditions as well as{ onjuntions of onlusions.The extra features inrease onveniene in handling in that they allow to restrit the sopes ofvariables and merge idential onlusions as well as idential pre-onditions without the tehnialinonveniene of introduing auxiliary prediates. Existential quanti�ation in pre-onditions doesnot enhane suintness or expressiveness of Horn formulas. By using universal quanti�ation

in pre-onditions, and through negation, we may express queries whih are otherwise impossibleto state. Consider, e.g., the formula:8x:(8y::E(x; y) _ T (y))) T (x)This formula de�nes a prediate T whih is satis�ed by the set of all ayli nodes in a graph,i.e., all nodes from whih no yle an be reahed. This prediate T is not de�nable in Datalog{ even with strati�ed negation [7, 10℄.Assume we are given a �xed ountable set X of (auxiliary) variables and a �nite ranked alpha-bet R of prediate symbols. Then the set of formulas lause is given by the following grammar:pre ::= R (x1; : : : ; xk) j :R (x1; : : : ; xk) j x = y j x 6= ypre1 ^ pre2 j pre1 _ pre2 j 8x : pre j 9x : prelause ::= R (x1; : : : ; xk) j 1 j lause1 ^ lause2 jpre) lause j 8x : lausewhere R is a k-ary prediate symbol for k � 1, y; x; x1; : : : denote arbitrary variables, and 1 is thealways true lause. Ourrenes of R(: : :) and :R(: : :) in pre-onditions are also alled queriesand negative queries, respetively, whereas the others are alled assertions of prediate R.Given a universe U of atomi values (or atoms) together with interpretations � and � forprediate symbols and free variables, respetively, we de�ne the satisfation relation(�; �) j= t(t a pre-ondition or lause) as follows.(�; �) j= 1 holds for all � and �. Otherwise, we have:(�; �) j= R (x1; : : : ; xk) i� (� x1; : : : ; � xk) 2 �R(�; �) j= :R (x1; : : : ; xk) i� (� x1; : : : ; � xk) 62 �R(�; �) j= x = y i� � x = � y(�; �) j= x 6= y i� � x 6= � y(�; �) j= 9x : pre i� (�; � � fx 7! ag) j= pre for some a 2 U(�; �) j= 8x : t i� (�; � � fx 7! ag) j= t for all a 2 U(�; �) j= t1 ^ t2 i� (�; �) j= t1 and (�; �) j= t2(�; �) j= pre1 _ pre2 i� (�; �) j= pre1 or (�; �) j= pre2(�; �) j= pre) lause i� (�; �) j= lause whenever (�; �) j= preIn the sequel, we view the free variables ourring in an formula as onstant symbols or atomsfrom the �nite universe U . Thus, given an interpretation � of the onstant symbols, in the lauselause, we all an interpretation � of the prediate symbols R a solution provided (�; �) j= lause.Sine our logi provides expliit heks for equality and in-equality in pre-onditions, weabandon orresponding heks in queries, i.e., demand that all variables (whih are not onstants)ourring in an argument list are pairwise distint. In order to deal with negations onveniently,we restrit ourselves to alternation-free formulas. We introdue a notion of strati�ation similarto the one whih is known from Datalog [5, 2℄. A lause is an alternation-free Least Fixpointformula (ALFP formula for short) i� is of the form = s1 ^ : : : ^ sk, and there is a rankfuntion r : R! N suh that for all j = 1; : : : ; k, the following properties hold:1. All prediates of assertions in sj have rank j;2. All prediates of queries in sj have ranks at most j;3. All prediates of negated queries in sj have ranks stritly less than j.

This allows us to de�ne an equality prediate E and a non-equality prediate N by the lause(8x : E(x; x)) ^ (8x : 8y : :E(x; y)) N(x; y))and hene we may dispense with an expliit treatment of = and 6= in the development thatfollows. On the other hand this rules out:(8x : :P (x)) Q(x)) ^ (8x : Q(x)) P (x))Let � denote the set of interpretations of prediate symbols in R over U . Then � is a ompletelattie w.r.t. the lexiographial ordering \v", i.e., �1 v �2 i� there is some 1 � j � k suh thatthe following properties hold:� �1R = �2R for all R 2 R with rR < j;� �1R � �2R for all R 2 R with rR = j; and� either j = k or �1R � �2R for at least one R 2 R with rR = j.We have:Proposition 1. Assume lause is an ALFP formula and � is an interpretation of the free vari-ables in lause. Then the set of all � with (�; �) j= lause forms a Moore family, i.e., is losedunder greatest lower bounds.A proof of proposition 1 an be found in appendix A. Sine the set of all solutions of lause(given a �xed �) is a Moore family, we onlude that for every interpretation �0 of the prediatesymbols, there is a lexiographially least solution � of lause suh that �0 � � (i.e., �0R � �Rfor all R) | whih we all the optimal solution of lause exeeding �0.
3 The ALFP SolverA �rst and rather naive method of solving an ALFP formula onsists in instantiating all variablesourring in in all possible ways. The resulting system an then be solved by lassial solvers foralternation-free Boolean equation systems. Extending the proof of the orresponding propositionin [12℄ (itself extending [11, Theorem 1℄), we have:Proposition 2. The optimal solution � of a ALFP formula exeeding an input interpretationan be omputed in time O(#�+Nr �n) where N is the number of ourring atoms, n is the sizeof , and r is the maximal nesting depth of quanti�ers in and #� is the sum of ardinalities ofrelations �R. utAs observed by MAllester in [11℄ for onventional Horn lauses, suh an approah and suha omplexity bound is unsatisfatory for program analysis, sine the universe U may have ardi-nality as large as the program itself { implying that even analyses using as few as two variableswould not be likely to sale up to large programs. Therefore, MAllester presents an algorithmfor (a speial lass of) Horn lauses whih allows a omputation of the least solution of the orig-inal lause whih often is faster than the naive approah from proposition 2. The key idea ofMAllester is to bring lauses into a spei� anonial form. In order to do so, he introdues aux-iliary prediates for pre�xes of pre-onditions. Furthermore, he employs onstrutor appliationsfor olleting bound variables into environments.MAllester's algorithm is rather indiret as it amounts to a major amount of pre-proessingbefore atual solving. Moreover, the new auxiliary prediates may be a soure of unneessaryextra spae onsumption. The main objetive, however, is that MAllester's solving method

