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Abstract. We develop a solver algorithm which allows to efficiently compute the optimal
model of a very expressive fragment of predicate logic. The succinct formulation of the
algorithm is due to the disciplined use of continuations and memoisation. This facilitates
giving a precise characterisation of the behaviour of the solver and to develop a complexity
calculation which allows to obtain its formal complexity. Practical evaluations on a control-
flow analysis of the ambient calculus shows a good match between theory and practice.
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1 Introduction

Functional languages are seldomly used for expressing algorithmic insights because most algo-
rithm designers prefer to express their insights in imperative languages and find it easier to
perform the analysis of worst-case and average-case complexity with respect to a first-order im-
perative model of computation. As is clear to any functional programmer such algorithms can be
coded in functional languages but this is somewhat besides the point of the algorithm designer.
Indeed it is hard to criticise the algorithm designer for the choices made: The use of imperative
languages makes it easier to communicate with colleagues working on algorithms (simply because
this is the common language of the field) and it makes it easier to perform the complexity analysis
due to the simpler and more direct layout of data in store (thus avoiding the need to consider
run-time stacks, closures and garbage collection) in accordance with well-established models of
computation (like Turing Machines, the RAM model with uniform cost or logarithmic cost etc.).

Despite our sympathy with the traditional viewpoints of algorithm designers we feel they
miss an important consideration: Algorithms need to be used by well-educated programmers and
there is little value in developing an advanced algorithm if the prospective programmers cannot
understand it or cannot see how to adapt it to their needs. Given the limited abilities of humans
to grasp many concepts at the same time it is important to pay attention to the notation used
for expressing the algorithmic insights. (Behavioural psychologists typically find that a human is
only able to grasp the interplay of about seven concepts at any point in time.) Indeed, “a notation
is important for what it leaves out” [15, page 33] because then more succinct specifications can
be developed that only focus on those key insights that have to be grasped at the same time.
This is where functional programming enters the picture. More specifically we consider an eager
functional language (since lazy languages are even further removed from the RAM model etc.)
with imperative features (to maintain control over the sharing of results of computations) and
continuations.

This paper takes the approach outlined to develop a state-of-the-art constraint solver. We
consider the alternation-free fragment of Least Fizpoint Logic (ALFP) in clausal form. This logic is



more expressive than, e.g., Datalog [7,10] but still allows for polynomial model-checking routines.
Formulas in this fragment naturally arise in the specification of static analyses of programs (see,
e.g. [11,12]). Here, we consider the systematic design of a fixpoint engine for this logic. We build
on known approaches for sub-logics like [11, 12] for Datalog. Like McAllester in [11], we aim at an
algorithm which makes computing the result as cheap as checking of the result. Furthermore, the
algorithm should be simple, i.e., work almost without pre-processing of formulas, and predictable,
i.e., its complexity behaviour should be easily computable.
More specifically we claim the following general advantages of our approach:

— The specification logic is much more expressive than the fragment of set constraints as pro-
vided by BANE [1] or Datalog as, e.g., advocated by McAllester — yet our solver can be
presented in less than a page of SML pseudo-code.

— On the Datalog fragment, our solver achieves the best known theoretical bounds for corre-
sponding solvers.

— The solver has a very modular design — allowing for a rapid implementation and simple
explanation. In particular, the use of recursion and continuations allowed us to disregard a
number of classical techniques (the use of work-lists, the identification of strong components
etc.) without penalties in performance.

— The solver has a very regular structure allowing an abstract characterisation of its behaviour
— thereby paving the way for predicting also its best-case computational performance when
solving formulas.

The development builds on previous insights on using functional programming for implementing
state-of-the-art solvers [6,9, 8] achieving only a few of the above advantages.

In Section 2 we present the fragment of predicate logic considered and define its semantics.
In Section 3 we then develop the solver, explain the algorithmic techniques needed for obtaining
good performance, and illustrate the modularity of its design. In Section 5 we give an overall
characterisation of its behaviour and use this to obtain a formal complexity result that is validated
practically in Section 6. Section 7 concludes and the appendices contain proofs of the main results.

2 Alternation-free Least Fixpoint Logic

In this section, we introduce alternation-free Least Fizpoint Logic in clausal form (abbreviated:
ALFP) as our constraint formalism. Here, we build on Horn clauses with sharing as considered
in [12] and extend them further by allowing also universal quantification in pre-conditions and
negation. Thus, ALFP formulas extend Horn clauses (with explicit quantification) in that we
additionally allow

both existential and universal quantification in pre-conditions;

negated queries;

— disjunctions of preconditions as well as

conjunctions of conclusions.

The extra features increase convenience in handling in that they allow to restrict the scopes of
variables and merge identical conclusions as well as identical pre-conditions without the technical
inconvenience of introducing auxiliary predicates. Existential quantification in pre-conditions does
not enhance succinctness or expressiveness of Horn formulas. By using universal quantification



in pre-conditions, and through negation, we may express queries which are otherwise impossible
to state. Consider, e.g., the formula:

Ve.(Vy.—E(z,y) VT (y)) = T(x)

This formula defines a predicate 7" which is satisfied by the set of all acyclic nodes in a graph,
i.e., all nodes from which no cycle can be reached. This predicate T is not definable in Datalog
— even with stratified negation [7,10].

Assume we are given a fixed countable set X of (auxiliary) variables and a finite ranked alpha-
bet R of predicate symbols. Then the set of formulas clause is given by the following grammar:

pre n= R(xla"'vxk) ‘ _'R(xla"'vxk) | =Y | il‘7éy
pre; Apres | pre;Vpre, | Vz:pre | Fx:pre
clause == R(z1,...,xzx) | 1 | clause; Aclausey |
pre = clause | Vz:clause
where R is a k-ary predicate symbol for k > 1, y, z, z1, ... denote arbitrary variables, and 1 is the

always true clause. Occurrences of R(...) and —R(...) in pre-conditions are also called queries
and negative queries, respectively, whereas the others are called assertions of predicate R.

