
Su

in
t Solvers
Flemming Nielson1 and Helmut Seidl21 Informati
s & Mathemati
al Modelling, Te
hni
al University of Denmark, DK-2800 Kongens Lyngby,Denmark, nielson�imm.dtu.dk2 Universit�at Trier, FB IV { Informatik, D-54286 Trier, Germany, seidl�uni-trier.de

Abstra
t. We develop a solver algorithm whi
h allows to eÆ
iently
ompute the optimalmodel of a very expressive fragment of predi
ate logi
. The su

in
t formulation of thealgorithm is due to the dis
iplined use of
ontinuations and memoisation. This fa
ilitatesgiving a pre
ise
hara
terisation of the behaviour of the solver and to develop a
omplexity
al
ulation whi
h allows to obtain its formal
omplexity. Pra
ti
al evaluations on a
ontrol-
ow analysis of the ambient
al
ulus shows a good mat
h between theory and pra
ti
e.
Keywords: Program analysis, Least Fixpoint Logi
, topdown �xpoint
omputation, ambient
al
ulus.
1 Introdu
tionFun
tional languages are seldomly used for expressing algorithmi
 insights be
ause most algo-rithm designers prefer to express their insights in imperative languages and �nd it easier toperform the analysis of worst-
ase and average-
ase
omplexity with respe
t to a �rst-order im-perative model of
omputation. As is
lear to any fun
tional programmer su
h algorithms
an be
oded in fun
tional languages but this is somewhat besides the point of the algorithm designer.Indeed it is hard to
riti
ise the algorithm designer for the
hoi
es made: The use of imperativelanguages makes it easier to
ommuni
ate with
olleagues working on algorithms (simply be
ausethis is the
ommon language of the �eld) and it makes it easier to perform the
omplexity analysisdue to the simpler and more dire
t layout of data in store (thus avoiding the need to
onsiderrun-time sta
ks,
losures and garbage
olle
tion) in a

ordan
e with well-established models of
omputation (like Turing Ma
hines, the RAM model with uniform
ost or logarithmi

ost et
.).Despite our sympathy with the traditional viewpoints of algorithm designers we feel theymiss an important
onsideration: Algorithms need to be used by well-edu
ated programmers andthere is little value in developing an advan
ed algorithm if the prospe
tive programmers
annotunderstand it or
annot see how to adapt it to their needs. Given the limited abilities of humansto grasp many
on
epts at the same time it is important to pay attention to the notation usedfor expressing the algorithmi
 insights. (Behavioural psy
hologists typi
ally �nd that a human isonly able to grasp the interplay of about seven
on
epts at any point in time.) Indeed, \a notationis important for what it leaves out" [15, page 33℄ be
ause then more su

in
t spe
i�
ations
anbe developed that only fo
us on those key insights that have to be grasped at the same time.This is where fun
tional programming enters the pi
ture. More spe
i�
ally we
onsider an eagerfun
tional language (sin
e lazy languages are even further removed from the RAM model et
.)with imperative features (to maintain
ontrol over the sharing of results of
omputations) and
ontinuations.This paper takes the approa
h outlined to develop a state-of-the-art
onstraint solver. We
onsider the alternation-free fragment of Least Fixpoint Logi
 (ALFP) in
lausal form. This logi
 is

more expressive than, e.g., Datalog [7, 10℄ but still allows for polynomial model-
he
king routines.Formulas in this fragment naturally arise in the spe
i�
ation of stati
 analyses of programs (see,e.g. [11, 12℄). Here, we
onsider the systemati
 design of a �xpoint engine for this logi
. We buildon known approa
hes for sub-logi
s like [11, 12℄ for Datalog. Like M
Allester in [11℄, we aim at analgorithm whi
h makes
omputing the result as
heap as
he
king of the result. Furthermore, thealgorithm should be simple, i.e., work almost without pre-pro
essing of formulas, and predi
table,i.e., its
omplexity behaviour should be easily
omputable.More spe
i�
ally we
laim the following general advantages of our approa
h:{ The spe
i�
ation logi
 is mu
h more expressive than the fragment of set
onstraints as pro-vided by BANE [1℄ or Datalog as, e.g., advo
ated by M
Allester | yet our solver
an bepresented in less than a page of SML pseudo-
ode.{ On the Datalog fragment, our solver a
hieves the best known theoreti
al bounds for
orre-sponding solvers.{ The solver has a very modular design | allowing for a rapid implementation and simpleexplanation. In parti
ular, the use of re
ursion and
ontinuations allowed us to disregard anumber of
lassi
al te
hniques (the use of work-lists, the identi�
ation of strong
omponentset
.) without penalties in performan
e.{ The solver has a very regular stru
ture allowing an abstra
t
hara
terisation of its behaviour| thereby paving the way for predi
ting also its best-
ase
omputational performan
e whensolving formulas.The development builds on previous insights on using fun
tional programming for implementingstate-of-the-art solvers [6, 9, 8℄ a
hieving only a few of the above advantages.In Se
tion 2 we present the fragment of predi
ate logi

onsidered and de�ne its semanti
s.In Se
tion 3 we then develop the solver, explain the algorithmi
 te
hniques needed for obtaininggood performan
e, and illustrate the modularity of its design. In Se
tion 5 we give an overall
hara
terisation of its behaviour and use this to obtain a formal
omplexity result that is validatedpra
ti
ally in Se
tion 6. Se
tion 7
on
ludes and the appendi
es
ontain proofs of the main results.
2 Alternation-free Least Fixpoint Logi
In this se
tion, we introdu
e alternation-free Least Fixpoint Logi
 in
lausal form (abbreviated:ALFP) as our
onstraint formalism. Here, we build on Horn
lauses with sharing as
onsideredin [12℄ and extend them further by allowing also universal quanti�
ation in pre-
onditions andnegation. Thus, ALFP formulas extend Horn
lauses (with expli
it quanti�
ation) in that weadditionally allow{ both existential and universal quanti�
ation in pre-
onditions;{ negated queries;{ disjun
tions of pre
onditions as well as{
onjun
tions of
on
lusions.The extra features in
rease
onvenien
e in handling in that they allow to restri
t the s
opes ofvariables and merge identi
al
on
lusions as well as identi
al pre-
onditions without the te
hni
alin
onvenien
e of introdu
ing auxiliary predi
ates. Existential quanti�
ation in pre-
onditions doesnot enhan
e su

in
tness or expressiveness of Horn formulas. By using universal quanti�
ation

in pre-
onditions, and through negation, we may express queries whi
h are otherwise impossibleto state. Consider, e.g., the formula:8x:(8y::E(x; y) _ T (y))) T (x)This formula de�nes a predi
ate T whi
h is satis�ed by the set of all a
y
li
 nodes in a graph,i.e., all nodes from whi
h no
y
le
an be rea
hed. This predi
ate T is not de�nable in Datalog{ even with strati�ed negation [7, 10℄.Assume we are given a �xed
ountable set X of (auxiliary) variables and a �nite ranked alpha-bet R of predi
ate symbols. Then the set of formulas
lause is given by the following grammar:pre ::= R (x1; : : : ; xk) j :R (x1; : : : ; xk) j x = y j x 6= ypre1 ^ pre2 j pre1 _ pre2 j 8x : pre j 9x : pre
lause ::= R (x1; : : : ; xk) j 1 j
lause1 ^
lause2 jpre)
lause j 8x :
lausewhere R is a k-ary predi
ate symbol for k � 1, y; x; x1; : : : denote arbitrary variables, and 1 is thealways true
lause. O