does no longer suÆe for the riher logi ALFP. Therefore, we developed and implemented analternative solving algorithm. In ontrast to MAllester's method, our solving proedure doesnot rely on pre-proessing. It also ompletely abandons speial worklist-like data-strutures asare typial for most lassial iterative �xpoint algorithms [9℄. Instead, we adapt the reursivetopdown approah of Le Charlier and van Hentenryk [6℄ whih is enhaned by ontinuation-based semi-naive iteration [3, 8℄.3.1 The Basi SolverIn essene, our solver for ALFP formulas onsists of two reursive funtions exeute and hekthat operate on lauses and preonditions, respetively. The interpretation of prediate symbols,orresponding to �, is maintained in imperative datastrutures that are updated by means of sidee�ets. The interpretation of variables, orresponding to �, is maintained in an environment thatis passed around expliitly (in a ontinuation based manner in the ase of hek). Thus upontermination of the solver, the interpretation of prediate symbols in the global datastrutureswill have been assigned values that makes the lauses satis�able (for a suitable interpretation ofvariables).
type U = (* the universe *)type tuple = U listtype env = (var � U option) listunify : env � var list � tuple ! env optionuni�able : env � var list ! tuple list

Fig. 1. Operations on environments.
Before explaining the operation of exeute and hek we need to take a loser look at the typesand auxiliary funtions used in the solver (see �gure 1). The universe of atoms is an unspei�edtype U and we model a tuple of a relation as a list of atoms (in order to deal with relationsof di�erent arities) and a relation then oneptually is a global data struture ontaining a listof tuples (although represented as a pre�x tree as explained below) | this takes are of theinterpretation of prediate symbols, �. Environments map variables to atoms but is onstrutedin a lazy fashion meaning that variables may not have been given their values when introduedby quanti�ers; hene environments are partial environments that are list of pairs x 7! a where xis a variable and a is an optional value, i.e., either an atom or � (denoting \unbound" or NONEin SML) | this takes are of the interpretation of variables, � (that is alled � in the sequel toindiate that it is now a partial environment).The main auxiliary operation on environments is the funtion unify whih when alled for apartial environment �, a list [x1; : : : ; xk℄ of variables xi and a tuple [a1; :::; ak℄ of atoms (repre-senting a tuple of some k-ary relation), determines the minimal extension �0 of � with �0 xi = aifor all i if it exists; otherwise, it returns � (\fail"). Thus, �0 is the most general uni�er of thetwo lists relative to �. Moreover, we need a funtion uni�able whih, for a given pair (�; args) ofa partial environment � and a list of variables args determines the list of all tuples t for whihunify (�; args; t) sueeds.Both funtions exeute and hek operate by reursively proessing the original lause orpre-ondition and by propagating an environment whih ollets bindings of the instantiatedvariables. Whenever during propagation of a partial environment �, a quanti�ed subexpressionis enountered whih introdues variable x, we extend � with x 7! �. Aordingly, whenever the

quanti�ed subexpression is left, the variable x is popped from the environment. New bindingsfor variables are obtained at a query R(args). There we ompute unify (�; args; t) for every list tso far known to belong to the interpretation of R. The resulting most general uni�ers are thenpropagated further through the lause.The funtions exeute and hek are presented in SML-style notation in �gures 3 and 4 and areexplained in detail below. Funtion hek operates on pre-onditions in order to �nd new bindingsfor the (partial) variable environment, whereas funtion exeute operates on lauses in order togenerate new elements for prediates. Pre-onditions may trigger further exeutions. These futureomputations are passed to the funtion hek as ontinuations. The type of ontinuations isde�ned in �gure 2 as are a number of other auxiliary de�nitions. We also reall the SML-funtionapp that applies a funtion to eah element in a list, in order to perform the side e�ets.The global data struture rho is used for reording the urrently known elements of prediates.Aordingly, it allows adding new tuples to prediates, heking for the presene of tuples, as wellas retrieving whole relations. The use of data struture in is slightly more subtle.
type ont = env ! unittype onsumer = tuple ! unitglobal datastruture rhoadd : rho � prediate � tuple ! unithas : rho � prediate � tuple ! boolsub : rho � prediate ! tuple listglobal datastruture inregister : in � prediate � onsumer ! unitonsumers : in � prediate ! onsumer list

Fig. 2. Operations on prediates.
It may happen that some query R(args) inside a pre-ondition fails to to be satis�able inthe urrent environment, but may hold in the future when some new elements for R have beenrevealed. In this ase, we residualise the urrent omputation by onstruting a onsumer forR and reording it in the data struture in for prediate R. This onsumer is nothing but thesubsequent all to funtion unify followed by the orresponding ontinuation of the hek routine.Aordingly, whenever the funtion exeute adds a new elements t to the interpretation of R, thelist of onsumers waiting for new elements of R is ativated, and the orresponding omputationsare resumed.

hek : pre � ont ! ontfun hek (p; n) � = ase pof R(args) ! let fun f t = ase unify (�; args; t)of � ! ()j �0 ! n�0in register (in; R; f); app f (sub (rho; R))endj p1 ^ p2 ! hek (p1; hek (p2; n)) �j � � �Fig. 3. The key elements of funtion hek.