Given a universe U of atomic values (or atoms) together with interpretations p and o for
predicate symbols and free variables, respectively, we define the satisfaction relation

(p,0) =1

(t a pre-condition or clause) as follows.
(p,o) =1 holds for all p and o. Otherwise, we have:

(pvo')lzR(mlv"'axk) iff (U:Bl,...,O'CI?k)G,OR

(p,o0) E -R(xy,...,2) ff (oxy,...,021) €pR

(o) Ez=y if cx=o0y

(po) Fx#y iff cr#oy

(p,o) E Tz : pre it (p,0®{x+— a})Epre for someacl
(p,o0) EVz: t it (po®{zr—a})Et forallaecld
(p,o) Eti Aty iff (p,0) =ty and (p,0) Eta

(p.0) - pre, Vore,  ff (p,0) |= pre, or (p,) |- pre,

(p,0) = pre = clause iff (p, o) = clause whenever (p, o) = pre

In the sequel, we view the free variables occurring in an formula as constant symbols or atoms
from the finite universe . Thus, given an interpretation o of the constant symbols, in the clause
clause, we call an interpretation p of the predicate symbols R a solution provided (p, o) = clause.

Since our logic provides explicit checks for equality and in-equality in pre-conditions, we
abandon corresponding checks in queries, i.e., demand that all variables (which are not constants)
occurring in an argument list are pairwise distinct. In order to deal with negations conveniently,
we restrict ourselves to alternation-free formulas. We introduce a notion of stratification similar
to the one which is known from Datalog [5,2]. A clause c is an alternation-free Least Fizpoint
formula (ALFP formula for short) iff ¢ is of the form ¢ = s; A ... A s, and there is a rank
function 7 : R — N such that for all j =1,...,k, the following properties hold:

1. All predicates of assertions in s; have rank j;
2. All predicates of queries in s; have ranks at most j;
3. All predicates of negated queries in s; have ranks strictly less than j.



This allows us to define an equality predicate E and a non-equality predicate N by the clause
(Ve : E(z,z)) A (Vz : Yy : ~E(z,y) = N(z,v))

and hence we may dispense with an explicit treatment of = and # in the development that
follows. On the other hand this rules out:

(Vz: =P(z) = Q(z)) A (Vz : Q(z) = P(x))

Let A denote the set of interpretations of predicate symbols in R over . Then A is a complete
lattice w.r.t. the lexicographical ordering “C”, i.e., p; C po iff there is some 1 < j < k such that
the following properties hold:

e p1R = paR for all R € R with rR < j;
e p1R C poR for all R € R with rR = j; and
e either j =k or py R C p2 R for at least one R € R with rR = j.

We have:

Proposition 1. Assume clause is an ALFP formula and o is an interpretation of the free vari-
ables in clause. Then the set of all p with (p,c) E clause forms a Moore family, i.e., is closed
under greatest lower bounds.

A proof of proposition 1 can be found in appendix A. Since the set of all solutions of clause
(given a fixed o) is a Moore family, we conclude that for every interpretation pg of the predicate
symbols, there is a lexicographically least solution p of clause such that po C p (i.e., oo RC pR
for all R) — which we call the optimal solution of clause exceeding po.

3 The ALFP Solver

A first and rather naive method of solving an ALFP formula ¢ consists in instantiating all variables
occurring in ¢ in all possible ways. The resulting system can then be solved by classical solvers for
alternation-free Boolean equation systems. Extending the proof of the corresponding proposition
in [12] (itself extending [11, Theorem 1]), we have:

Proposition 2. The optimal solution p of a ALFP formula ¢ exceeding an input interpretation
can be computed in time O(#p+ N" -n) where N is the number of occurring atoms, n is the size
of ¢, and r is the mazximal nesting depth of quantifiers in ¢ and #p is the sum of cardinalities of
relations p R. O

As observed by McAllester in [11] for conventional Horn clauses, such an approach and such
a complexity bound is unsatisfactory for program analysis, since the universe {/ may have cardi-
nality as large as the program itself — implying that even analyses using as few as two variables
would not be likely to scale up to large programs. Therefore, McAllester presents an algorithm
for (a special class of) Horn clauses which allows a computation of the least solution of the orig-
inal clause which often is faster than the naive approach from proposition 2. The key idea of
McAllester is to bring clauses into a specific canonical form. In order to do so, he introduces aux-
iliary predicates for prefixes of pre-conditions. Furthermore, he employs constructor applications
for collecting bound variables into environments.

McAllester’s algorithm is rather indirect as it amounts to a major amount of pre-processing
before actual solving. Moreover, the new auxiliary predicates may be a source of unnecessary
extra space consumption. The main objective, however, is that McAllester’s solving method



does no longer suffice for the richer logic ALFP. Therefore, we developed and implemented an
alternative solving algorithm. In contrast to McAllester’s method, our solving procedure does
not rely on pre-processing. It also completely abandons special worklist-like data-structures as
are typical for most classical iterative fixpoint algorithms [9]. Instead, we adapt the recursive
topdown approach of Le Charlier and van Hentenryck [6] which is enhanced by continuation-
based semi-naive iteration [3, 8].

3.1 The Basic Solver

In essence, our solver for ALFP formulas consists of two recursive functions execute and check
that operate on clauses and preconditions, respectively. The interpretation of predicate symbols,
corresponding to p, is maintained in imperative datastructures that are updated by means of side
effects. The interpretation of variables, corresponding to o, is maintained in an environment that
is passed around explicitly (in a continuation based manner in the case of check). Thus upon
termination of the solver, the interpretation of predicate symbols in the global datastructures
will have been assigned values that makes the clauses satisfiable (for a suitable interpretation of
variables).

type U = (* the universe *)

type tuple = U list

type env = (var * U option) list

unify : env x var list * tuple — env option
unifiable : env % var list — tuple list

Fig. 1. Operations on environments.

Before explaining the operation of execute and check we need to take a closer look at the types
and auxiliary functions used in the solver (see figure 1). The universe of atoms is an unspecified
type U and we model a tuple of a relation as a list of atoms (in order to deal with relations
of different arities) and a relation then conceptually is a global data structure containing a list
of tuples (although represented as a prefix tree as explained below) — this takes care of the
interpretation of predicate symbols, p. Environments map variables to atoms but is constructed
in a lazy fashion meaning that variables may not have been given their values when introduced
by quantifiers; hence environments are partial environments that are list of pairs © — a where x
is a variable and a is an optional value, i.e., either an atom or OJ (denoting “unbound” or NONE
in SML) — this takes care of the interpretation of variables, o (that is called 7 in the sequel to
indicate that it is now a partial environment).