urren
es of R(: : :) and :R(: : :) in pre-
onditions are also
alled queriesand negative queries, respe
tively, whereas the others are
alled assertions of predi
ate R.Given a universe U of atomi
 values (or atoms) together with interpretations � and � forpredi
ate symbols and free variables, respe
tively, we de�ne the satisfa
tion relation(�; �) j= t(t a pre-
ondition or
lause) as follows.(�; �) j= 1 holds for all � and �. Otherwise, we have:(�; �) j= R (x1; : : : ; xk) i� (� x1; : : : ; � xk) 2 �R(�; �) j= :R (x1; : : : ; xk) i� (� x1; : : : ; � xk) 62 �R(�; �) j= x = y i� � x = � y(�; �) j= x 6= y i� � x 6= � y(�; �) j= 9x : pre i� (�; � � fx 7! ag) j= pre for some a 2 U(�; �) j= 8x : t i� (�; � � fx 7! ag) j= t for all a 2 U(�; �) j= t1 ^ t2 i� (�; �) j= t1 and (�; �) j= t2(�; �) j= pre1 _ pre2 i� (�; �) j= pre1 or (�; �) j= pre2(�; �) j= pre)
lause i� (�; �) j=
lause whenever (�; �) j= preIn the sequel, we view the free variables o

urring in an formula as
onstant symbols or atomsfrom the �nite universe U . Thus, given an interpretation � of the
onstant symbols, in the
lause
lause, we
all an interpretation � of the predi
ate symbols R a solution provided (�; �) j=
lause.Sin
e our logi
 provides expli
it
he
ks for equality and in-equality in pre-
onditions, weabandon
orresponding
he
ks in queries, i.e., demand that all variables (whi
h are not
onstants)o

urring in an argument list are pairwise distin
t. In order to deal with negations
onveniently,we restri
t ourselves to alternation-free formulas. We introdu
e a notion of strati�
ation similarto the one whi
h is known from Datalog [5, 2℄. A
lause
 is an alternation-free Least Fixpointformula (ALFP formula for short) i�
 is of the form
 = s1 ^ : : : ^ sk, and there is a rankfun
tion r : R! N su
h that for all j = 1; : : : ; k, the following properties hold:1. All predi
ates of assertions in sj have rank j;2. All predi
ates of queries in sj have ranks at most j;3. All predi
ates of negated queries in sj have ranks stri
tly less than j.

This allows us to de�ne an equality predi
ate E and a non-equality predi
ate N by the
lause(8x : E(x; x)) ^ (8x : 8y : :E(x; y)) N(x; y))and hen
e we may dispense with an expli
it treatment of = and 6= in the development thatfollows. On the other hand this rules out:(8x : :P (x)) Q(x)) ^ (8x : Q(x)) P (x))Let � denote the set of interpretations of predi
ate symbols in R over U . Then � is a
ompletelatti
e w.r.t. the lexi
ographi
al ordering \v", i.e., �1 v �2 i� there is some 1 � j � k su
h thatthe following properties hold:� �1R = �2R for all R 2 R with rR < j;� �1R � �2R for all R 2 R with rR = j; and� either j = k or �1R � �2R for at least one R 2 R with rR = j.We have:Proposition 1. Assume
lause is an ALFP formula and � is an interpretation of the free vari-ables in
lause. Then the set of all � with (�; �) j=
lause forms a Moore family, i.e., is
losedunder greatest lower bounds.A proof of proposition 1
an be found in appendix A. Sin
e the set of all solutions of
lause(given a �xed �) is a Moore family, we
on
lude that for every interpretation �0 of the predi
atesymbols, there is a lexi
ographi
ally least solution � of
lause su
h that �0 � � (i.e., �0R � �Rfor all R) | whi
h we
all the optimal solution of
lause ex
eeding �0.
3 The ALFP SolverA �rst and rather naive method of solving an ALFP formula

onsists in instantiating all variableso

urring in
 in all possible ways. The resulting system
an then be solved by
lassi
al solvers foralternation-free Boolean equation systems. Extending the proof of the
orresponding propositionin [12℄ (itself extending [11, Theorem 1℄), we have:Proposition 2. The optimal solution � of a ALFP formula
 ex
eeding an input interpretation
an be
omputed in time O(#�+Nr �n) where N is the number of o

urring atoms, n is the sizeof
, and r is the maximal nesting depth of quanti�ers in
 and #� is the sum of
ardinalities ofrelations �R. utAs observed by M
Allester in [11℄ for
onventional Horn
lauses, su
h an approa
h and su
ha
omplexity bound is unsatisfa
tory for program analysis, sin
e the universe U may have
ardi-nality as large as the program itself { implying that even analyses using as few as two variableswould not be likely to s
ale up to large programs. Therefore, M
Allester presents an algorithmfor (a spe
ial
lass of) Horn
lauses whi
h allows a
omputation of the least solution of the orig-inal
lause whi
h often is faster than the naive approa
h from proposition 2. The key idea ofM
Allester is to bring
lauses into a spe
i�

anoni
al form. In order to do so, he introdu
es aux-iliary predi
ates for pre�xes of pre-
onditions. Furthermore, he employs
onstru
tor appli
ationsfor
olle
ting bound variables into environments.M
Allester's algorithm is rather indire
t as it amounts to a major amount of pre-pro
essingbefore a
tual solving. Moreover, the new auxiliary predi
ates may be a sour
e of unne
essaryextra spa
e
onsumption. The main obje
tive, however, is that M
Allester's solving method

does no longer suÆ
e for the ri
her logi
 ALFP. Therefore, we developed and implemented analternative solving algorithm. In
ontrast to M
Allester's method, our solving pro
edure doesnot rely on pre-pro
essing. It also
ompletely abandons spe
ial worklist-like data-stru
tures asare typi
al for most
lassi
al iterative �xpoint algorithms [9℄. Instead, we adapt the re
ursivetopdown approa
h of Le Charlier and van Hentenry
k [6℄ whi
h is enhan
ed by
ontinuation-based semi-naive iteration [3, 8℄.3.1 The Basi
 SolverIn essen
e, our solver for ALFP formulas
onsists of two re
ursive fun
tions exe
ute and
he
kthat operate on
lauses and pre
onditions, respe
tively. The interpretation of predi
ate symbols,
orresponding to �, is maintained in imperative datastru
tures that are updated by means of sidee�e
ts. The interpretation of variables,
orresponding to �, is maintained in an environment thatis passed around expli
itly (in a
ontinuation based manner in the
ase of
he
k). Thus upontermination of the solver, the interpretation of predi
ate symbols in the global datastru
tureswill have been assigned values that makes the
lauses satis�able (for a suitable interpretation ofvariables).
type U = (* the universe *)type tuple = U listtype env = (var � U option) listunify : env � var list � tuple ! env optionuni�able : env � var list ! tuple list