Our algorithmi idea here abandons an expliit worklist-like data-struture for the �xpointiteration. Instead, it employs the reursion stak itself for this purpose. Re-ativating residualizedontinuations orresponds to an eager iteration strategy where all onsequenes of the �rst ofseveral new fats are traked before the next one is onsidered.The funtion hek is applied to a pair of a pre-ondition p and a ontinuation n togetherwith a partial environment � for the global variables. As equality \=" (and un-equality \ 6=" assoon as we have negation) an be de�ned, we have omitted orresponding rules in the treatmentof pre-onditions. If p is a query R(args) then a ontinuation f is onstruted whih given anelement t for R, determines the most general uni�er of args with t relative to � and, if it existspropagates it to n. The ontinuation f is registered as a potential onsumer of new elements ofR. Then it is alled for all elements whih already have been revealed for R. If p is a onjuntionp1 ^ p2, then the hek of the seond pre-ondition hek (p2; n) is supplied as a ontinuation forthe all of hek on the �rst pre-ondition p1.The funtion exeute is applied to a lause and a partial environment � for global variables.The intention of exeute is to add new elements to prediates. If equals 1, nothing has to bedone. If is an assertion R(args) then all elements t are onsidered whih are uni�able withargs in environment �. If suh a element t is new, we add it to the relation for R. Moreover, wedetermine the set of onsumers whih have been registered for R and apply eah of them to t.If is a onjuntion of lauses 1 and 2, then exeute is alled on 1 and 2 in sequene { bothwith the same environment � sine no new bindings an result. If is an impliation p) 0, thenthe funtion hek is alled on the pre-ondition p with ontinuation exeute 0. If is a universalquanti�ation 8x : 0, the new binding x 7! � is added to � followed by an exeution of 0.exeute : lause ! ontfun exeute � = ase of 1 ! ()j R(args) ! app (fn t ! if has (rho; R; t) then ()else (add (rho; R; t);app (fn f ! f t) (onsumers (in; R))))(uni�able (�; args))j 1 ^ 2 ! (exeute 1 �; exeute 2 �)j p) 0 ! hek (p; exeute 0) �j 8x : 0 ! exeute 0 ((x 7! �) :: �)Fig. 4. The funtion exeute.
3.2 Pre�x TreesTwo problems withstand a rapid propagation of new elements of a prediate R to all plaes wherethese elements are queried.The �rst problem is, given an argument list args together with a partial environment �, to�nd all elements of a prediate whih possibly are uni�able with args relative to �: this is tomake the app loop at queries fast (see �g. 3).The seond problem is, to maintain the onsumers in suh a way that onsumers are easy toregister, and all registered onsumers whih are potentially appliable to new elements an berevealed eÆiently: this is to make the inner app loop at assertions R(args) fast (see �g. 4).Di�erent onsumers for the same element t = [a1; : : : ; ak℄ of a k-ary prediate may orrespondto queries where di�erent subsets of argument positions are bound in the environment. An ob-

ba
b a

Fig. 5. Representation of the relation f(a; b); (a;); (b; a)g.
vious idea therefore onsists in grouping the onsumers aording to these subsets. There ould,however, be as many as 2k non-empty subsets of onsumers waiting to unify with t. Organizingand maintaining aess to these is awkward and inurs overhead.In order to solve the two problems, let us for a moment trade eÆieny against generalityand abandon eÆient support for all possible query patterns. Instead, we arrange the set ofall urrently known elements of the k-ary prediate R into a pre�x tree as in �g. 5. The treerepresentation allows us to implement a funtion subS whih, given the data struture rho, aprediate R and a pre�x t1, rapidly enumerates all suÆes t2 with t1�t2 ontained in R. Giventhis funtion, we implement the app-loop in �gure 3 as in �gure 6. Here, the funtion �rst inthe �rst line takes a pair of an environment � and an argument list args and returns the uniquesequene of atoms orresponding to the maximal pre�x of args whose variables are all instantiatedin �.The pre�x tree an be implemented, e.g., by using an extensible array to store for eah nodev of the tree the list of all urrently available suessor atoms, together with a hash table to mappairs hv; ai of nodes v and atoms a to suessor nodes.Aordingly, we also allow onsumers of a k-ary prediate R only to register for the set ofsuÆes t2 for a given pre�x t1. This implies that there are at most k + 1 sets of onsumerswaiting for eah new element t of R. Again, the waiting onsumers are maintained in a pre�xtree of depth at most k whose nodes orrespond to the possible pre�xes t1. In partiular, allpotential onsumers of a single element t an be olleted by traversing one branh in the tree.This data-struture of waiting onsumers an be implemented again by an extensible array anda hash table. As before, the hash table maps pairs hv; ai of nodes v and atoms a to suessornodes in the tree. The extensible array, however, now returns for eah node in the tree the set ofonsumers waiting for suÆes. This funtionality is provided by the two funtions registerS andonsumersS whose types are given in �gure 7.So assuming that hash table lookups an be done in time O(1), we onlude that olletingall onsumers for an element t of prediate R amounts to k + 1 alls to the funtion onsumersSand a onatenation of k + 1 lists. Thus, it an be exeuted in time O(k + 1 + n) where k is thearity of the prediate R, and n is the size of the result.It remains to explain that our restrition in generality is not as severe as it might seem. Ifsupport for a further query pattern of the k-ary prediate R is demanded, it ould be obtainedthrough a soure-to-soure transformation { similar in spirit to the seond last rule of MAllester

let val t1 = �rst (�; args)in app (fn t2 ! f (t1� t2)) (subS (rho; R; t1))endFig. 6. The improved app-loop of hek.

subS : rho � prediate � tuple ! tuple listregisterS : in � prediate � onsumer � tuple ! unitonsumersS : in � prediate � tuple ! onsumer listFig. 7. Improved operations on prediates.fun hek (p; n) � = ase pof : : :j :R(args) ! app (fn t ! if has (rho; R; t) then ()else n (unify (�; args; t)))(uni�able (�; args))j p1 _ p2 ! (hek (p1; f) �; hek (p2; f) �)j 9x : p0 ! hek (p0; n Æ tl) ((x 7! �) :: �)j 8x : p0 ! let fun f [℄ ((x 7!) :: �) = n �j f (a::U) ((x 7!) :: �) = hek (p0; f U) ((x 7! a) :: �)in f U ((x 7! �) :: �)endFig. 8. The advaned elements of funtion hek.
in the proof of [11, Theorem 3℄, however, without introdution of non-atomi terms. Here, itsuÆes to introdue an auxiliary prediate R0 whih is obtained from R through re-arrangementof argument positions. For example, if we would like to query the ternary prediate R where thelast argument is bound, we introdue the new lause:8x1 : 8x2 : 8x3 : R(x2; x3; x1)) R0(x1; x2; x3)Furthermore, we replae the orresponding query of R in a pre-ondition by the orrespondingquery of R0.Against the exponential overhead of blindly introduing support for all exponentially manyquery patterns, this soure-to-soure transformation has the advantage that the overhead for theadditional query pattern is paid only if it really ours in the urrent lause.3.3 ExtensionsLet us now extend the basi solving algorithm for handling the advaned features negation,disjuntion, and existential and universal quanti�ation in queries that we dispensed with in�gure 3. It turns out that it suÆes to add further rules to the funtion hek. The neessaryadditions are summarised in �gure 8.Tehnially, the simplest extension is negation. Aording to the last-in-�rst-out disiplineof the runtime stak, the solver only proeeds to the exeution of the seond onjunt of twolauses, when the exeution of the �rst one together with all triggered alls to ontinuations havebeen �nished. Consequently, the solver stabilises all prediates relative to all lauses onsideredso far, implying that the lauses of the next stratum in the input lause are not proessed beforeall prediates in the former ones have de�nitely stabilised. This means that our solving strat-egy naturally respets the strati�ation and strong omponents. Thus, for dealing with negatedqueries :R(args), we only have to add a new rule to the funtion hek. This rule determinesall tuples t not belonging to R and then propagates unify (�; args ; t) to the urrent ontinuation.Sine the relation for R has already stabilised (and therefore also its omplement), no registrationof onsumers is neessary.