The main auxiliary operation on environments is the function unify which when called for a
partial environment 7, a list |2y, ..., 2] of variables x; and a tuple [ay, ..., ax] of atoms (repre-
senting a tuple of some k-ary relation), determines the minimal extension 7' of n with o' z; = a;
for all ¢ if it exists; otherwise, it returns [0 (“fail”). Thus, 7’ is the most general unifier of the
two lists relative to . Moreover, we need a function unifiable which, for a given pair (7, args) of
a partial environment 7 and a list of variables args determines the list of all tuples ¢ for which
unify (n, args,t) succeeds.

Both functions execute and check operate by recursively processing the original clause or
pre-condition and by propagating an environment which collects bindings of the instantiated
variables. Whenever during propagation of a partial environment 7, a quantified subexpression
is encountered which introduces variable x, we extend 1 with z — . Accordingly, whenever the



quantified subexpression is left, the variable z is popped from the environment. New bindings
for variables are obtained at a query R(args). There we compute unify (1, args,t) for every list ¢
so far known to belong to the interpretation of R. The resulting most general unifiers are then
propagated further through the clause.

The functions execute and check are presented in SML-style notation in figures 3 and 4 and are
explained in detail below. Function check operates on pre-conditions in order to find new bindings
for the (partial) variable environment, whereas function execute operates on clauses in order to
generate new elements for predicates. Pre-conditions may trigger further executions. These future
computations are passed to the function check as continuations. The type of continuations is
defined in figure 2 as are a number of other auxiliary definitions. We also recall the SML-function
app that applies a function to each element in a list, in order to perform the side effects.

The global data structure rho is used for recording the currently known elements of predicates.
Accordingly, it allows adding new tuples to predicates, checking for the presence of tuples, as well
as retrieving whole relations. The use of data structure infl is slightly more subtle.

type cont = env — unit
type consumer = tuple — unit

global datastructure rho

add : rho * predicate * tuple — unit
has : rho * predicate * tuple — bool
sub : rho * predicate — tuple list

global datastructure infl
register  :infl x predicate * consumer — unit
consumers : infl * predicate — consumer list

Fig. 2. Operations on predicates.

It may happen that some query R(args) inside a pre-condition fails to to be satisfiable in
the current environment, but may hold in the future when some new elements for R have been
revealed. In this case, we residualise the current computation by constructing a consumer for
R and recording it in the data structure infl for predicate R. This consumer is nothing but the
subsequent call to function unify followed by the corresponding continuation of the check routine.
Accordingly, whenever the function execute adds a new elements ¢ to the interpretation of R, the
list of consumers waiting for new elements of R is activated, and the corresponding computations
are resumed.

check : pre * cont — cont

fun check (p,n) n = casep
of R(args) — let fun ft = case unify (1, args, t)

of 0 — ()
| n — nn
in register (infl, R, f); app f (sub (rho, R))

end
| p1 Apz — check (p1,check (pz,n)) n

Fig. 3. The key elements of function check.



Our algorithmic idea here abandons an explicit worklist-like data-structure for the fixpoint
iteration. Instead, it employs the recursion stack itself for this purpose. Re-activating residualized
continuations corresponds to an eager iteration strategy where all consequences of the first of
several new facts are tracked before the next one is considered.

The function check is applied to a pair of a pre-condition p and a continuation n together
with a partial environment 7 for the global variables. As equality “=" (and un-equality “#” as
soon as we have negation) can be defined, we have omitted corresponding rules in the treatment
of pre-conditions. If p is a query R(args) then a continuation f is constructed which given an
element t for R, determines the most general unifier of args with t relative to n and, if it exists
propagates it to n. The continuation f is registered as a potential consumer of new elements of
R. Then it is called for all elements which already have been revealed for R. If p is a conjunction
p1 A pa2, then the check of the second pre-condition check (ps,n) is supplied as a continuation for
the call of check on the first pre-condition p;.

The function execute is applied to a clause ¢ and a partial environment 7 for global variables.
The intention of execute is to add new elements to predicates. If ¢ equals 1, nothing has to be
done. If ¢ is an assertion R(args) then all elements ¢ are considered which are unifiable with
args in environment 7). If such a element ¢ is new, we add it to the relation for R. Moreover, we
determine the set of consumers which have been registered for R and apply each of them to ¢.
If ¢ is a conjunction of clauses ¢; and ¢z, then execute is called on ¢; and ¢z in sequence — both
with the same environment 7 since no new bindings can result. If ¢ is an implication p = ¢, then
the function check is called on the pre-condition p with continuation execute ¢’. If ¢ is a universal
quantification Vz : ¢/, the new binding x — O is added to 5 followed by an execution of ¢'.

execute : clause — cont

fun execute cn = casec

of 1 = ()

| R(args) — app (fnt — if has(rho, R,t) then ()

else (add (rho, R, t);
app (fn f — f t) (consumers (infl, R))))
(unifiable (7, args))

| c1 Aca — (executec: n; executecan)

| p=c — check (p,executec’) n

| Vo :c' — execute ' ((z — 0O) =)

Fig. 4. The function execute.

3.2 Prefix Trees

Two problems withstand a rapid propagation of new elements of a predicate R to all places where
these elements are queried.

The first problem is, given an argument list args together with a partial environment 7, to
find all elements of a predicate which possibly are unifiable with args relative to #: this is to
make the app loop at queries fast (see fig. 3).

The second problem is, to maintain the consumers in such a way that consumers are easy to
register, and all registered consumers which are potentially applicable to new elements can be
revealed efficiently: this is to make the inner app loop at assertions R(args) fast (see fig. 4).

Different consumers for the same element t = [ay, ..., ax] of a k-ary predicate may correspond
to queries where different subsets of argument positions are bound in the environment. An ob-



Fig. 5. Representation of the relation {(a,b), (a,c), (b,a)}.

vious idea therefore consists in grouping the consumers according to these subsets. There could,
however, be as many as 2¥ non-empty subsets of consumers waiting to unify with ¢. Organizing
and maintaining access to these is awkward and incurs overhead.