Fig. 1. Operations on environments.
Before explaining the operation of exe
ute and
he
k we need to take a
loser look at the typesand auxiliary fun
tions used in the solver (see �gure 1). The universe of atoms is an unspe
i�edtype U and we model a tuple of a relation as a list of atoms (in order to deal with relationsof di�erent arities) and a relation then
on
eptually is a global data stru
ture
ontaining a listof tuples (although represented as a pre�x tree as explained below) | this takes
are of theinterpretation of predi
ate symbols, �. Environments map variables to atoms but is
onstru
tedin a lazy fashion meaning that variables may not have been given their values when introdu
edby quanti�ers; hen
e environments are partial environments that are list of pairs x 7! a where xis a variable and a is an optional value, i.e., either an atom or � (denoting \unbound" or NONEin SML) | this takes
are of the interpretation of variables, � (that is
alled � in the sequel toindi
ate that it is now a partial environment).The main auxiliary operation on environments is the fun
tion unify whi
h when
alled for apartial environment �, a list [x1; : : : ; xk℄ of variables xi and a tuple [a1; :::; ak℄ of atoms (repre-senting a tuple of some k-ary relation), determines the minimal extension �0 of � with �0 xi = aifor all i if it exists; otherwise, it returns � (\fail"). Thus, �0 is the most general uni�er of thetwo lists relative to �. Moreover, we need a fun
tion uni�able whi
h, for a given pair (�; args) ofa partial environment � and a list of variables args determines the list of all tuples t for whi
hunify (�; args; t) su

eeds.Both fun
tions exe
ute and
he
k operate by re
ursively pro
essing the original
lause orpre-
ondition and by propagating an environment whi
h
olle
ts bindings of the instantiatedvariables. Whenever during propagation of a partial environment �, a quanti�ed subexpressionis en
ountered whi
h introdu
es variable x, we extend � with x 7! �. A

ordingly, whenever the

quanti�ed subexpression is left, the variable x is popped from the environment. New bindingsfor variables are obtained at a query R(args). There we
ompute unify (�; args; t) for every list tso far known to belong to the interpretation of R. The resulting most general uni�ers are thenpropagated further through the
lause.The fun
tions exe
ute and
he
k are presented in SML-style notation in �gures 3 and 4 and areexplained in detail below. Fun
tion
he
k operates on pre-
onditions in order to �nd new bindingsfor the (partial) variable environment, whereas fun
tion exe
ute operates on
lauses in order togenerate new elements for predi
ates. Pre-
onditions may trigger further exe
utions. These future
omputations are passed to the fun
tion
he
k as
ontinuations. The type of
ontinuations isde�ned in �gure 2 as are a number of other auxiliary de�nitions. We also re
all the SML-fun
tionapp that applies a fun
tion to ea
h element in a list, in order to perform the side e�e
ts.The global data stru
ture rho is used for re
ording the
urrently known elements of predi
ates.A

ordingly, it allows adding new tuples to predi
ates,
he
king for the presen
e of tuples, as wellas retrieving whole relations. The use of data stru
ture in
 is slightly more subtle.
type
ont = env ! unittype
onsumer = tuple ! unitglobal datastru
ture rhoadd : rho � predi
ate � tuple ! unithas : rho � predi
ate � tuple ! boolsub : rho � predi
ate ! tuple listglobal datastru
ture in
register : in
 � predi
ate �
onsumer ! unit
onsumers : in
 � predi
ate !
onsumer list

Fig. 2. Operations on predi
ates.
It may happen that some query R(args) inside a pre-
ondition fails to to be satis�able inthe
urrent environment, but may hold in the future when some new elements for R have beenrevealed. In this
ase, we residualise the
urrent
omputation by
onstru
ting a
onsumer forR and re
ording it in the data stru
ture in
 for predi
ate R. This
onsumer is nothing but thesubsequent
all to fun
tion unify followed by the
orresponding
ontinuation of the
he
k routine.A

ordingly, whenever the fun
tion exe
ute adds a new elements t to the interpretation of R, thelist of
onsumers waiting for new elements of R is a
tivated, and the
orresponding
omputationsare resumed.

he
k : pre �
ont !
ontfun
he
k (p; n) � =
ase pof R(args) ! let fun f t =
ase unify (�; args; t)of � ! ()j �0 ! n�0in register (in
; R; f); app f (sub (rho; R))endj p1 ^ p2 !
he
k (p1;
he
k (p2; n)) �j � � �Fig. 3. The key elements of fun
tion
he
k.

Our algorithmi
 idea here abandons an expli
it worklist-like data-stru
ture for the �xpointiteration. Instead, it employs the re
ursion sta
k itself for this purpose. Re-a
tivating residualized
ontinuations
orresponds to an eager iteration strategy where all
onsequen
es of the �rst ofseveral new fa
ts are tra
ked before the next one is
onsidered.The fun
tion
he
k is applied to a pair of a pre-
ondition p and a
ontinuation n togetherwith a partial environment � for the global variables. As equality \=" (and un-equality \ 6=" assoon as we have negation)
an be de�ned, we have omitted
orresponding rules in the treatmentof pre-
onditions. If p is a query R(args) then a
ontinuation f is
onstru
ted whi
h given anelement t for R, determines the most general uni�er of args with t relative to � and, if it existspropagates it to n. The
ontinuation f is registered as a potential
onsumer of new elements ofR. Then it is
alled for all elements whi
h already have been revealed for R. If p is a
onjun
tionp1 ^ p2, then the
he
k of the se
ond pre-
ondition
he
k (p2; n) is supplied as a
ontinuation forthe
all of
he
k on the �rst pre-
ondition p1.The fun
tion exe
ute is applied to a
lause
 and a partial environment � for global variables.The intention of exe
ute is to add new elements to predi
ates. If
 equals 1, nothing has to bedone. If
 is an assertion R(args) then all elements t are
onsidered whi
h are uni�able withargs in environment �. If su
h a element t is new, we add it to the relation for R. Moreover, wedetermine the set of
onsumers whi
h have been registered for R and apply ea
h of them to t.If
 is a
onjun
tion of
lauses
1 and
2, then exe
ute is
alled on
1 and
2 in sequen
e { bothwith the same environment � sin
e no new bindings
an result. If
 is an impli
ation p)
0, thenthe fun
tion
he
k is
alled on the pre-
ondition p with
ontinuation exe
ute
0. If
 is a universalquanti�
ation 8x :
0, the new binding x 7! � is added to � followed by an exe
ution of
0.exe
ute :
lause !
ontfun exe
ute
 � =
ase
of 1 ! ()j R(args) ! app (fn t ! if has (rho; R; t) then ()else (add (rho; R; t);app (fn f ! f t) (
onsumers (in
; R))))(uni�able (�; args))j
1 ^
2 ! (exe
ute
1 �; exe
ute
2 �)j p)
0 !
he
k (p; exe
ute
0) �j 8x :
0 ! exe
ute
0 ((x 7! �) :: �)Fig. 4. The fun
tion exe
ute.
3.2 Pre�x TreesTwo problems withstand a rapid propagation of new elements of a predi
ate R to all pla
es wherethese elements are queried.The �rst problem is, given an argument list args together with a partial environment �, to�nd all elements of a predi
ate whi
h possibly are uni�able with args relative to �: this is tomake the app loop at queries fast (see �g. 3).The se
ond problem is, to maintain the
onsumers in su
h a way that
onsumers are easy toregister, and all registered
onsumers whi
h are potentially appli
able to new elements
an berevealed eÆ
iently: this is to make the inner app loop at assertions R(args) fast (see �g. 4).Di�erent
onsumers for the same element t = [a1; : : : ; ak℄ of a k-ary predi
ate may
orrespondto queries where di�erent subsets of argument positions are bound in the environment. An ob-

ba

b a

Fig. 5. Representation of the relation f(a; b); (a;
); (b; a)g.
vious idea therefore
onsists in grouping the
onsumers a

ording to these subsets. There
ould,however, be as many as 2k non-empty subsets of
onsumers waiting to unify with t. Organizingand maintaining a

ess to these is awkward and in
urs overhead.In order to solve the two problems, let us for a moment trade eÆ
ien
y against generalityand abandon eÆ
ient support for all possible query patterns. Instead, we arrange the set ofall
urrently known elements of the k-ary predi
ate R into a pre�x tree as in �g. 5. The treerepresentation allows us to implement a fun
tion subS whi
h, given the data stru
ture rho, apredi
ate R and a pre�x t1, rapidly enumerates all suÆ
es t2 with t1�t2
ontained in R. Giventhis fun
tion, we implement the app-loop in �gure 3 as in �gure 6. Here, the fun
tion �rst inthe �rst line takes a pair of an environment � and an argument list args and returns the uniquesequen
e of atoms
orresponding to the maximal pre�x of args whose variables are all instantiatedin �.The pre�x tree
an be implemented, e.g., by using an extensible array to store for ea
h nodev of the tree the list of all
urrently available su

