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Abstract
We consider programs for embedded real-time systems which use
priority-driven preemptive scheduling with task priorities adjusted
dynamically according to the immediate ceiling priority protocol.
For these programs, we provide static analyses for detecting data
races between tasks running at different priorities as well as meth-
ods to guarantee transactional execution of procedures. Beyond
that, we demonstrate how general techniques for value analyses can
be adapted to this setting by developing a precise analysis of affine
equalities.

Categories and Subject Descriptors F.3.1 [Logics and mean-
ing of programs]: Specifying and Verifying and Reasoning about
Programs; F.3.2 [Logics and meaning of programs]: Semantics
of Programming Languages—Program analysis; D.2.4 [Software
Engineering]: Software/Program Verification

General Terms Algorithms, Theory, Verification

Keywords inter-procedural analysis, abstract domains, interrupt-
driven concurrency

1. Introduction
There is an inherent tension in concurrent real-time software be-
tween synchronization, needed to preserve data consistency, and
prioritized execution, needed to meet hard deadlines. Retaining ex-
ecution of high-priority tasks within a predictable time frame, yet
allowing lower-priority tasks to complete critical sections, requires
sophisticated synchronization primitives which limit the worst-
case waiting time of high-priority tasks. Using common binary
semaphores (mutexes) can result in a higher-priority task waiting
an indefinite amount of time for a lower-priority task to complete,
a situation known as unbounded priority inversion.

As an example of unbounded priority inversion, consider a low-
priority task q1 which acquires a lock needed by a high-priority
task q3. When q3 is ready to execute, it will preempt q1, but as soon
as q3 attempts to acquire the lock, it must wait for q1 to complete
its critical section. It is perfectly acceptable, and necessary for the
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sake of data consistency, that a high-priority task wait for a low-
priority task to complete execution of a critical section; however,
the problem is that an intermediate-priority task q2 may preempt the
low-priority task before it releases the lock. Then, q2 is indirectly
blocking the high-priority task q3 for an arbitrary amount of time.

Since unbounded priority inversion defeats the possibility of
meeting hard deadlines, operating systems for embedded systems
provide more sophisticated synchronization primitives than com-
mon mutexes. Typically such primitives are based on priority in-
heritance: a lower-priority task which blocks a higher-priority task
inherits the priority of that higher-priority task for the duration of
the critical section which caused the blocking. This bounds the time
a higher-priority task can be blocked. The original ceiling priority
protocol [27] ensures that a higher-priority task can only be blocked
for the duration of a single critical section.

In safety-critical systems, a simplification of this protocol, the
immediate ceiling priority protocol, is often used. This variation is
also known as the priority ceiling emulation protocol to distinguish
it from the original inheritance-based ceiling protocol. Under this
name, it is included in Safety Critical Java [13], a proposed subset
of Real-Time Java. The immediate ceiling priority protocol is used
by the OSEK/VDX operating system [22], which has been adopted
by the automotive software architecture Autosar [3], an emerging
global standard in the automotive domain. It is also present in the
POSIX library, where it is called the Priority Protect Protocol. In
this paper, we will follow the OSEK usage and simply call it the
priority ceiling protocol (PCP). The PCP relies on the concept
of resources. Each resource r obtains a ceiling priority, which
is the maximal priority of tasks acquiring the resource r. The
scheduling of tasks then follows the dynamic priority of tasks, i.e.,
the maximum of a task’s static priority and the ceiling priorities of
all resources it has acquired. In this way, a task acquiring a given
resource will immediately inherit the priority of all tasks which
could request that resource. As this blocks intermediate-priority
tasks, unbounded priority inversion is avoided.

In this paper, we develop static analyses for programs synchro-
nized via the PCP. We provide methods for uncovering subtle flaws
due to the concurrency induced by interrupts. Specifically, we focus
on data races and transactional behavior of procedures. Moreover,
we explain how interprocedural value analyses can be enhanced
to take priorities and interrupts into account. We exemplify this
with an algorithm for inferring affine equalities. The PCP was en-
gineered to run on uniprocessor systems, which are the de facto
standard for embedded real-time systems.