The basi idea for disjuntions p � p1 _ p2 is to all hek for both pre-onditions pi | butnow with the same ontinuation.If p is an existential quanti�ation 9x : p0, we hek the ondition p0 for the extended envi-ronment (x 7! �)::� where the resulting environments are trunated before propagation to theontinuation n.If p is a universal quanti�ation 8x : p0, we add the binding x 7! � to � and then propagateit to the ontinuation f U . Here, U denotes a list of all atoms in the universe. The funtion fevaluates to the ontinuation n when applied to an empty list of atoms. When applied to a non-empty list a::U and some environment f updates the topmost binding in the environment to aand then alls the funtion hek on the body p0 and f U as the remaining ontinuation.
4 Pratial IssuesHere, we mention just three further issues whih are important in order to arrive at an eÆientimplementation.
4.1 Avoiding Dupliation of WorkIt may happen that, while evaluating a all hek (p; n) �, the ontinuation n is alled more thanone for an environment �0. This may happen at disjuntions p � p1 _ p2 where �0 satis�es bothp1 and p2. Another soure of suh dupliation of work are existential quanti�ations 9x : p0 wherep0 an be satis�ed for di�erent values of x.In order to avoid this unneessary dupliation of work, we add memoisation for every our-rene of a pre-ondition p whih reords the set of environments �0 for whih the given ontinu-ation has already been alled. This prinipal sheme then an be optimised (for spae) in suh away that we avoid the extra book-keeping in as many plaes as is safely possible. So, we plaememoisation only at an outermost ourrenes of disjuntions or existential quanti�ations. Inpartiular, we omit memoisation at onjuntions. The reason is twofold:1. In absene of disjuntions or existential quanti�ations, no dupliation of work an our.2. If memoisation ours at all disjuntions and existential quanti�ations, then every ontinu-ation n is alled with the same environment �0 only a bounded number of times.As an illustrating example, onsider the lause:R(a) ^ S(a; a) ^ 8x : 8y : (R(x) _R(y)) ^ S(x; y)) T (x; y)and assume we have ahing at existentials and disjuntions. The two environments generatedthrough heking of the disjuntion are:�1 = [x! a; y ! �℄ and �2 = [x! �; y ! a℄These two are di�erent and propagated to the query S(x; y). Uni�ation with the tuple [a; a℄there will result in the environment: � = [x! a; y ! a℄being generated twie. In general, all �0 whih, after a query, result in the same environment� must agree on all jointly instantiated variables and thus may di�er only in the sets of so farunbound variables. As the formula has onstant size, these are just onstantly many.

4.2 Optimising Auxiliary PrediatesClearly, we ould tabulate for eah ourrene of a query R(x1; : : : ; xk) a separate (permuted)opy of the relation for R where the subset of instantiated variables does not form a pre�x ofthe sequene x1; : : : ; xk. We might, however, exploit the pre�x tree implementation and try toover several non-pre�x query patterns by one suitably permuted representation of the relation.Consider, e.g., a ternary prediate R whih is queried one with the �rst and last omponentinstantiated and another time just with the last omponent instantiated. Then it suÆes tointrodue just one auxiliary prediate R0 whih is de�ned by:8x1 : 8x2 : 8x3 : R(x2; x3; x1)) R0(x1; x2; x3)Thus, the prediate R0 serves both requirements, and we have saved time and spae for one extraopy of R. In general, we arrive here at the following optimisation problem:Given: a set S of subsets S � f1; : : : ; kg of instantiated omponents;Wanted: a set � of permutations � of the sequene: 1; : : : ; k suh that eah subsetS 2 S is a pre�x of some � 2 �.We onjeture that omputing suh a set � of minimal ardinality in general is hard. For ourpurposes here, however, any set � of ardinality at most #S will do: smaller sets just dereaseresoure onsumption. Therefore, we use a simple greedy algorithm. We iteratively extrat amaximal hain S1 � : : : � Sf of sets in S for whih a supporting permutation is derived. Thenthe hain is removed from S. We repeat these steps until S is exhausted.This algorithm still gives the optimal result for k = 3 | and was good enough for all ourappliations so far.
4.3 Optimising Tail ReursionAt queries p � R(: : :), the funtion hek alls the funtion app tail-reursively | meaning thatthe stak frame for an original all of hek an be re-used by this �nal all. The implementationof app, however, as provided by the to-date version 110.0.7 of the SML standard library is givenby: fun app f [℄ = ()j app f (x::xs) = (f x; app f xs)Thus, the all of f for the last element in the list is not tail-reursive in the de�nition of app| whih means that the stak is not trimmed as early as possible. The better implementation ofapp whih is therefore appropriate here adds an extra ase for one-element lists:fun app f [℄ = ()j app f [x℄ = f xj app f (x::xs) = (f x; app f xs)Now, the last all of f for a (non-empty) list is tail-reursive in app as well | implying thatthe stak frame for app (whih was taken from the all to funtion hek) is now re-used bythe last all to funtion f . A similar argument shows that the modi�ed app also improves theonsumption of stak spae in the nested appliation of app at assertions.