essor atoms, together with a hash table to mappairs hv; ai of nodes v and atoms a to su

essor nodes.A

ordingly, we also allow
onsumers of a k-ary predi
ate R only to register for the set ofsuÆ
es t2 for a given pre�x t1. This implies that there are at most k + 1 sets of
onsumerswaiting for ea
h new element t of R. Again, the waiting
onsumers are maintained in a pre�xtree of depth at most k whose nodes
orrespond to the possible pre�xes t1. In parti
ular, allpotential
onsumers of a single element t
an be
olle
ted by traversing one bran
h in the tree.This data-stru
ture of waiting
onsumers
an be implemented again by an extensible array anda hash table. As before, the hash table maps pairs hv; ai of nodes v and atoms a to su

essornodes in the tree. The extensible array, however, now returns for ea
h node in the tree the set of
onsumers waiting for suÆ
es. This fun
tionality is provided by the two fun
tions registerS and
onsumersS whose types are given in �gure 7.So assuming that hash table lookups
an be done in time O(1), we
on
lude that
olle
tingall
onsumers for an element t of predi
ate R amounts to k + 1
alls to the fun
tion
onsumersSand a
on
atenation of k + 1 lists. Thus, it
an be exe
uted in time O(k + 1 + n) where k is thearity of the predi
ate R, and n is the size of the result.It remains to explain that our restri
tion in generality is not as severe as it might seem. Ifsupport for a further query pattern of the k-ary predi
ate R is demanded, it
ould be obtainedthrough a sour
e-to-sour
e transformation { similar in spirit to the se
ond last rule of M
Allester

let val t1 = �rst (�; args)in app (fn t2 ! f (t1� t2)) (subS (rho; R; t1))endFig. 6. The improved app-loop of
he
k.

subS : rho � predi
ate � tuple ! tuple listregisterS : in
 � predi
ate �
onsumer � tuple ! unit
onsumersS : in
 � predi
ate � tuple !
onsumer listFig. 7. Improved operations on predi
ates.fun
he
k (p; n) � =
ase pof : : :j :R(args) ! app (fn t ! if has (rho; R; t) then ()else n (unify (�; args; t)))(uni�able (�; args))j p1 _ p2 ! (
he
k (p1; f) �;
he
k (p2; f) �)j 9x : p0 !
he
k (p0; n Æ tl) ((x 7! �) :: �)j 8x : p0 ! let fun f [℄ ((x 7!) :: �) = n �j f (a::U) ((x 7!) :: �) =
he
k (p0; f U) ((x 7! a) :: �)in f U ((x 7! �) :: �)endFig. 8. The advan
ed elements of fun
tion
he
k.
in the proof of [11, Theorem 3℄, however, without introdu
tion of non-atomi
 terms. Here, itsuÆ
es to introdu
e an auxiliary predi
ate R0 whi
h is obtained from R through re-arrangementof argument positions. For example, if we would like to query the ternary predi
ate R where thelast argument is bound, we introdu
e the new
lause:8x1 : 8x2 : 8x3 : R(x2; x3; x1)) R0(x1; x2; x3)Furthermore, we repla
e the
orresponding query of R in a pre-
ondition by the
orrespondingquery of R0.Against the exponential overhead of blindly introdu
ing support for all exponentially manyquery patterns, this sour
e-to-sour
e transformation has the advantage that the overhead for theadditional query pattern is paid only if it really o

urs in the
urrent
lause.3.3 ExtensionsLet us now extend the basi
 solving algorithm for handling the advan
ed features negation,disjun
tion, and existential and universal quanti�
ation in queries that we dispensed with in�gure 3. It turns out that it suÆ
es to add further rules to the fun
tion
he
k. The ne
essaryadditions are summarised in �gure 8.Te
hni
ally, the simplest extension is negation. A

ording to the last-in-�rst-out dis
iplineof the runtime sta
k, the solver only pro
eeds to the exe
ution of the se
ond
onjun
t of two
lauses, when the exe
ution of the �rst one together with all triggered
alls to
ontinuations havebeen �nished. Consequently, the solver stabilises all predi
ates relative to all
lauses
onsideredso far, implying that the
lauses of the next stratum in the input
lause are not pro
essed beforeall predi
ates in the former ones have de�nitely stabilised. This means that our solving strat-egy naturally respe
ts the strati�
ation and strong
omponents. Thus, for dealing with negatedqueries :R(args), we only have to add a new rule to the fun
tion
he
k. This rule determinesall tuples t not belonging to R and then propagates unify (�; args ; t) to the
urrent
ontinuation.Sin
e the relation for R has already stabilised (and therefore also its
omplement), no registrationof
onsumers is ne
essary.

The basi
 idea for disjun
tions p � p1 _ p2 is to
all
he
k for both pre-
onditions pi | butnow with the same
ontinuation.If p is an existential quanti�
ation 9x : p0, we
he
k the
ondition p0 for the extended envi-ronment (x 7! �)::� where the resulting environments are trun
ated before propagation to the
ontinuation n.If p is a universal quanti�
ation 8x : p0, we add the binding x 7! � to � and then propagateit to the
ontinuation f U . Here, U denotes a list of all atoms in the universe. The fun
tion fevaluates to the
ontinuation n when applied to an empty list of atoms. When applied to a non-empty list a::U and some environment f updates the topmost binding in the environment to aand then
alls the fun
tion
he
k on the body p0 and f U as the remaining
ontinuation.
4 Pra
ti
al IssuesHere, we mention just three further issues whi
h are important in order to arrive at an eÆ
ientimplementation.
4.1 Avoiding Dupli
ation of WorkIt may happen that, while evaluating a
all
he
k (p; n) �, the
ontinuation n is
alled more thanon
e for an environment �0. This may happen at disjun
tions p � p1 _ p2 where �0 satis�es bothp1 and p2. Another sour
e of su
h dupli
ation of work are existential quanti�
ations 9x : p0 wherep0
an be satis�ed for di�erent values of x.In order to avoid this unne
essary dupli
ation of work, we add memoisation for every o

ur-ren
e of a pre-
ondition p whi
h re
ords the set of environments �0 for whi
h the given
ontinu-ation has already been
alled. This prin
ipal s
heme then
an be optimised (for spa
e) in su
h away that we avoid the extra book-keeping in as many pla
es as is safely possible. So, we pla
ememoisation only at an outermost o

urren
es of disjun
tions or existential quanti�
ations. Inparti
ular, we omit memoisation at
onjun
tions. The reason is twofold:1. In absen
e of disjun
tions or existential quanti�
ations, no dupli
ation of work
an o

ur.2. If memoisation o

urs at all disjun
tions and existential quanti�
ations, then every
ontinu-ation n is
alled with the same environment �0 only a bounded number of times.As an illustrating example,
onsider the
lause:R(a) ^ S(a; a) ^ 8x : 8y : (R(x) _R(y)) ^ S(x; y)) T (x; y)and assume we have
a
hing at existentials and disjun
tions. The two environments generatedthrough
he
king of the disjun
tion are:�1 = [x! a; y ! �℄ and �2 = [x! �; y ! a℄These two are di�erent and propagated to the query S(x; y). Uni�
ation with the tuple [a; a℄there will result in the environment: � = [x! a; y ! a℄being generated twi
e. In general, all �0 whi
h, after a query, result in the same environment� must agree on all jointly instantiated variables and thus may di�er only in the sets of so farunbound variables. As the formula has
onstant size, these are just
onstantly many.