In order to solve the two problems, let us for a moment trade efficiency against generality
and abandon efficient support for all possible query patterns. Instead, we arrange the set of
all currently known elements of the k-ary predicate R into a prefix tree as in fig. 5. The tree
representation allows us to implement a function subS which, given the data structure rho, a
predicate R and a prefix ¢1, rapidly enumerates all suffices t5 with t;@ts contained in R. Given
this function, we implement the app-loop in figure 3 as in figure 6. Here, the function first in
the first line takes a pair of an environment 7 and an argument list args and returns the unique
sequence of atoms corresponding to the maximal prefix of args whose variables are all instantiated
in 7.

The prefix tree can be implemented, e.g., by using an extensible array to store for each node
v of the tree the list of all currently available successor atoms, together with a hash table to map
pairs (v,a) of nodes v and atoms a to successor nodes.

Accordingly, we also allow consumers of a k-ary predicate R only to register for the set of
suffices to for a given prefix t;. This implies that there are at most k& + 1 sets of consumers
waiting for each new element ¢ of R. Again, the waiting consumers are maintained in a prefix
tree of depth at most & whose nodes correspond to the possible prefixes t1. In particular, all
potential consumers of a single element ¢ can be collected by traversing one branch in the tree.
This data-structure of waiting consumers can be implemented again by an extensible array and
a hash table. As before, the hash table maps pairs (v,a) of nodes v and atoms a to successor
nodes in the tree. The extensible array, however, now returns for each node in the tree the set of
consumers waiting for suffices. This functionality is provided by the two functions registerS and
consumersS whose types are given in figure 7.

So assuming that hash table lookups can be done in time O(1), we conclude that collecting
all consumers for an element ¢ of predicate R amounts to k£ + 1 calls to the function consumersS
and a concatenation of k + 1 lists. Thus, it can be executed in time O(k + 1 4+ n) where k is the
arity of the predicate R, and n is the size of the result.

It remains to explain that our restriction in generality is not as severe as it might seem. If
support for a further query pattern of the k-ary predicate R is demanded, it could be obtained
through a source-to-source transformation — similar in spirit to the second last rule of McAllester

let wval t; = first (n, args)
in app (fnt; — f (t1 @ t3)) (subS (rho, R, t1))
end

Fig. 6. The improved app-loop of check.



sub$S : rho * predicate * tuple — tuple list

registerS  :infl x predicate x consumer % tuple — unit
consumersS : infl  predicate * tuple — consumer list

Fig. 7. Improved operations on predicates.

fun check (p,n) n = casep
of ...
| —R(args) — app (fn ¢t — if has(rho, R,t) then ()
else n (unify (n, args,t)))

(unifiable (n, args))

| pLVp2  — (check (p1, f) n; check (p2, f) m)

| 3z:p" — check (p',notl) ((z+— 0O)::n)

| Vz:p' — let fun f [] ((z—=)un)=nn

| f (a:U) ((@— ) n) = check (p', fUU) ((z — a) = n)

in fU ((z—0):7)
end

Fig. 8. The advanced elements of function check.

in the proof of [11, Theorem 3], however, without introduction of non-atomic terms. Here, it
suffices to introduce an auxiliary predicate R’ which is obtained from R through re-arrangement
of argument positions. For example, if we would like to query the ternary predicate R where the
last argument is bound, we introduce the new clause:

Vil‘l :Vil‘g :Vil‘g : R(l‘g,:L‘g,.’L‘l) = R’(.’El,l‘g,l‘g)

Furthermore, we replace the corresponding query of R in a pre-condition by the corresponding
query of R’.

Against the exponential overhead of blindly introducing support for all exponentially many
query patterns, this source-to-source transformation has the advantage that the overhead for the
additional query pattern is paid only if it really occurs in the current clause.

3.3 Extensions

Let us now extend the basic solving algorithm for handling the advanced features negation,
disjunction, and existential and universal quantification in queries that we dispensed with in
figure 3. It turns out that it suffices to add further rules to the function check. The necessary
additions are summarised in figure 8.

Technically, the simplest extension is negation. According to the last-in-first-out discipline
of the runtime stack, the solver only proceeds to the execution of the second conjunct of two
clauses, when the execution of the first one together with all triggered calls to continuations have
been finished. Consequently, the solver stabilises all predicates relative to all clauses considered
so far, implying that the clauses of the next stratum in the input clause are not processed before
all predicates in the former ones have definitely stabilised. This means that our solving strat-
egy naturally respects the stratification and strong components. Thus, for dealing with negated
queries —R(args), we only have to add a new rule to the function check. This rule determines
all tuples ¢ not belonging to R and then propagates unify (7, args,t) to the current continuation.
Since the relation for R has already stabilised (and therefore also its complement), no registration
of consumers is necessary.



The basic idea for disjunctions p = p; V py is to call check for both pre-conditions p; — but
now with the same continuation.

If p is an existential quantification 3z : p’, we check the condition p’ for the extended envi-
ronment (z — [)::n where the resulting environments are truncated before propagation to the
continuation n.

If p is a universal quantification Vz : p’, we add the binding z — [ to 1 and then propagate
it to the continuation fU. Here, U denotes a list of all atoms in the universe. The function f
evaluates to the continuation n when applied to an empty list of atoms. When applied to a non-
empty list a::U and some environment f updates the topmost binding in the environment to a
and then calls the function check on the body p’ and f U as the remaining continuation.

4 Practical Issues

Here, we mention just three further issues which are important in order to arrive at an efficient
implementation.

4.1 Avoiding Duplication of Work

It may happen that, while evaluating a call check (p,n) 7, the continuation n is called more than
once for an environment 7’. This may happen at disjunctions p = p;1 V p2 where n’ satisfies both
p1 and p,. Another source of such duplication of work are existential quantifications 3z : p’ where
p’ can be satisfied for different values of x.