The program in Figure 1 is used as a running example through-
out the paper. It consists of one (main) task T and two interrupts I
and I ′ with priorities 1, 2 and 3, respectively (higher numbers de-
note higher priorities). The program uses resources r and r′. Since
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I ′e33 I ′1 I ′2 I ′r

Ie22 I1 I2 I3 Ir

Te11 T1 T2 T3 T4 · · ·

· · · T4 T5 T6 T7 T8 · · ·

· · · T8 T9 T10 T11 Tr

get(r′) z=20 rel(r′)

get(r) y++ x-- rel(r)

get(r′) x=10 y=0 rel(r′)

get(r) t=x+y x=t-x rel(r)

z=t*2 get(r) y=t-y rel(r)

Figure 1. Example program.

r is used by T and I , its ceiling priority is 2, while r′ is used by
T and I ′, so its ceiling priority is 3. The interrupt I ′ of highest
priority resets the variable z to the fixed value 20. The interrupt I
increments the counter y and decrements the counter x. The main
task T initializes the counters x and y; then, it attempts to swap
their values by means of an auxiliary variable t, which receives the
sum of x and y. Before completing the swap, the result 2 ∗ t is
stored in the variable z. This example is designed to exhibit both a
data race and a nontransactional behavior.

The resource r′ is held during the initialization of the main task;
consequently, the dynamic priority of this part is 3 (the maximal
priority), ensuring that no interrupts may occur. Then, the resource
r with ceiling priority 2 is acquired, which will only protect against
the interrupt I , while I ′ may still occur. Note that the interrupt I is
unaware of the resource r′, and yet acquiring resource r′, protects
a task from being interrupted by I because the static priority of
I is less than the ceiling priority of r′. This effect is typical for
priority based synchronization. An analysis which treats resources
as locks, though, could not exclude the possibility of I interrupting
the initialization code, resulting in false alarms.

The assignment z = t ∗ 2 may overwrite the assignment in I ′

if I ′ occurs at T8 (or earlier). Or it might itself be overwritten if
I ′ occurs at T9 (or later). This constitutes a data race. Moreover,
at T10, variable y is overwritten with a value that might have
become outdated due to an occurrence of I . In the example, this
will result in failing to correctly swap the variables x and y. Note
that this occurs although all accesses to x and y are protected by
the resource r. We call this nontransactional behavior.

The paper is organized as follows. In Section 2, we present a con-
crete semantics of PCP programs based on execution paths. We
formally define the concepts of nontransactional behavior and data
races for interrupt-driven programs. In Section 3, we show how to
analyze resource sets to determine priorities and consequently pos-
sible interleavings. In Section 4, we use the resource framework
to detect races, and in Section 5, nontransactional behavior. Sec-
tion 6, shows how to extend the framework to allow data-flow anal-
ysis and we exemplify this by computing affine equations for the
example program. Section 7 presents the experimental evaluation
of our methods for race detection and transactionality. Finally, we
discuss related work and conclude.

2. The Core PCP Model and its Semantics
Our model consists of one task main , with which program execu-
tion starts; a finite collection of interrupt routines Irpt, which we
also call tasks, i.e., Task = Irpt ∪ {main}; and auxiliary proce-
dures Proc, which may be called by all tasks. The main task as well
as the interrupt routines are distinguished procedures which may
not be called otherwise. For the sake of the analysis, procedures are
specified by means of control-flow graphs as in Figure 1.

Every procedure f has a designated entry node fe and return
node fr . The collection of all control flow graphs of procedures
in Proc is denoted by (N,E) where N is the set of nodes and
E the set of edges. Let Ne and Nr denote the set of all entry
and return nodes, respectively. Each edge is labeled either with a
basic statement s, or with a call f(), f ∈ Proc. For simplicity, we
consider procedures without parameters only. Each basic statement
s is either a basic command cmd, such as an assignment to a
global variable, or a PCP statement, such as resource acquisition.
Let Res denote the finite set of resources used by the program. For
r ∈ Res, the PCP statement get(r) acquires the resource r and
rel(r) releases r. We assume that at the exit node of each task,
all resources have been released. This can be enforced, e.g., by
successively releasing all resources potentially used by the task.