4.2 Optimising Auxiliary Predi
atesClearly, we
ould tabulate for ea
h o

urren
e of a query R(x1; : : : ; xk) a separate (permuted)
opy of the relation for R where the subset of instantiated variables does not form a pre�x ofthe sequen
e x1; : : : ; xk. We might, however, exploit the pre�x tree implementation and try to
over several non-pre�x query patterns by one suitably permuted representation of the relation.Consider, e.g., a ternary predi
ate R whi
h is queried on
e with the �rst and last
omponentinstantiated and another time just with the last
omponent instantiated. Then it suÆ
es tointrodu
e just one auxiliary predi
ate R0 whi
h is de�ned by:8x1 : 8x2 : 8x3 : R(x2; x3; x1)) R0(x1; x2; x3)Thus, the predi
ate R0 serves both requirements, and we have saved time and spa
e for one extra
opy of R. In general, we arrive here at the following optimisation problem:Given: a set S of subsets S � f1; : : : ; kg of instantiated
omponents;Wanted: a set � of permutations � of the sequen
e: 1; : : : ; k su
h that ea
h subsetS 2 S is a pre�x of some � 2 �.We
onje
ture that
omputing su
h a set � of minimal
ardinality in general is hard. For ourpurposes here, however, any set � of
ardinality at most #S will do: smaller sets just de
reaseresour
e
onsumption. Therefore, we use a simple greedy algorithm. We iteratively extra
t amaximal
hain S1 � : : : � Sf of sets in S for whi
h a supporting permutation is derived. Thenthe
hain is removed from S. We repeat these steps until S is exhausted.This algorithm still gives the optimal result for k = 3 | and was good enough for all ourappli
ations so far.
4.3 Optimising Tail Re
ursionAt queries p � R(: : :), the fun
tion
he
k
alls the fun
tion app tail-re
ursively | meaning thatthe sta
k frame for an original
all of
he
k
an be re-used by this �nal
all. The implementationof app, however, as provided by the to-date version 110.0.7 of the SML standard library is givenby: fun app f [℄ = ()j app f (x::xs) = (f x; app f xs)Thus, the
all of f for the last element in the list is not tail-re
ursive in the de�nition of app| whi
h means that the sta
k is not trimmed as early as possible. The better implementation ofapp whi
h is therefore appropriate here adds an extra
ase for one-element lists:fun app f [℄ = ()j app f [x℄ = f xj app f (x::xs) = (f x; app f xs)Now, the last
all of f for a (non-empty) list is tail-re
ursive in app as well | implying thatthe sta
k frame for app (whi
h was taken from the
all to fun
tion
he
k) is now re-used bythe last
all to fun
tion f . A similar argument shows that the modi�ed app also improves the
onsumption of sta
k spa
e in the nested appli
ation of app at assertions.

5 Estimating the ComplexityFor the following, we assume that the algorithm is equipped with a
a
hing s
heme su
h that no
ontinuation n is
alled twi
e with the same argument.We now state the fundamental observation that
omputing the solution to a
lause is asexpensive, asymptoti
ally, as
he
king the result:Proposition 3. Assume that
 is an ALFP formula of
onstant size. Let �0 denote an inputinterpretation and � the optimal solution of
 ex
eeding �0. Let t0 and t be the runtimes of thesolver when started on �0 and �, respe
tively.Then t0 � d � t for some
onstant d independent of the relations in �.Proof. Let �0 and � be the �xpoint
omputations of the solver when started on �0 and �, respe
-tively. Then the following holds:1. The �xpoint
omputation �0 performs the same
alls
he
k (p; n) �, exe
ute
 �, register (�; args; t),and unify (�; args; t) as � | only, perhaps, in a di�erent ordering.2. The only additional work of �0
onsists in determining the sets of
onsumers for the tuplesnewly added to the relations.A

ording to the implementation of
onsumersS as des
ribed in subse
tion 3.2 and our assumptionthat the size of
, and therefore also all arities of o

urring predi
ates, are O(1), we know thatthe runtime of ea
h individual
all
onsumersS (in
; R; t) is proportional to 1 plus the number ofreturned
onsumers. Thus, the total additional time spent by �0 is O(P +Q) where P equals thetotal number of
alls
onsumersS (in
; R; t), and Q equals the total number of returned
onsumers.The value P is bounded by the total number of
alls exe
ute
0 � where
0 is an assertion. As ea
h
onsumer
auses a
all to unify, we dedu
e that Q is bounded by the total number of
alls tounify. Consequently, the sum P +Q is bounded by the total runtime of the solver on � { implyingthat the time t0 may ex
eed the time t only by a
onstant fa
tor. utA proposition similar to prop. 3 has been stated by M
Allester for his algorithm and ordinaryHorn
lauses [11℄. Thanks to this proposition, it suÆ
es to determine the
omplexity of the solverfor
he
king a solution. And in fa
t, the
orresponding work in
urred by di�erent synta
ti
al
omponents of the
lause
an be
al
ulated in a \denotational" way.Assume for the following that we are given a �xed interpretation � of predi
ate symbols. Everypre-
ondition p gives rise to a transformer T�[p℄ mapping a set E of rea
hing environments forthe variables in B to the set of environments after
he
king p, i.e., those whi
h are propagatedby
alls
he
k (p; n) �, � 2 E to the
ontinuation n. All environments � in E are of the form� = [x1 7! d1; : : : ; xm 7! dm℄for the same sequen
e x1; : : : ; xm of variables but potentially di�erent sequen
es d1; : : : ; dm ofvalues (in
luding �). Furthermore, all free variables from p are among the xj . A formal de�nitionof this transformation is given in �gure 9. Here, �tl and �E:a �::E denote the elementwise extensionof the
orresponding un-barred fun
tions to sets of partial environments. Moreover, T�;U [p℄ is anauxiliary fun
tion implementing the iteration on all possible bindings for x.Based on the transformation T�, we de�ne in �gure 10 the fun
tion C� for
al
ulating the
osts in
urred by pre
onditions, and the fun
tion C�� for
al
ulating the
osts in
urred by
lauses,on any set of arriving environments. Here, �rst is as before and free (�; args) in the se
ond linereturns the set of variables from args whi
h are not instantiated in �. Finally, we introdu
ed anauxiliary fun
tion for evaluating the
osts of universal quanti�
ation.Note that we essentially
ount for every pre-
ondition, the number of satisfying environments.This generalises the intuitive idea of
ounting pre�x �rings in the manner used by M
Allester