In order to avoid this unnecessary duplication of work, we add memoisation for every occur-
rence of a pre-condition p which records the set of environments 1’ for which the given continu-
ation has already been called. This principal scheme then can be optimised (for space) in such a
way that we avoid the extra book-keeping in as many places as is safely possible. So, we place
memoisation only at an outermost occurrences of disjunctions or existential quantifications. In
particular, we omit memoisation at conjunctions. The reason is twofold:

1. In absence of disjunctions or existential quantifications, no duplication of work can occur.
2. If memoisation occurs at all disjunctions and existential quantifications, then every continu-
ation n is called with the same environment 1’ only a bounded number of times.

As an illustrating example, consider the clause:
R(a) A S(a,a) AVz : Yy : (R(z) V R(y)) A S(z,y) = T(z,y)

and assume we have caching at existentials and disjunctions. The two environments generated
through checking of the disjunction are:

m=[z—ay—0 and m=[z—0y— d

These two are different and propagated to the query S(z,y). Unification with the tuple [a, a]
there will result in the environment:

n=[z—ay—a

being generated twice. In general, all ' which, after a query, result in the same environment
1 must agree on all jointly instantiated variables and thus may differ only in the sets of so far
unbound variables. As the formula has constant size, these are just constantly many.



4.2 Optimising Auxiliary Predicates

Clearly, we could tabulate for each occurrence of a query R(z1,...,z) a separate (permuted)
copy of the relation for R where the subset of instantiated variables does not form a prefix of
the sequence x1,...,zr. We might, however, exploit the prefix tree implementation and try to
cover several non-prefix query patterns by one suitably permuted representation of the relation.
Consider, e.g., a ternary predicate R which is queried once with the first and last component
instantiated and another time just with the last component instantiated. Then it suffices to
introduce just one auxiliary predicate R’ which is defined by:

Va1 : Vo : Vs : R(z2,23,21) = R (71,72, 73)

Thus, the predicate R’ serves both requirements, and we have saved time and space for one extra
copy of R. In general, we arrive here at the following optimisation problem:

Given: a set S of subsets S C {1,...,k} of instantiated components;
Wanted: a set Il of permutations 7 of the sequence: 1,...,k such that each subset
S € S is a prefix of some 7 € II.

We conjecture that computing such a set IT of minimal cardinality in general is hard. For our
purposes here, however, any set IT of cardinality at most #S will do: smaller sets just decrease
resource consumption. Therefore, we use a simple greedy algorithm. We iteratively extract a
maximal chain S; C ... C Sy of sets in S for which a supporting permutation is derived. Then
the chain is removed from S. We repeat these steps until S is exhausted.

This algorithm still gives the optimal result for £k = 3 — and was good enough for all our
applications so far.

4.3 Optimising Tail Recursion

At queries p = R(...), the function check calls the function app tail-recursively — meaning that
the stack frame for an original call of check can be re-used by this final call. The implementation
of app, however, as provided by the to-date version 110.0.7 of the SML standard library is given
by:

fun app f || =()
| app f (z:zs) = (f z; app f xs)

Thus, the call of f for the last element in the list is not tail-recursive in the definition of app
— which means that the stack is not trimmed as early as possible. The better implementation of
app which is therefore appropriate here adds an extra case for one-element lists:

fun app f || 0
| app f [] fz
| app f (z:zs) = (f z; app f xs)

Now, the last call of f for a (non-empty) list is tail-recursive in app as well — implying that
the stack frame for app (which was taken from the call to function check) is now re-used by
the last call to function f. A similar argument shows that the modified app also improves the
consumption of stack space in the nested application of app at assertions.



5 Estimating the Complexity

For the following, we assume that the algorithm is equipped with a caching scheme such that no
continuation n is called twice with the same argument.

We now state the fundamental observation that computing the solution to a clause is as
expensive, asymptotically, as checking the result:

Proposition 3. Assume that ¢ is an ALFP formula of constant size. Let py denote an input
interpretation and p the optimal solution of ¢ exceeding py. Let to and t be the runtimes of the
solver when started on py and p, respectively.

Then to < d -t for some constant d independent of the relations in p.

Proof. Let my and 7 be the fixpoint computations of the solver when started on py and p, respec-
tively. Then the following holds:

1. The fixpoint computation 7y performs the same calls check (p, n) 7, execute c 7, register (7, args, t),
and unify (n, args,t) as m — only, perhaps, in a different ordering.

2. The only additional work of 7y consists in determining the sets of consumers for the tuples
newly added to the relations.

According to the implementation of consumersS as described in subsection 3.2 and our assumption
that the size of ¢, and therefore also all arities of occurring predicates, are O(1), we know that
the runtime of each individual call consumersS (infl, R, t) is proportional to 1 plus the number of
returned consumers. Thus, the total additional time spent by 7 is O(P + Q) where P equals the
total number of calls consumersS (infl, R, t), and @ equals the total number of returned consumers.
The value P is bounded by the total number of calls execute ¢’ n where ¢’ is an assertion. As each
consumer causes a call to unify, we deduce that @ is bounded by the total number of calls to
unify. Consequently, the sum P + @ is bounded by the total runtime of the solver on p — implying
that the time ty may exceed the time ¢ only by a constant factor. ad

A proposition similar to prop. 3 has been stated by McAllester for his algorithm and ordinary
Horn clauses [11]. Thanks to this proposition, it suffices to determine the complexity of the solver
for checking a solution. And in fact, the corresponding work incurred by different syntactical
components of the clause can be calculated in a “denotational” way.

Assume for the following that we are given a fixed interpretation p of predicate symbols. Every
pre-condition p gives rise to a transformer 7,[p| mapping a set £ of reaching environments for
the variables in B to the set of environments after checking p, i.e., those which are propagated
by calls check (p,n)n, n € £ to the continuation n. All environments 5 in £ are of the form

n=[z1—di,..., Ty — dy]

for the same sequence x1,..., T, of variables but potentially different sequences di,...,d,, of
values (including ). Furthermore, all free variables from p are among the ;. A formal definition
of this transformation is given in figure 9. Here, t1 and AE.a = F denote the elementwise extension
of the corresponding un-barred functions to sets of partial environments. Moreover, 7, i[p] is an
auxiliary function implementing the iteration on all possible bindings for x.

Based on the transformation 7,, we define in figure 10 the function C, for calculating the
costs incurred by preconditions, and the function C; for calculating the costs incurred by clauses,
on any set of arriving environments. Here, first is as before and free (1, args) in the second line
returns the set of variables from args which are not instantiated in 7. Finally, we introduced an
auxiliary function for evaluating the costs of universal quantification.