5 Estimating the ComplexityFor the following, we assume that the algorithm is equipped with a ahing sheme suh that noontinuation n is alled twie with the same argument.We now state the fundamental observation that omputing the solution to a lause is asexpensive, asymptotially, as heking the result:Proposition 3. Assume that is an ALFP formula of onstant size. Let �0 denote an inputinterpretation and � the optimal solution of exeeding �0. Let t0 and t be the runtimes of thesolver when started on �0 and �, respetively.Then t0 � d � t for some onstant d independent of the relations in �.Proof. Let �0 and � be the �xpoint omputations of the solver when started on �0 and �, respe-tively. Then the following holds:1. The �xpoint omputation �0 performs the same alls hek (p; n) �, exeute �, register (�; args; t),and unify (�; args; t) as � | only, perhaps, in a di�erent ordering.2. The only additional work of �0 onsists in determining the sets of onsumers for the tuplesnewly added to the relations.Aording to the implementation of onsumersS as desribed in subsetion 3.2 and our assumptionthat the size of , and therefore also all arities of ourring prediates, are O(1), we know thatthe runtime of eah individual all onsumersS (in; R; t) is proportional to 1 plus the number ofreturned onsumers. Thus, the total additional time spent by �0 is O(P +Q) where P equals thetotal number of alls onsumersS (in; R; t), and Q equals the total number of returned onsumers.The value P is bounded by the total number of alls exeute 0 � where 0 is an assertion. As eahonsumer auses a all to unify, we dedue that Q is bounded by the total number of alls tounify. Consequently, the sum P +Q is bounded by the total runtime of the solver on � { implyingthat the time t0 may exeed the time t only by a onstant fator. utA proposition similar to prop. 3 has been stated by MAllester for his algorithm and ordinaryHorn lauses [11℄. Thanks to this proposition, it suÆes to determine the omplexity of the solverfor heking a solution. And in fat, the orresponding work inurred by di�erent syntatialomponents of the lause an be alulated in a \denotational" way.Assume for the following that we are given a �xed interpretation � of prediate symbols. Everypre-ondition p gives rise to a transformer T�[p℄ mapping a set E of reahing environments forthe variables in B to the set of environments after heking p, i.e., those whih are propagatedby alls hek (p; n) �, � 2 E to the ontinuation n. All environments � in E are of the form� = [x1 7! d1; : : : ; xm 7! dm℄for the same sequene x1; : : : ; xm of variables but potentially di�erent sequenes d1; : : : ; dm ofvalues (inluding �). Furthermore, all free variables from p are among the xj . A formal de�nitionof this transformation is given in �gure 9. Here, �tl and �E:a �::E denote the elementwise extensionof the orresponding un-barred funtions to sets of partial environments. Moreover, T�;U [p℄ is anauxiliary funtion implementing the iteration on all possible bindings for x.Based on the transformation T�, we de�ne in �gure 10 the funtion C� for alulating theosts inurred by preonditions, and the funtion C�� for alulating the osts inurred by lauses,on any set of arriving environments. Here, �rst is as before and free (�; args) in the seond linereturns the set of variables from args whih are not instantiated in �. Finally, we introdued anauxiliary funtion for evaluating the osts of universal quanti�ation.Note that we essentially ount for every pre-ondition, the number of satisfying environments.This generalises the intuitive idea of ounting pre�x �rings in the manner used by MAllester

T�[R(args)℄ E = funify (�; args; t) j unify (�; args; t) 6= �; � 2 E ; t 2 �RgT�[:R(args)℄ E = funify (�; args; t) j unify (�; args; t) 6= �; � 2 E ; t 62 �RgT�[p1 ^ p2℄ E = T�[p2℄ (T�[p1℄ E)T�[p1 _ p2℄ E = T�[p1℄ E [T�[p2℄ ET�[9x : p℄ E = �tl (T�[p℄ ((x 7! �) �:: E))T�[8x : p℄ E = T�;U [p℄ ((x 7! �) �:: E)) whereT�;[℄[p℄ E = �tl ET�;a::U [p℄ ((x 7!) �:: E) = T�;U [p℄ (T�[p℄ ((x 7! a) �:: E))Fig. 9. The transformation indued by hek.
C�[R(args)℄ E = #fh�; ti j � 2 E ; (�rst (�; args)) t 2 �RgC�[:R(args)℄ E =P�2E (#U)#free(�;args)C�[p1 ^ p2℄ E = C�[p1℄ E + C�[p2℄ (T�[p1℄ E)C�[p1 _ p2℄ E = C�[p1℄ E + C�[p2℄ EC�[9x : p℄ E = C�[p℄ ((x 7! �) �:: E)C�[8x : p℄ E = C�;U [p℄ ((x 7! �) �:: E) whereC�;[℄[p℄ E = #EC�;a::U [p℄ ((x 7!) �:: E) = C�[p℄ ((x 7! a) �:: E) + C�;U [p℄ (T�[p℄ ((x 7! a) �:: E)C�� [1℄ E = #EC�� [R(args)℄ E = #fh�; ti j � 2 E ; t 2 �R; unify (�; args; t) 6= �gC�� [p) ℄ = C�[p℄ E + C�� [℄ (T�[p℄ E)C�� [1 ^ 2℄ E = C�� [1℄ E + C�� [2℄ EC�� [8x : ℄ E = C�� [℄ ((x 7! �)�::E)Fig. 10. The osts of pre-onditions and lauses.

for his algorithm and the speial ase of Horn lauses [11℄. In ase of queries, our estimationadditionally takes into aount that our relations are stored in pre�x trees { thus we only supportrapid enumeration of sub-relations for given pre�xes of tuples. In ase of negated queries, we takeinto aount that the solver has to enumerate all possible instantiations of the variables whihare not already instantiated in the environment. In ase of universal quanti�ations, we alulatethe osts of iterating through all possible bindings for the bound variable. We then obtain ourmain theorem thereby demonstrating that it is not only possible to suintly express algorithmiinsights in funtional languages but that it is also possible to elegantly perform the neessaryomplexity alulations:
Theorem 1. Assume that is a alternation-free LFP formula of onstant size. Then the solution� an be heked by the solver in time O(#�+C�� [℄ E0) where the set E0 onsists of the singleinitial environment for the onstants.

For a formal proof see appendix B.