T�[R(args)℄ E = funify (�; args; t) j unify (�; args; t) 6= �; � 2 E ; t 2 �RgT�[:R(args)℄ E = funify (�; args; t) j unify (�; args; t) 6= �; � 2 E ; t 62 �RgT�[p1 ^ p2℄ E = T�[p2℄ (T�[p1℄ E)T�[p1 _ p2℄ E = T�[p1℄ E [T�[p2℄ ET�[9x : p℄ E = �tl (T�[p℄ ((x 7! �) �:: E))T�[8x : p℄ E = T�;U [p℄ ((x 7! �) �:: E)) whereT�;[℄[p℄ E = �tl ET�;a::U [p℄ ((x 7!) �:: E) = T�;U [p℄ (T�[p℄ ((x 7! a) �:: E))Fig. 9. The transformation indu
ed by
he
k.
C�[R(args)℄ E = #fh�; ti j � 2 E ; (�rst (�; args)) t 2 �RgC�[:R(args)℄ E =P�2E (#U)#free(�;args)C�[p1 ^ p2℄ E = C�[p1℄ E + C�[p2℄ (T�[p1℄ E)C�[p1 _ p2℄ E = C�[p1℄ E + C�[p2℄ EC�[9x : p℄ E = C�[p℄ ((x 7! �) �:: E)C�[8x : p℄ E = C�;U [p℄ ((x 7! �) �:: E) whereC�;[℄[p℄ E = #EC�;a::U [p℄ ((x 7!) �:: E) = C�[p℄ ((x 7! a) �:: E) + C�;U [p℄ (T�[p℄ ((x 7! a) �:: E)C�� [1℄ E = #EC�� [R(args)℄ E = #fh�; ti j � 2 E ; t 2 �R; unify (�; args; t) 6= �gC�� [p)
℄ = C�[p℄ E + C�� [
℄ (T�[p℄ E)C�� [
1 ^
2℄ E = C�� [
1℄ E + C�� [
2℄ EC�� [8x :
℄ E = C�� [
℄ ((x 7! �)�::E)Fig. 10. The
osts of pre-
onditions and
lauses.

for his algorithm and the spe
ial
ase of Horn
lauses [11℄. In
ase of queries, our estimationadditionally takes into a

ount that our relations are stored in pre�x trees { thus we only supportrapid enumeration of sub-relations for given pre�xes of tuples. In
ase of negated queries, we takeinto a

ount that the solver has to enumerate all possible instantiations of the variables whi
hare not already instantiated in the environment. In
ase of universal quanti�
ations, we
al
ulatethe
osts of iterating through all possible bindings for the bound variable. We then obtain ourmain theorem thereby demonstrating that it is not only possible to su

in
tly express algorithmi
insights in fun
tional languages but that it is also possible to elegantly perform the ne
essary
omplexity
al
ulations:
Theorem 1. Assume that
 is a alternation-free LFP formula of
onstant size. Then the solution�
an be
he
ked by the solver in time O(#�+C�� [
℄ E0) where the set E0
onsists of the singleinitial environment for the
onstants.

For a formal proof see appendix B.

6 Experimental EvaluationWe have implemented the solver for ALFP formulae using SML of New Jersey. Furthermore,we have implemented several frontends for pra
ti
ally applying the solver to various
ontrol-
owanalyses. Here, we exemplify the eÆ
ien
y of the resulting system by two s
alable ben
hmarks(exe
uted on an 800 MHz Pentium III with 1 GB of main memory under Linux with SMLNJ,version 110.0.7).The ben
hmark trans2-n
omputes the transitive
losure T2 = E+ of a dire
ted line graphwith n verti
es and n� 1 edges (denoted E). It uses the
lause:8x : 8y : E(x; y)) (T2(x; y) ^ 8z : T2(y; z)) T2(x; z))Thus, the universe
ontains N = n elements, whereas the resulting relation for T2
ontains12n � (n+ 1) elements. The logi
ally equivalent
lause for T1 = E+8x : 8y : (E(x; y)) T1(x; y)) ^ (8z : T1(x; z) ^ T1(z; y)) T1(x; y))turns out to yield a ben
hmark trans1-n that is mu
h less eÆ
ient (see Fig. 11).The theoreti
al runtime for the naive
omputation of transitive
losure is
ubi
. However, inthe
ase of the optimised formula, trans2-n, we
an in fa
t use Theorem 1 to obtain a quadrati
bound: given a universe of size n and a relation E of
ardinality e (equal to n�1 in the ben
hmarkfor transitive
losure), there are exa
tly e partial environments satisfying the query E(x; y), givingus
ost e for this query and the same
ost also for the assertion T2(x; y). All these e environments(extended by (z 7! �)) rea
h the query T2(y; z). Sin
e there are at most n possible values forz, we
on
lude that T2(y; z)
ontributes at most e � n to the
ost. Sin
e the assertion T2(x; z)
ontributes the same
ost, we obtain the
omplexity estimation O(e � n). Indeed, the relativein
rease in the runtimes of trans2-n roughly shows the expe
ted quadrati
 behaviour.
n trans1-n trans2-n200 15.9 1.05400 116.4 4.4600 386.7 11.6800 1 16.21000 1 29.11200 1 50.01400 1 57.51600 1 76.21800 1 128.0

n N (rel.) router1-n router2-n5 216 1.0 2.99 0.166 318 1.47 6.89 0.217 440 2.04 13.4 0.398 582 2.69 22.4 0.579 744 3.44 35.1 0.7910 926 4.3 56.8 1.4115 2136 9.9 1 5.0120 3846 17.8 1 13.025 6056 28.0 1 26.730 8766 40.6 1 55.935 11976 55.4 1 116.9
Fig. 11. Runtimes on transitive
losure and 0
fa on the ambient ben
hmark in se
onds (in
luding garbage
olle
tion).

The ben
hmarks router1-n and router2-n
onsist of an ambient program [4℄ des
ribing asquare array of n2 servers and a pa
ket to be routed through the array: it starts at the top left
orner, then nondeterministi
ally moves either right or down, to end in the lower right
orner. Onthis program we perform the 0
fa
ontrol-
ow analysis as presented in [12℄ giving the numbers inrouter1-n as well as an optimised version of this analysis { giving the numbers in router2-n.The optimisation basi
ally amounted to avoiding large auxiliary relations and repla
ing �lteringof larger relations by
reating auxiliary relations whi
h dire
tly provide the desired (few) tuples.The two versions of the analysis
an be found in appendix C. The router example is typi
al forrelated appli
ations in program analysis as the
omputed relations turn out to be sparse, i.e.,

have approximately linear
ardinalities. Here, the
ardinality of the universe is N = 10n2�8n+6but the
omputed relations are approximately of the same size.The theoreti
al runtime for 0
fa on ambient programs is
ubi
 in N (as reported in [12℄ andas may be obtained using Theorem 1). However, even the original analysis router1-n from [12℄seems to behave signi�
antly better in pra
ti
e, but still it uses about a minute for router1-10,and no termination in reasonable time
ould be obtained for router1-15. More than 30 timesfaster runtimes
ould be observed when s
aling the optimised analysis router2-n. Also, therelative in
rease is perhaps even less than quadrati
 when
ompared to the relative in
rease ofthe respe
tive universes. A