Additionally, we assume that we are given functions P :
Task → N and U : Task → 2Res which map tasks to their
static priorities from N and (super-)sets of the sets of resources
possibly acquired during their execution. In particular, we assume
that P(main) = 0 < P(q) for each q ∈ Irpt. To each resource
r ∈ Res, we then assign its ceiling priority P(r) which equals the
maximal priority of a task acquiring r, i.e.,

P(r) = max{P(q) | r ∈ U(q)}
For a subset of resources R ⊆ Res, we also write P(R) as a
shorthand for max{P(r) | r ∈ R} where P(∅) = −∞.

2.1 Execution Paths

An execution path π of a PCP program is a sequence of control-
flow edges labeled by basic statements into which subsequences
corresponding to procedure calls or interrupts are nested. The nest-
ing of a call to the procedure f is indicated by means of the start
and end tags 〈f〉 and 〈/f〉, respectively. Interrupts are indicated
analogously.

Same-level execution paths reaching a program point v (on the
same level) are defined as follows:

• ε is an same-level execution path reaching the entry nodes qe of
procedures;

• π(u, cmd, v) is a same-level execution path reaching v if π is a
same-level execution path reaching u;

• π1〈f〉π2〈/f〉 is a same-level execution path reaching v if π1

is a same-level execution path reaching u, (u, f(), v) is a call
edge, and π2 is a same-level execution path reaching the return
node fr of f ;

• π1〈q〉π2〈/q〉 is a same-level execution path reaching v if π1 is
a same-level execution path reaching v, and π2 is a same-level
execution path reaching the return node qr of an interrupt q.

Likewise, a (reaching) execution path reaching a program point v
(not necessarily at the same level) is defined as follows.

• ε is an execution path reaching the entry point maine of the
main task;

• π̄(u, cmd, v) is an execution path reaching v if π̄ is an execu-
tion path reaching u;

• π̄1〈f〉π2〈/f〉 is an execution paths reaching v if π̄1 is a exe-
cution path reaching u, (u, f(), v) is a call edge and π2 is an
execution path reaching the return node fr of f ;

• π̄1〈q〉π2〈/q〉 is an execution path reaching v if π̄1 is an exe-
cution path reaching v, and π2 is a same-level execution path
reaching the return node qr of an interrupt q;

• π̄〈q〉 is an execution path reaching the entry node qe of q if π̄
is an execution path reaching u and either there is a call edge
(u, q(), v) or q is an interrupt.
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We write ΠS and ΠR for the set of same-level execution paths and
reaching execution paths, respectively.

For same-level execution paths, we define the resource set after
the path in terms of the resource set R before the path:

R(ε, R) = R
R(π(u, cmd, v), R) = R(π,R)
R(π(u, get(r), v), R) = R(π,R) ∪ {r}
R(π(u, rel(r), v), R) = R(π,R) \ {r}
R(π1〈q〉π2〈/q〉, R) = R(π1, R) if q ∈ Task
R(π1〈f〉π2〈/f〉, R) = R(π2,R(π1, R)) if f �∈ Task

This definition is extended to (reaching) execution paths:

R(π̄〈f〉π,R) = R(π,R(π̄, R)) if f �∈ Task
R(π̄〈q〉π,R) = R(π, ∅) if q ∈ Task

where π is a same-level execution path and π̄ is a reaching execu-
tion path.

2.2 The Path Semantics

The concrete semantics collects, for each program point v, the set
of execution paths reaching v taking static priorities and resource
sets into account. Each task starts with an empty set of resources.
We assume that procedures cannot be interrupted at their entry
points. If a task is interrupted (while executing some procedure),
its resource set before and after the interrupt is identical, while
procedure calls may change the set of currently held resources.

Let p denote the maximal static priority of all tasks, and [p] the
interval {0, . . . , p}. For a procedure f , let �f� : [p] → (2Res →
2ΠS ) denote the function which assigns to each static priority i at
which f can be called, a function which takes a resource set R
before a call to f and returns the set of same-level execution paths
of the procedure f including all execution paths of interrupts which
possibly may have occurred. Likewise for j > 0, let �j� ⊆ ΠS

denote the set of execution paths of all interrupts with static priority
level j. For an edge e labeled with a basic statement, the concrete
semantics is a function �e� : 2Res → 2ΠS which for each resource
set R returns the singleton set �e�(R) = {e}.