6 Experimental EvaluationWe have implemented the solver for ALFP formulae using SML of New Jersey. Furthermore,we have implemented several frontends for pratially applying the solver to various ontrol-owanalyses. Here, we exemplify the eÆieny of the resulting system by two salable benhmarks(exeuted on an 800 MHz Pentium III with 1 GB of main memory under Linux with SMLNJ,version 110.0.7).The benhmark trans2-n omputes the transitive losure T2 = E+ of a direted line graphwith n verties and n� 1 edges (denoted E). It uses the lause:8x : 8y : E(x; y)) (T2(x; y) ^ 8z : T2(y; z)) T2(x; z))Thus, the universe ontains N = n elements, whereas the resulting relation for T2 ontains12n � (n+ 1) elements. The logially equivalent lause for T1 = E+8x : 8y : (E(x; y)) T1(x; y)) ^ (8z : T1(x; z) ^ T1(z; y)) T1(x; y))turns out to yield a benhmark trans1-n that is muh less eÆient (see Fig. 11).The theoretial runtime for the naive omputation of transitive losure is ubi. However, inthe ase of the optimised formula, trans2-n, we an in fat use Theorem 1 to obtain a quadratibound: given a universe of size n and a relation E of ardinality e (equal to n�1 in the benhmarkfor transitive losure), there are exatly e partial environments satisfying the query E(x; y), givingus ost e for this query and the same ost also for the assertion T2(x; y). All these e environments(extended by (z 7! �)) reah the query T2(y; z). Sine there are at most n possible values forz, we onlude that T2(y; z) ontributes at most e � n to the ost. Sine the assertion T2(x; z)ontributes the same ost, we obtain the omplexity estimation O(e � n). Indeed, the relativeinrease in the runtimes of trans2-n roughly shows the expeted quadrati behaviour.
n trans1-n trans2-n200 15.9 1.05400 116.4 4.4600 386.7 11.6800 1 16.21000 1 29.11200 1 50.01400 1 57.51600 1 76.21800 1 128.0

n N (rel.) router1-n router2-n5 216 1.0 2.99 0.166 318 1.47 6.89 0.217 440 2.04 13.4 0.398 582 2.69 22.4 0.579 744 3.44 35.1 0.7910 926 4.3 56.8 1.4115 2136 9.9 1 5.0120 3846 17.8 1 13.025 6056 28.0 1 26.730 8766 40.6 1 55.935 11976 55.4 1 116.9
Fig. 11. Runtimes on transitive losure and 0fa on the ambient benhmark in seonds (inluding garbageolletion).

The benhmarks router1-n and router2-n onsist of an ambient program [4℄ desribing asquare array of n2 servers and a paket to be routed through the array: it starts at the top leftorner, then nondeterministially moves either right or down, to end in the lower right orner. Onthis program we perform the 0fa ontrol-ow analysis as presented in [12℄ giving the numbers inrouter1-n as well as an optimised version of this analysis { giving the numbers in router2-n.The optimisation basially amounted to avoiding large auxiliary relations and replaing �lteringof larger relations by reating auxiliary relations whih diretly provide the desired (few) tuples.The two versions of the analysis an be found in appendix C. The router example is typial forrelated appliations in program analysis as the omputed relations turn out to be sparse, i.e.,

have approximately linear ardinalities. Here, the ardinality of the universe is N = 10n2�8n+6but the omputed relations are approximately of the same size.The theoretial runtime for 0fa on ambient programs is ubi in N (as reported in [12℄ andas may be obtained using Theorem 1). However, even the original analysis router1-n from [12℄seems to behave signi�antly better in pratie, but still it uses about a minute for router1-10,and no termination in reasonable time ould be obtained for router1-15. More than 30 timesfaster runtimes ould be observed when saling the optimised analysis router2-n. Also, therelative inrease is perhaps even less than quadrati when ompared to the relative inrease ofthe respetive universes. Aordingly, more than ten times larger input ambient programs ouldbe analyzed in reasonable time. The absolute runtimes both on transitive losure and the ambientanalysis indiate that the �xpoint algorithm { even in its funtional implementation { is indeedquite eÆient. (We oded an implementation of the transitive losure in C and obtained onlyabout one order of magnitude speed-up.) The largest examples we ould do in reasonable time (afew minutes) were trans2-1800 and router2-35. The latter is an ambient program of around100 KB size on whih the analyzer produes about 1.4 MB output. We also have tried the analyzeron even larger examples but there the runtimes inreased dramatially { due to growing spaeonsumption and therefore exploding garbage olletion and paging times.
7 ConlusionOur solver algorithm is learly based on lassial work on eÆient �xpoint algorithms [9℄. Inpartiular, it ombines the topdown solving approah of Le Charlier and van Hentenryk [6℄ withthe propagation of di�erenes [8℄, an optimisation tehnique for distributive frameworks whihis also known in the area of dedutive databases [3℄ or as redution of strength transformationsfor program optimisation [13℄. For these ideas to work we had to provide arbitrarily branhingpre�x trees as a universal data-struture for storing relations as well as for organising sets ofwaiting onsumers. The eÆieny, simpliity and expressiveness of the logi made it our favouritehoie over the transformational approah of MAllester [11℄ or o�-the-shelf implementations ofdedutive databases as, e.g., the CORAL system [14℄.The omplexity analysis has bene�tted from the pioneering ideas of MAllester [11℄ on theomplexity of solving (lassial) Horn lauses. Here, we generalised these tehniques to a riherlass of input formulas and adapted it to the spei� properties of our solver. In doing this, wewere greatly assisted by the abstrat haraterisation of the behaviour of the solver whih againwas made possible thanks to the spei� programming style (in partiular ontinuations andmemoisation) being used.
Referenes1. A. Aiken. Introdution to set onstraint-based program analysis. Siene of Computer Programming(SCP), 35(2):79{111, 1999.2. K. Apt, H. Blair, and A. Walker. Towards a theory of delarative programming. In J. Minsker,editor, Foundations of Dedutive Databases and Logi Programming. Morgan-Kaufman, Los Altos,CA, 1988.3. I. Balbin and K. Ramamohanarao. A Generalization of the Di�erential Approah to Reursive QueryEvaluation. Journal of Logi Programming (JLP), 4(3):259{262, 1987.4. L. Cardelli and A.D. Gordon. Mobile ambients. In Proeedings of FoSSaCS'98, volume 1378 ofLNCS, pages 140{155. Springer-Verlag, 1998.5. A. Chandra and D. Harel. Computable queries for relational data bases. Journal of Computer andSystem Sienes, 25(2):156{178, 1980.