ordingly, more than ten times larger input ambient programs
ouldbe analyzed in reasonable time. The absolute runtimes both on transitive
losure and the ambientanalysis indi
ate that the �xpoint algorithm { even in its fun
tional implementation { is indeedquite eÆ
ient. (We
oded an implementation of the transitive
losure in C and obtained onlyabout one order of magnitude speed-up.) The largest examples we
ould do in reasonable time (afew minutes) were trans2-1800 and router2-35. The latter is an ambient program of around100 KB size on whi
h the analyzer produ
es about 1.4 MB output. We also have tried the analyzeron even larger examples but there the runtimes in
reased dramati
ally { due to growing spa
e
onsumption and therefore exploding garbage
olle
tion and paging times.
7 Con
lusionOur solver algorithm is
learly based on
lassi
al work on eÆ
ient �xpoint algorithms [9℄. Inparti
ular, it
ombines the topdown solving approa
h of Le Charlier and van Hentenry
k [6℄ withthe propagation of di�eren
es [8℄, an optimisation te
hnique for distributive frameworks whi
his also known in the area of dedu
tive databases [3℄ or as redu
tion of strength transformationsfor program optimisation [13℄. For these ideas to work we had to provide arbitrarily bran
hingpre�x trees as a universal data-stru
ture for storing relations as well as for organising sets ofwaiting
onsumers. The eÆ
ien
y, simpli
ity and expressiveness of the logi
 made it our favourite
hoi
e over the transformational approa
h of M
Allester [11℄ or o�-the-shelf implementations ofdedu
tive databases as, e.g., the CORAL system [14℄.The
omplexity analysis has bene�tted from the pioneering ideas of M
Allester [11℄ on the
omplexity of solving (
lassi
al) Horn
lauses. Here, we generalised these te
hniques to a ri
her
lass of input formulas and adapted it to the spe
i�
 properties of our solver. In doing this, wewere greatly assisted by the abstra
t
hara
terisation of the behaviour of the solver whi
h againwas made possible thanks to the spe
i�
 programming style (in parti
ular
ontinuations andmemoisation) being used.
Referen
es1. A. Aiken. Introdu
tion to set
onstraint-based program analysis. S
ien
e of Computer Programming(SCP), 35(2):79{111, 1999.2. K. Apt, H. Blair, and A. Walker. Towards a theory of de
larative programming. In J. Minsker,editor, Foundations of Dedu
tive Databases and Logi
 Programming. Morgan-Kaufman, Los Altos,CA, 1988.3. I. Balbin and K. Ramamohanarao. A Generalization of the Di�erential Approa
h to Re
ursive QueryEvaluation. Journal of Logi
 Programming (JLP), 4(3):259{262, 1987.4. L. Cardelli and A.D. Gordon. Mobile ambients. In Pro
eedings of FoSSaCS'98, volume 1378 ofLNCS, pages 140{155. Springer-Verlag, 1998.5. A. Chandra and D. Harel. Computable queries for relational data bases. Journal of Computer andSystem S
ien
es, 25(2):156{178, 1980.

6. B. Le Charlier and P. Van Hentenry
k. A Universal Top-Down Fixpoint Algorithm. Te
hni
al ReportCS-92-25, Brown University, Providen
e, RI 02912, 1992.7. E. Dahlhaus. Skolem normal forms
on
erning the least �xpoint. In Computation Theory and Logi
,pages 101{106. LNCS 270, Springer Verlag, 1987.8. C. Fe
ht and H. Seidl. Propagating Di�eren
es: An EÆ
ient New Fixpoint Algorithm for DistributiveConstraint Systems. In European Symposium on Programming (ESOP), pages 90{104. LNCS 1381,Springer Verlag, 1998. Long version in Nordi
 Journal of Computing 5, 304-329, 1998.9. C. Fe
ht and H. Seidl. A Faster Solver for General Systems of Equations. S
ien
e of ComputerProgramming (SCP), 35(2-3):137{162, 1999.10. P.G. Kolaitis. Impli
it de�nability on �nite stru
tures and unambiguous
omputations (preliminaryreport). In 5th Annual IEEE Symposium on Logi
 in Computer S
ien
e (LICS), pages 168{180,1990.11. D. M
Allester. On the Complexity Analysis of Stati
 Analyses. In 6th Stati
 Analysis Symposium(SAS), pages 312{329. LNCS 1694, Springer Verlag, 1999.12. F. Nielson and H. Seidl. Control-Flow Analysis in Cubi
 Time. In European Symposium on Pro-gramming (ESOP). LNCS, Springer Verlag, 2001. To appear.13. R. Paige. Symboli
 Finite Di�eren
ing { Part I. In Pro
eedings of 3rd European Symposium onProgramming (ESOP), pages 36{56. LNCS 432, 1990.14. R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. The CORAL Dedu
tive System.VLDB Journal, 3(2):161{210, 1994.15. Joseph E. Stoy. Denotational Semanti
s: The S
ott{Stra
hey approa
h to programming languagesemanti
s. MIT Press, 1977.A Proof of Proposition 1Assume
lause � s1 ^ : : : ^ sm where sj is the
lause
orresponding to stratum j, and let Rjdenote the set of all relation symbols R de�ned in s1 ^ : : : ^ sj taking R0 = ;, and re
all therank fun
tion r. LetM denote a set of assignments whi
h map relation symbols to relations; then� =uM is given by the formula�(R) =\f�0(R) j �0 2 M ^ 8R0 2 Rr(R)�1 : �(R0) = �0(R0)gwhi
h is well-de�ned by indu
tion on the value of r(R).We prove that for all j, all M and all variable environments �:Claim: If � =uM ,
 o

urs in sj and (�0; �) j=
 for all �0 2M then also (�; �) j=
.In order to prove the Claim, we pro
eed by
omplete indu
tion on j and in ea
h
ase distinuishtwo
ases.Case 1: The �rst
ase is when �(R) = Uk for all relations R of rank j and appropriate arityk. In this
ase a straightforward indu
tion on
 suÆ
es for proving that (�; �) j=
 holds for all
o

uring in sj . We
onsider two illustrative
ases.
 � R(x1; : : : ; xk) This
ase is immediate sin
e we assumed that �(R) = Uk.
 � (p)
0) By the indu
tion hypothesis (�; �) j=
0 and hen
e it is immediate that also(�; �) j=
.Case 2: The se
ond
ase is when �(R) 6= Uk for some relation R of rank j and some arity k.Then the set Mj = f�0 2M j 8R0 2 Rj�1 : �(R0) = �0(R0)gis non-empty and we have:�(R) = Tf�0(R) j �0 2Mjg if r(R) = j�(R) = �0(R) if r(R) < j and �0 2Mj

We pro
eed by stru
tural indu
tion on
 (re
alling that
 o

urs in sj) and establish an auxiliaryresult for pre-
onditions.
 � R(x1; : : : ; xk) Sin
e r(R) = j we have that �(R) equals the interse
tion of all relations�0(R) for �0 2 Mj . Given the assumption that t = (� x1; : : : ; � xk) 2 �0(R) for all �0 2 Mj � Mwe have that t 2 �(R) as desired.
 � (p)
0) We
onsider two
ases. In the �rst
ase, (�; �) j= p is false in whi
h
ase (�; �) j=
is immediate. In the se
ond
ase (�; �) j= p is true and from the Auxiliary Claim below we getthat (�0; �) j= p for all �0 2Mj and hen
e the result follows by indu
tion hypothesis.Auxiliary Claim: If � = uM , p o

urs in sj and (�; �) j= p then also (�0; �) j= p for all�0 2Mj .We pro
eed by indu
tion in j and in ea
h
ase perform a stru
tural indu
tion in p (re
alling thatp o

urs in sj). Most
ases are straightforward sin
e �(R) � �0(R) for all �0 2 Mj . The onlynon-trivial
ase is:p � :R(x1; : : : ; xk) Here the result follows be
ause the rank of R is stri
tly less than j andhen
e �0(R) = �(R) for all �0 2Mj . ut
B Proof of Theorem 1In the sequel we make use of the following te
hni
al proposition:Proposition 4. Assume that the
urrent interpretation of predi
ate symbols is given by �. Thenfor all pre-
onditions p and sets E of partial environments, the following holds:1. T�[p℄ E equals the set of partial environments �0 whi
h on
alls
he
k (p; n) �, � 2 E, arepropagated to the
ontinuation n;2. #(T�[p℄ E) � C�[p℄ E. utWhen started on a solution �, the solver
an be thought of as
ontiguously evaluating thesub-terms of the
lause { thus allowing us to perform an indu
tion on the stru
ture of
lauses.Let p and
 denote a pre-
ondition and a
lause, respe
tively. Let T [p; E ℄ denote the maximaltime spent by the algorithm on the
all
he
k (p; n) � for any partial environment � from E before
alling
ontinuation n. A

ordingly, let T [
; E ℄ denote the total time spent by the algorithm on
alls exe
ute
 �, � 2 E . We estimate these
omplexities as follows:Proposition 5. There are
onstants dp; d
 > 0 only depending on p and
, respe
tively, su
hthat T [p; E ℄ � dp � (#E + C�[p℄ E)T [
; E ℄ � d
 � (#E + C�� [
℄ E)As #E0 = 1, we
on
lude from proposition 5, that the solver uses time O(#� + C�� [
℄ E0) asstated in theorem 1 | where the extra time O(#�) is needed to read the relations �R and insertthem into the datastru
ture rho.Proof (Proposition 5). Here, we only
onsider the
ases where{ p is a query or a
onjun
tion, and where{
 is an assertion or an impli
ation.p � R(args) For � 2 E and t1 = �rst (�; args), let T� denote the set of all tuples t1�t2 2 �R.The work of
alls
he
k (p; n) �, � 2 E ,
onsists of