Note that we essentially count for every pre-condition, the number of satisfying environments.
This generalises the intuitive idea of counting prefix firings in the manner used by McAllester



To[R(args)] € = {unify (n, args, t) | unify (n, args,t) # 0,n € £,t € pR}
( ) |

To[mR(args)] € = {unify (n, args, t) | unify (n, args,t) # 0,n € E,t & pR}
Tolpr Ap2] € = Tolp2] (Tolp1] €)

Tolpr Vp2] € T[Pl]fUT[Pz]g

To[3z :p] € = t1(T,[p] ((z = O) =€)

T,V p) € = Touulp) (2~ D) . €)) where

To.11lp] € =tle

Toazulp] (21— ) 2€) = Towlp] (To[p] (& — a) 2€))

Fig. 9. The transformation induced by check.

Co[R(args)] € = #{(n,t) | n € &, (first (n, args)) t € pR}
CIR(gs) € = eq ()P

Colp1 A p2] € = Cplp1] €+ Co[p2] (To[p1] €)

Colpr V2] € = Colp1] €+ Colp2] €

Coldz : p] € =Colp] ((z—0O)2E)

Co[Vz : p] € =Coulp] ((z —0O)=E) where

Con1lp] € = #E

Coa:vlpl (x =) =€) = Colpl (= a) =€) + Cpoulpl (Tolpl (z = a)=E)
Co[1] & = #&

Co[R(args)] € — #{(n,t) | 1 € £t € pR, unify (1, args, £) £ O}
Colp = d = Colp] € +Clc] (Tolp] €)

C;[C1 JAN 62] £ = C:, [01] £+ C; [62] £

Colve : ] € =Cole] ((z — O)zE)

Fig. 10. The costs of pre-conditions and clauses.

for his algorithm and the special case of Horn clauses [11]. In case of queries, our estimation
additionally takes into account that our relations are stored in prefix trees — thus we only support
rapid enumeration of sub-relations for given prefixes of tuples. In case of negated queries, we take
into account that the solver has to enumerate all possible instantiations of the variables which
are not already instantiated in the environment. In case of universal quantifications, we calculate
the costs of iterating through all possible bindings for the bound variable. We then obtain our
main theorem thereby demonstrating that it is not only possible to succinctly express algorithmic
insights in functional languages but that it is also possible to elegantly perform the necessary
complexity calculations:

Theorem 1. Assume that c is a alternation-free LFP formula of constant size. Then the solution
p can be checked by the solver in time  O(#p+Cylc| &) where the set & consists of the single
initial environment for the constants.

For a formal proof see appendix B.



6 Experimental Evaluation

We have implemented the solver for ALFP formulae using SML of New Jersey. Furthermore,
we have implemented several frontends for practically applying the solver to various control-flow
analyses. Here, we exemplify the efficiency of the resulting system by two scalable benchmarks
(executed on an 800 MHz Pentium III with 1 GB of main memory under Linux with SMLNJ,
version 110.0.7).

The benchmark trans2-n computes the transitive closure 75 = E* of a directed line graph
with n vertices and n — 1 edges (denoted E). It uses the clause:

Ve :Vy: E(z,y) = (Ta(z,y) AVz : Ta(y, 2) = To(z, 2))

Thus, the universe contains N = n elements, whereas the resulting relation for 75 contains
%n - (n+ 1) elements. The logically equivalent clause for 7 = E*

Vo :Vy: (E(z,y) = Ti(z,y)) A (Vz : Ti(z, 2) ANTi(z,y) = Ti(z,y))

turns out to yield a benchmark transi-n that is much less efficient (see Fig. 11).

The theoretical runtime for the naive computation of transitive closure is cubic. However, in
the case of the optimised formula, trans2-n, we can in fact use Theorem 1 to obtain a quadratic
bound: given a universe of size n and a relation E of cardinality e (equal to n—1 in the benchmark
for transitive closure), there are exactly e partial environments satisfying the query E(z,y), giving
us cost e for this query and the same cost also for the assertion T5(z,y). All these e environments
(extended by (z — [)) reach the query Tx(y, z). Since there are at most n possible values for
z, we conclude that T»(y, z) contributes at most e - n to the cost. Since the assertion Th(z, z)
contributes the same cost, we obtain the complexity estimation O(e - n). Indeed, the relative
increase in the runtimes of trans2-n roughly shows the expected quadratic behaviour.

[ n [transi-n[ trans2-n | [(n ] N (rel.) [ routeri-n [ router2-n |
200 15.9 1.05 5 216 1.0 2.99 0.16
400 116.4 4.4 6 318 1.47 6.89 0.21
600 386.7 11.6 7 440 2.04 13.4 0.39
800 o) 16.2 8 582 2.69 22.4 0.57
1000 00 29.1 9 744 3.44 35.1 0.79
1200 00 50.0 10 926 4.3 56.8 1.41
1400 00 57.5 15 2136 9.9 00 5.01
1600 00 76.2 20 3846 17.8 00 13.0
1800 o) 128.0 25 6056 28.0 o) 26.7

30 8766  40.6 00 55.9
35 11976 55.4 00 116.9

Fig. 11. Runtimes on transitive closure and Ocfa on the ambient benchmark in seconds (including garbage
collection).

The benchmarks routeri-n and router2-n consist of an ambient program [4] describing a
square array of n? servers and a packet to be routed through the array: it starts at the top left
corner, then nondeterministically moves either right or down, to end in the lower right corner. On
this program we perform the Ocfa control-flow analysis as presented in [12] giving the numbers in
routerl-n as well as an optimised version of this analysis — giving the numbers in router2-n.
The optimisation basically amounted to avoiding large auxiliary relations and replacing filtering
of larger relations by creating auxiliary relations which directly provide the desired (few) tuples.
The two versions of the analysis can be found in appendix C. The router example is typical for
related applications in program analysis as the computed relations turn out to be sparse, i.e.,



have approximately linear cardinalities. Here, the cardinality of the universe is N = 10n? —8n +6
but the computed relations are approximately of the same size.