6. B. Le Charlier and P. Van Hentenryk. A Universal Top-Down Fixpoint Algorithm. Tehnial ReportCS-92-25, Brown University, Providene, RI 02912, 1992.7. E. Dahlhaus. Skolem normal forms onerning the least �xpoint. In Computation Theory and Logi,pages 101{106. LNCS 270, Springer Verlag, 1987.8. C. Feht and H. Seidl. Propagating Di�erenes: An EÆient New Fixpoint Algorithm for DistributiveConstraint Systems. In European Symposium on Programming (ESOP), pages 90{104. LNCS 1381,Springer Verlag, 1998. Long version in Nordi Journal of Computing 5, 304-329, 1998.9. C. Feht and H. Seidl. A Faster Solver for General Systems of Equations. Siene of ComputerProgramming (SCP), 35(2-3):137{162, 1999.10. P.G. Kolaitis. Impliit de�nability on �nite strutures and unambiguous omputations (preliminaryreport). In 5th Annual IEEE Symposium on Logi in Computer Siene (LICS), pages 168{180,1990.11. D. MAllester. On the Complexity Analysis of Stati Analyses. In 6th Stati Analysis Symposium(SAS), pages 312{329. LNCS 1694, Springer Verlag, 1999.12. F. Nielson and H. Seidl. Control-Flow Analysis in Cubi Time. In European Symposium on Pro-gramming (ESOP). LNCS, Springer Verlag, 2001. To appear.13. R. Paige. Symboli Finite Di�erening { Part I. In Proeedings of 3rd European Symposium onProgramming (ESOP), pages 36{56. LNCS 432, 1990.14. R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. The CORAL Dedutive System.VLDB Journal, 3(2):161{210, 1994.15. Joseph E. Stoy. Denotational Semantis: The Sott{Strahey approah to programming languagesemantis. MIT Press, 1977.A Proof of Proposition 1Assume lause � s1 ^ : : : ^ sm where sj is the lause orresponding to stratum j, and let Rjdenote the set of all relation symbols R de�ned in s1 ^ : : : ^ sj taking R0 = ;, and reall therank funtion r. LetM denote a set of assignments whih map relation symbols to relations; then� =uM is given by the formula�(R) =\f�0(R) j �0 2 M ^ 8R0 2 Rr(R)�1 : �(R0) = �0(R0)gwhih is well-de�ned by indution on the value of r(R).We prove that for all j, all M and all variable environments �:Claim: If � =uM , ours in sj and (�0; �) j= for all �0 2M then also (�; �) j= .In order to prove the Claim, we proeed by omplete indution on j and in eah ase distinuishtwo ases.Case 1: The �rst ase is when �(R) = Uk for all relations R of rank j and appropriate arityk. In this ase a straightforward indution on suÆes for proving that (�; �) j= holds for all ouring in sj . We onsider two illustrative ases. � R(x1; : : : ; xk) This ase is immediate sine we assumed that �(R) = Uk. � (p) 0) By the indution hypothesis (�; �) j= 0 and hene it is immediate that also(�; �) j= .Case 2: The seond ase is when �(R) 6= Uk for some relation R of rank j and some arity k.Then the set Mj = f�0 2M j 8R0 2 Rj�1 : �(R0) = �0(R0)gis non-empty and we have:�(R) = Tf�0(R) j �0 2Mjg if r(R) = j�(R) = �0(R) if r(R) < j and �0 2Mj

We proeed by strutural indution on (realling that ours in sj) and establish an auxiliaryresult for pre-onditions. � R(x1; : : : ; xk) Sine r(R) = j we have that �(R) equals the intersetion of all relations�0(R) for �0 2 Mj . Given the assumption that t = (� x1; : : : ; � xk) 2 �0(R) for all �0 2 Mj � Mwe have that t 2 �(R) as desired. � (p) 0) We onsider two ases. In the �rst ase, (�; �) j= p is false in whih ase (�; �) j= is immediate. In the seond ase (�; �) j= p is true and from the Auxiliary Claim below we getthat (�0; �) j= p for all �0 2Mj and hene the result follows by indution hypothesis.Auxiliary Claim: If � = uM , p ours in sj and (�; �) j= p then also (�0; �) j= p for all�0 2Mj .We proeed by indution in j and in eah ase perform a strutural indution in p (realling thatp ours in sj). Most ases are straightforward sine �(R) � �0(R) for all �0 2 Mj . The onlynon-trivial ase is:p � :R(x1; : : : ; xk) Here the result follows beause the rank of R is stritly less than j andhene �0(R) = �(R) for all �0 2Mj . ut
B Proof of Theorem 1In the sequel we make use of the following tehnial proposition:Proposition 4. Assume that the urrent interpretation of prediate symbols is given by �. Thenfor all pre-onditions p and sets E of partial environments, the following holds:1. T�[p℄ E equals the set of partial environments �0 whih on alls hek (p; n) �, � 2 E, arepropagated to the ontinuation n;2. #(T�[p℄ E) � C�[p℄ E. utWhen started on a solution �, the solver an be thought of as ontiguously evaluating thesub-terms of the lause { thus allowing us to perform an indution on the struture of lauses.Let p and denote a pre-ondition and a lause, respetively. Let T [p; E ℄ denote the maximaltime spent by the algorithm on the all hek (p; n) � for any partial environment � from E beforealling ontinuation n. Aordingly, let T [; E ℄ denote the total time spent by the algorithm onalls exeute �, � 2 E . We estimate these omplexities as follows:Proposition 5. There are onstants dp; d > 0 only depending on p and , respetively, suhthat T [p; E ℄ � dp � (#E + C�[p℄ E)T [; E ℄ � d � (#E + C�� [℄ E)As #E0 = 1, we onlude from proposition 5, that the solver uses time O(#� + C�� [℄ E0) asstated in theorem 1 | where the extra time O(#�) is needed to read the relations �R and insertthem into the datastruture rho.Proof (Proposition 5). Here, we only onsider the ases where{ p is a query or a onjuntion, and where{ is an assertion or an impliation.p � R(args) For � 2 E and t1 = �rst (�; args), let T� denote the set of all tuples t1�t2 2 �R.The work of alls hek (p; n) �, � 2 E , onsists of