1. registering for R and t1
ertain fun
tions f�; � 2 E ;2. determining for ea
h � 2 E , the set T� and
omputing unify (�; args ; t0) for all t0 2 T�.The �rst task
onsumes time O(#E). For the latter, a

ording to our tree-like representation ofrelations, the solver will need time O(#T�) for ea
h �. Therefore, we obtain:T [p; E ℄ � d �X�2E(1 + #T�) = d � (#E + C�[p℄ E)
for some d > 0 { giving the
laim of proposition 5 for this
ase.p � p1 ^ p2 Then the work of
alls
he
k (p; n) �, � 2 E ,
onsists of1. the work of all
alls
he
k (p1; n0) �, � 2 E , where n0 =
he
k (p2; n) { thereby
omputing theset of partial environments E 0 = T�[p1℄ E ;2. the work of all
alls
he
k (p2; n) �0, �0 2 E 0.By indu
tive hypothesis, the �rst task
onsumes time O(#E + C�[p1℄ E) whereas the se
ond onetakes time O(#E 0 + C�[p2℄ E 0). Now, by proposition 4,#E 0 = #T�[p1℄ E � C�[p1℄ ETherefore, T [p; E ℄ � d � (#E + C�[p1℄ E + C�[p2℄ (T�[p1℄ E))a

ording to our
laim.
 � R(args) The work of the solver on the assertion
 when exe
uting the
alls exe
ute
 �,� 2 E , amounts to:{ determining for every � 2 E , the set T� of all t with unify (�; args; t) 6= �;{ adding the sets T� to the
urrent value for the predi
ate R.A

ording to our assumptions, this work requires time O(P�2E(1 + #T�)). We have:P�2E(1 + #T�) � #E +#f(�; t) j � 2 E ; t 2 �R; unify (�; args; t) 6= �g= #E + C�� [
℄ E| giving the assertion of proposition 5 for this
ase.
 � (p)
0) The work of the solver on
alls exe
ute
 �, � 2 E , amounts to:1. the work on
alls
he
k (p; exe
ute
0) �, � 2 E ; together with2. the work on
alls exe
ute
0 �0 for �0 2 T�[p℄ E , i.e., those �0 whi
h are obtained by the
alls
he
k (p; exe
ute
0) �, � 2 E .Therefore by indu
tive hypothesis and prop. 4,T [
; E ℄ � d0 + T [p; E ℄ + T [
0; T�[p℄ E ℄� d � (#E + C�[p℄ E +#(T�[p℄ E) + C�� [
0℄ (T�[p℄ E))� d � (#E + 2 � C�[p℄ E + C�� [
0℄ (T�[p℄ E))� 2 � d � (#E + C�� [
℄ E)for suitable
onstants d0; d > 0. This
ompletes the proof. ut

C The Ben
hmark Clauses for Ambient Analysis
Our frontend extra
ts from the ambient program the ternary relations In/3, Out/3, Open/3 andName/3. The �rst
omponent always
ontains the label of the stati
ally en
losing ambient. In
ase of the �rst three relations, the last
omponent holds the labels of
orresponding
apabilities,and the se
ond
omponent the names of ambients the
apabilities possibly refer to. In
ase ofthe relation Name/3, the third
omponent holds the labels of ambients whi
h are named by thenames given in the se
ond
omponent.Then the analysis from [12℄ is equivalent to the
lause:(8l; n; x : (In(l; n; x)) (HasFather(x; l) ^(8y; z : HasFather(x; y) ^ Sibling(y; z) ^ HasName(z; n)) HasFather(y; z)))) ^(Out(l; n; x)) (HasFather(x; l) ^(8y; z : HasFather(x; y) ^ HasFather(y; z) ^ HasName(z; n)) OutPair(y; z)))) ^(Open(l; n; x)) (HasFather(x; l) ^(8y; z : HasFather(x; y) ^ HasFather(z; y) ^ HasName(z; n)) OpenPair(z; y)))) ^(Name(l; n; x)) (HasName(x; n) ^ HasFather(x; l)))) ^(8y; z; t : HasFather(y; t) ^ HasFather(z; t)) Sibling(y; z)) ^(8x; y; z : OutPair(x; y) ^ HasFather(y; z)) HasFather(x; z)) ^(8x; y; z : OpenPair(y; z) ^ HasFather(x; y)) HasFather(x; z))Evaluating this
lause on the router programs gives the numbers in
olumn router1-n of �gure11. This
lause turns out to be not as eÆ
ient as one might have hoped. In parti
ular, the Sibling-relation be
omes very large: for n = 10, it
ontains no less than 568929 tuples { although therelation HasFather/2 only
omprises 2004 tuples. In order to optimise the
lause further, we maketherefore the following observations:{ It is not ne
essary to
onsider ea
h
apability individually. The only property whi
h mattersfor the analysis is whether an ambient
ontains an In-operation for a spe
i�
 name or not(similar for Out and Open). Therefore, we introdu
e new auxiliary binary predi
ates HasIn/2,HasOut/2 and HasOpen/2.{ Instead of determining all fathers of an ambient and then sele
ting from these the fathershaving a spe
i�
 name, it is mu
h more eÆ
ient to a

ess the fathers with a given namedire
tly. This gives us the ternary relation HasFather/3. A similar tri
k is also played torapidly a

ess the ambient sons with a given name.{ Using the latter ternary relation, we repla
e the
onjun
tionSibling(y; z) ^ HasName(z; n)with the
onjun
tion: HasFather(y; t) ^ HasSon(t; n; z)for some new auxiliary variable t { thus avoiding the large relation Sibling/2.

By appli
ation of these ideas, we arrive at:(8l; n; x : (In(l; n; x)) (HasFather(x; l) ^(8y : HasFather(x; y)) HasIn(y; n)))) ^(Out(l; n; x)) (HasFather(x; l) ^(8y : HasFather(x; y)) HasOut(y; n)))) ^(Open(l; n; x)) (HasFather(x; l) ^(8y : HasFather(x; y)) HasOpen(y; n)))) ^(Name(l; n; x)) (HasName(x; n) ^ HasFather(x; l) ^(8y : HasFather(x; y)) (HasSon(y; n; x) ^(8n : HasName(y; n)) HasFather(x; n; y)))))) ^(8y; n; z; t : HasIn(y; n) ^ HasFather(y; t) ^HasSon(t; n; z)) HasFather(y; z))) ^(8x; y; n : HasOut(x; n) ^ HasFather(x; n; y)) OutPair(x; y)) ^(8x; y; z : OutPair(x; y) ^ HasFather(y; z)) HasFather(x; z)) ^(8x; y; n : HasOpen(x; n) ^ HasSon(x; n; y)) OpenPair(y; x)) ^(8x; y; z : HasFather(x; y) ^ OpenPair(y; z)) HasFather(x; z))The numbers for this
lause are listed in
olumn router2-n of �gure 11.