The theoretical runtime for Ocfa on ambient programs is cubic in N (as reported in [12] and
as may be obtained using Theorem 1). However, even the original analysis routeri-n from [12]
seems to behave significantly better in practice, but still it uses about a minute for router1-10,
and no termination in reasonable time could be obtained for router1-15. More than 30 times
faster runtimes could be observed when scaling the optimised analysis router2-n. Also, the
relative increase is perhaps even less than quadratic when compared to the relative increase of
the respective universes. Accordingly, more than ten times larger input ambient programs could
be analyzed in reasonable time. The absolute runtimes both on transitive closure and the ambient
analysis indicate that the fixpoint algorithm — even in its functional implementation — is indeed
quite efficient. (We coded an implementation of the transitive closure in C and obtained only
about one order of magnitude speed-up.) The largest examples we could do in reasonable time (a
few minutes) were trans2-1800 and router2-35. The latter is an ambient program of around
100 KB size on which the analyzer produces about 1.4 MB output. We also have tried the analyzer
on even larger examples but there the runtimes increased dramatically — due to growing space
consumption and therefore exploding garbage collection and paging times.

7 Conclusion

Our solver algorithm is clearly based on classical work on efficient fixpoint algorithms [9]. In
particular, it combines the topdown solving approach of Le Charlier and van Hentenryck [6] with
the propagation of differences [8], an optimisation technique for distributive frameworks which
is also known in the area of deductive databases [3] or as reduction of strength transformations
for program optimisation [13]. For these ideas to work we had to provide arbitrarily branching
prefix trees as a universal data-structure for storing relations as well as for organising sets of
waiting consumers. The efficiency, simplicity and expressiveness of the logic made it our favourite
choice over the transformational approach of McAllester [11] or off-the-shelf implementations of
deductive databases as, e.g., the CORAL system [14].

The complexity analysis has benefitted from the pioneering ideas of McAllester [11] on the
complexity of solving (classical) Horn clauses. Here, we generalised these techniques to a richer
class of input formulas and adapted it to the specific properties of our solver. In doing this, we
were greatly assisted by the abstract characterisation of the behaviour of the solver which again
was made possible thanks to the specific programming style (in particular continuations and
memoisation) being used.
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A Proof of Proposition 1

Assume clause = sy A ... A s, where s; is the clause corresponding to stratum j, and let R;
denote the set of all relation symbols R defined in s; A ... A s; taking Ry = (), and recall the
rank function r. Let M denote a set of assignments which map relation symbols to relations; then

p= [0 s given by the formula
p(R) =[P (R) | p' € MAVYR' € Ry(my-1: p(R) = p'(R)}
which is well-defined by induction on the value of r(R).
We prove that for all j, all M and all variable environments o:

Claim: If p= [, ¢ occurs in sj and (p',0) = c for all p' € M then also (p,0) = c.

In order to prove the Claim, we proceed by complete induction on j and in each case distinuish
two cases.

Case 1: The first case is when p(R) = U* for all relations R of rank j and appropriate arity
k. In this case a straightforward induction on ¢ suffices for proving that (p, o) = ¢ holds for all ¢
occuring in s;. We consider two illustrative cases.

¢=R(zy,...,xx) This case is immediate since we assumed that p(R) = U*.

c=(p=c) By the induction hypothesis (p,0) | ¢’ and hence it is immediate that also

(p,0) = c.

Case 2: The second case is when p(R) # U* for some relation R of rank j and some arity k.
Then the set
M;={p'e M|VR € Rj_1:p(R)=p'(R)}

is non-empty and we have:
p(R) = (R) | p" € M;} if r(R) =
p(R) = p'(R) if 7(R) <



We proceed by structural induction on ¢ (recalling that ¢ occurs in s;) and establish an auxiliary
result for pre-conditions.

¢ = R(xy,...,zL) Since r(R) = j we have that p(R) equals the intersection of all relations
p'(R) for p' € M;. Given the assumption that t = (o z1,...,0z) € p/(R) for all p' € M; C M
we have that ¢ € p(R) as desired.

c=(p=c) We consider two cases. In the first case, (p, o) |= pis false in which case (p, o) = ¢
is immediate. In the second case (p,0) = p is true and from the Auxiliary Claim below we get
that (p',0) = p for all p’ € M, and hence the result follows by induction hypothesis.

Augiliary Claim: — 1f p = [ 1 M, p occurs in sj and (p,o0) |= p then also (p,0) = p for all
p' S Mj.

We proceed by induction in j and in each case perform a structural induction in p (recalling that
p occurs in s;). Most cases are straightforward since p(R) C p'(R) for all p’ € M;. The only
non-trivial case is:

p=-R(x1,...,Tk) Here the result follows because the rank of R is strictly less than j and
hence p'(R) = p(R) for all p’ € M;. O

B Proof of Theorem 1

In the sequel we make use of the following technical proposition:

Proposition 4. Assume that the current interpretation of predicate symbols is given by p. Then
for all pre-conditions p and sets £ of partial environments, the following holds:

1. T,[p] € equals the set of partial environments ' which on calls check (p,n)n, n € &, are
propagated to the continuation n;

2. # (Tolp] €) <C,lp] E. O

When started on a solution p, the solver can be thought of as contiguously evaluating the
sub-terms of the clause — thus allowing us to perform an induction on the structure of clauses.
Let p and ¢ denote a pre-condition and a clause, respectively. Let T[p, €] denote the maximal
time spent by the algorithm on the call check (p, n)  for any partial environment 7 from £ before
calling continuation n. Accordingly, let T[c,£] denote the total time spent by the algorithm on
calls executecn, n € £. We estimate these complexities as follows:

Proposition 5. There are constants dp,d. > 0 only depending on p and c, respectively, such

that T(p, €] < dp - (#E +C,[p) €)
Tle,€] < de- (HE +C}lc] €)

As #&y = 1, we conclude from proposition 5, that the solver uses time O(#p + C5[c] &) as
stated in theorem 1 — where the extra time O(#p) is needed to read the relations p R and insert
them into the datastructure rho.