1. registering for R and t1 ertain funtions f�; � 2 E ;2. determining for eah � 2 E , the set T� and omputing unify (�; args ; t0) for all t0 2 T�.The �rst task onsumes time O(#E). For the latter, aording to our tree-like representation ofrelations, the solver will need time O(#T�) for eah �. Therefore, we obtain:T [p; E ℄ � d �X�2E(1 + #T�) = d � (#E + C�[p℄ E)
for some d > 0 { giving the laim of proposition 5 for this ase.p � p1 ^ p2 Then the work of alls hek (p; n) �, � 2 E , onsists of1. the work of all alls hek (p1; n0) �, � 2 E , where n0 = hek (p2; n) { thereby omputing theset of partial environments E 0 = T�[p1℄ E ;2. the work of all alls hek (p2; n) �0, �0 2 E 0.By indutive hypothesis, the �rst task onsumes time O(#E + C�[p1℄ E) whereas the seond onetakes time O(#E 0 + C�[p2℄ E 0). Now, by proposition 4,#E 0 = #T�[p1℄ E � C�[p1℄ ETherefore, T [p; E ℄ � d � (#E + C�[p1℄ E + C�[p2℄ (T�[p1℄ E))aording to our laim. � R(args) The work of the solver on the assertion when exeuting the alls exeute �,� 2 E , amounts to:{ determining for every � 2 E , the set T� of all t with unify (�; args; t) 6= �;{ adding the sets T� to the urrent value for the prediate R.Aording to our assumptions, this work requires time O(P�2E(1 + #T�)). We have:P�2E(1 + #T�) � #E +#f(�; t) j � 2 E ; t 2 �R; unify (�; args; t) 6= �g= #E + C�� [℄ E| giving the assertion of proposition 5 for this ase. � (p) 0) The work of the solver on alls exeute �, � 2 E , amounts to:1. the work on alls hek (p; exeute 0) �, � 2 E ; together with2. the work on alls exeute 0 �0 for �0 2 T�[p℄ E , i.e., those �0 whih are obtained by the allshek (p; exeute 0) �, � 2 E .Therefore by indutive hypothesis and prop. 4,T [; E ℄ � d0 + T [p; E ℄ + T [0; T�[p℄ E ℄� d � (#E + C�[p℄ E +#(T�[p℄ E) + C�� [0℄ (T�[p℄ E))� d � (#E + 2 � C�[p℄ E + C�� [0℄ (T�[p℄ E))� 2 � d � (#E + C�� [℄ E)for suitable onstants d0; d > 0. This ompletes the proof. ut

C The Benhmark Clauses for Ambient Analysis
Our frontend extrats from the ambient program the ternary relations In/3, Out/3, Open/3 andName/3. The �rst omponent always ontains the label of the statially enlosing ambient. Inase of the �rst three relations, the last omponent holds the labels of orresponding apabilities,and the seond omponent the names of ambients the apabilities possibly refer to. In ase ofthe relation Name/3, the third omponent holds the labels of ambients whih are named by thenames given in the seond omponent.Then the analysis from [12℄ is equivalent to the lause:(8l; n; x : (In(l; n; x)) (HasFather(x; l) ^(8y; z : HasFather(x; y) ^ Sibling(y; z) ^ HasName(z; n)) HasFather(y; z)))) ^(Out(l; n; x)) (HasFather(x; l) ^(8y; z : HasFather(x; y) ^ HasFather(y; z) ^ HasName(z; n)) OutPair(y; z)))) ^(Open(l; n; x)) (HasFather(x; l) ^(8y; z : HasFather(x; y) ^ HasFather(z; y) ^ HasName(z; n)) OpenPair(z; y)))) ^(Name(l; n; x)) (HasName(x; n) ^ HasFather(x; l)))) ^(8y; z; t : HasFather(y; t) ^ HasFather(z; t)) Sibling(y; z)) ^(8x; y; z : OutPair(x; y) ^ HasFather(y; z)) HasFather(x; z)) ^(8x; y; z : OpenPair(y; z) ^ HasFather(x; y)) HasFather(x; z))Evaluating this lause on the router programs gives the numbers in olumn router1-n of �gure11. This lause turns out to be not as eÆient as one might have hoped. In partiular, the Sibling-relation beomes very large: for n = 10, it ontains no less than 568929 tuples { although therelation HasFather/2 only omprises 2004 tuples. In order to optimise the lause further, we maketherefore the following observations:{ It is not neessary to onsider eah apability individually. The only property whih mattersfor the analysis is whether an ambient ontains an In-operation for a spei� name or not(similar for Out and Open). Therefore, we introdue new auxiliary binary prediates HasIn/2,HasOut/2 and HasOpen/2.{ Instead of determining all fathers of an ambient and then seleting from these the fathershaving a spei� name, it is muh more eÆient to aess the fathers with a given namediretly. This gives us the ternary relation HasFather/3. A similar trik is also played torapidly aess the ambient sons with a given name.{ Using the latter ternary relation, we replae the onjuntionSibling(y; z) ^ HasName(z; n)with the onjuntion: HasFather(y; t) ^ HasSon(t; n; z)for some new auxiliary variable t { thus avoiding the large relation Sibling/2.

By appliation of these ideas, we arrive at:(8l; n; x : (In(l; n; x)) (HasFather(x; l) ^(8y : HasFather(x; y)) HasIn(y; n)))) ^(Out(l; n; x)) (HasFather(x; l) ^(8y : HasFather(x; y)) HasOut(y; n)))) ^(Open(l; n; x)) (HasFather(x; l) ^(8y : HasFather(x; y)) HasOpen(y; n)))) ^(Name(l; n; x)) (HasName(x; n) ^ HasFather(x; l) ^(8y : HasFather(x; y)) (HasSon(y; n; x) ^(8n : HasName(y; n)) HasFather(x; n; y)))))) ^(8y; n; z; t : HasIn(y; n) ^ HasFather(y; t) ^HasSon(t; n; z)) HasFather(y; z))) ^(8x; y; n : HasOut(x; n) ^ HasFather(x; n; y)) OutPair(x; y)) ^(8x; y; z : OutPair(x; y) ^ HasFather(y; z)) HasFather(x; z)) ^(8x; y; n : HasOpen(x; n) ^ HasSon(x; n; y)) OpenPair(y; x)) ^(8x; y; z : HasFather(x; y) ^ OpenPair(y; z)) HasFather(x; z))The numbers for this lause are listed in olumn router2-n of �gure 11.