Proof (Proposition 5). Here, we only consider the cases where

— pis a query or a conjunction, and where
— cis an assertion or an implication.

p = R(args) For n € £ and ¢, = first (1, args), let T, denote the set of all tuples ¢, @ty € pR.
The work of calls check (p,n)n, n € £, consists of



1. registering for R and ¢; certain functions f,,n € &;
2. determining for each 1 € £, the set T;, and computing unify (1, args,t’) for all ¢’ € T,,.

The first task consumes time O(#E). For the latter, according to our tree-like representation of
relations, the solver will need time O(#T;,) for each n. Therefore, we obtain:

Tlp,E] < d- Y (L+#T,) =d- (#€ +C,[p] €)
neeé

for some d > 0 — giving the claim of proposition 5 for this case.
p=p1Apo Then the work of calls check (p,n)n, n € &€, consists of

1. the work of all calls check (py,n’)n, n € £, where n' = check (p3,n) — thereby computing the
set of partial environments £’ = T,[p1] &;
2. the work of all calls check (p2,n) 7', n' € £'.

By inductive hypothesis, the first task consumes time O(#& + C,[p1] £) whereas the second one
takes time O(#E' + C,[p2] £'). Now, by proposition 4,

#E' = #Tolp] € <Cplp1] €

Therefore,
Tlp,€] < d- (#E€ + Colp1] € + Cplp2] (To[p1] €))
according to our claim.

¢ = R(args) The work of the solver on the assertion ¢ when executing the calls execute cn,
n € £, amounts to:

— determining for every n € £, the set T;, of all ¢t with unify (, args, t) # 0;
— adding the sets T}, to the current value for the predicate R.

According to our assumptions, this work requires time ~ O(3_, ¢(1 + #T)). We have:

S ee(L+ #T,) < #E + #{(nt) | n € £,t € pR, unify (n, args, ) # 0}
=#E+Co E

— giving the assertion of proposition 5 for this case.
c=(p=¢) The work of the solver on calls executecn, n € £, amounts to:

1. the work on calls check (p, execute ') n, n € &; together with
2. the work on calls executec’n’ for o' € T,[p| €, i.e., those ’ which are obtained by the calls
check (p, executec’)n, n € £.

Therefore by inductive hypothesis and prop. 4,

Tlc,E] < do+Tp,E] + T, T,p] €]
<d- (#E +Colpl €+ # (Tolp] €) +Co 1] (Tolp] €))
<d-(#E+2-Cop]E+COIC(T,oIP] E))
<2-d- (#E+C2l€)

for suitable constants dy,d > 0. This completes the proof. ad



C The Benchmark Clauses for Ambient Analysis

Our frontend extracts from the ambient program the ternary relations In/3, Out/3, Open/3 and
Name/3. The first component always contains the label of the statically enclosing ambient. In
case of the first three relations, the last component holds the labels of corresponding capabilities,
and the second component the names of ambients the capabilities possibly refer to. In case of
the relation Name/3, the third component holds the labels of ambients which are named by the
names given in the second component.

Then the analysis from [12] is equivalent to the clause:

(Vl,n,z : (In(l,n,z) = (HasFather(z,l) A
(Vy, z : HasFather(z, y) A Sibling(y, z) A HasName(z,n) = HasFather(y, 2)))) A
(Out(l,n,z) = (HasFather(z,1) A
(Vy, z : HasFather(z, y) A HasFather(y, z) A HasName(z,n) = OutPair(y, 2)))) A
(Open(l,n,z) = (HasFather(z,1) A
(Vy, z : HasFather(z, y) A HasFather(z,y) A HasName(z,n) = OpenPair(z,y)))) A
(Name(l,n,z) = (HasName(x,n) A HasFather(z,1)))) A

(Vy, z,t : HasFather(y,t) A HasFather(z,t) = Sibling(y, z)) A
(Vz,y, z : OutPair(z, y) A HasFather(y, z) = HasFather(z, z)) A

(Vz,y, z : OpenPair(y, z) A HasFather(z, y) = HasFather(z, 2))

Evaluating this clause on the router programs gives the numbers in column routeri-n of figure
11.

This clause turns out to be not as efficient as one might have hoped. In particular, the Sibling-
relation becomes very large: for n = 10, it contains no less than 568929 tuples — although the
relation HasFather/2 only comprises 2004 tuples. In order to optimise the clause further, we make
therefore the following observations:

— It is not necessary to consider each capability individually. The only property which matters
for the analysis is whether an ambient contains an In-operation for a specific name or not
(similar for Out and Open). Therefore, we introduce new auxiliary binary predicates Hasln/2,
HasOut/2 and HasOpen/2.

— Instead of determining all fathers of an ambient and then selecting from these the fathers
having a specific name, it is much more efficient to access the fathers with a given name
directly. This gives us the ternary relation HasFather/3. A similar trick is also played to
rapidly access the ambient sons with a given name.

— Using the latter ternary relation, we replace the conjunction

Sibling(y, z) A HasName(z, n)

with the conjunction:

HasFather(y, t) A HasSon(t, n, z)

for some new auxiliary variable ¢ — thus avoiding the large relation Sibling/2.



By application of these ideas, we arrive at:

(Vl,n,z: (In(l,n,z) = (HasFather(z,l) A

(Vy : HasFather(z,y) = Hasln(y,n)))) A
(Out(l,n,z) = (HasFather(z,1) A

(Vy : HasFather(z, y) = HasOut(y,n)))) A
(Open(l,n,z) = (HasFather(z,1) A

(Vy : HasFather(z,y) = HasOpen(y,n)))) A
(Name(l,n,z) = (HasName(z, n) A HasFather(z,1) A

(Vy : HasFather(z,y) = (HasSon(y,n,z) A

(Vn : HasName(y, n) = HasFather(z, n,y)))))) A

(Vy,n, z,t : Hasln(y, n) A HasFather(y,t) A
HasSon(t,n, z) = HasFather(y, 2))) A

(Vz,y,n: HasOut(z,n) A HasFather(z,n,y) = OutPair(z,y)) A
(Vz,y,z: OutPair(z,y) A HasFather(y, z) = HasFather(z, z)) A
(Vz,y,n: HasOpen(x,n) A HasSon(z, n,y) = OpenPair(y, z)) A
(Vz,y,z: HasFather(z,y) A OpenPair(y, z) = HasFather(z, z))

The numbers for this clause are listed in column router2-n of figure 11.