In order to put up a constraint system to characterize the sets of
same-level execution paths of procedures, we require composition
operators which take resource sets and static priorities into account.
The composition of mappings M1,M2 : 2Res → 2ΠS must ensure
that the sets of execution paths are concatenated according the
attained sets of resources:

(M2 ◦M1) R = {π1π2 | π1 ∈ M1(R), π2 ∈ M2(R(π1, R))}
For interrupts, we need to filter out execution paths which cannot
be interrupted due to high dynamic priorities. Let Sj denote the set
of execution paths of interrupts of priority j. Then we define the
application of Sj with a mapping M : 2Res → 2ΠS :

(Sj •j M) R =

{π1π2 | π1 ∈ M(R), π2 ∈ Sj , j > P(R(π1, R))}
where the priority condition checks that the acquired resources
allow the interrupt to occur.

The functions �f� : [p] → 2Res → 2ΠS , f ∈ Proc, and the sets
�j� then can be characterized as the least solution of the following
constraint system:

[S0] S[fe, i] ⊇ I

[S1] S[v, i] ⊇ �(u, s, v)� ◦ S[u, i] (u, s, v) ∈ E

[S2] S[v, i] ⊇ (�f� i) ◦ S[u, i] (u, f(), v) ∈ E

�f� i ⊇ Hf (S[fr, i])

[S3] �j� ⊇ (�q� j ∅) q ∈ Irpt,P(q) = j

S[u, i] ⊇ �j� •j S[u, i] u /∈ Ne, j > i

Here, the function I is given by I(R) = {ε}. The auxiliary variable
S[v, i] for a node v of some procedure f , and a static priority i
describes the function which for a given resource set R at procedure
start, returns the set of all same-level execution paths reaching
v within f when executed within a task of static priority i. The
auxiliary operator Hf takes a description M of the same-level
execution paths of the procedure f and wraps it into the opening
and closing tags corresponding to f , i.e,

Hf (M)(R) = {〈f〉π〈/f〉 | π ∈ M(R)}
For real-time systems, it is reasonable to assume that every proce-
dure has at least one same-level execution path, i.e., that �f� i R is
non-empty for every i and R. If this is the case, the set of all pro-
gram points which are definitely unreachable can be computed by
standard means and then removed from the control-flow graphs —
implying that property (S) is satisfied:

(S) Each program point v of a procedure f is same-level reachable,
i.e., S[v, i](R) �= ∅ for every i and R.

This property therefore will henceforth be generally assumed.
In order to put up a constraint system to characterize the sets

of reaching execution paths, we require an operator to apply the
effects M : 2Res → 2ΠS of edges or procedures to sets of
reaching execution paths S, which takes attained sets of resources
into account. We define

M@S = {π̄1π2 | π̄1 ∈ S, π2 ∈ M(R(π̄1, ∅))}
Likewise, the application of a set of same-level execution paths S2

of interrupts of priority j to a set S1 of reaching execution paths is
defined by:

S2 @j S1 = {π̄1π2 | π̄1 ∈ S1, π2 ∈ S2,P(R(π̄1, ∅)) < j}
The collecting semantics of sets of reaching execution paths then is
given by the least solution of the following constraint system:

[R0] R[maine, 0] ⊇ {ε}
[R1] R[v, i] ⊇ �(u, s, v)�@R[u, i] (u, s, v) ∈ E

[R2] R[v, i] ⊇ (�f� i)@R[u, i] (u, f(), v) ∈ E

R[fe, i] ⊇ enterf (R[u, i]) (u, f(), v) ∈ E

[R3] R[u, i] ⊇ �j�@jR[u, i] u /∈ Ne, j > i

R[j] ⊇ projj(R[u, i]) u /∈ Ne, j > i

R[qe,P(q)] ⊇ enterq(R[j]) q ∈ Irpt, P(q) = j

Here, the operator enterf for a procedure f �∈ Task when applied
to a set S of reaching execution paths, appends the opening tag 〈f〉
to each reaching execution path in S, i.e.,

enterf (S) = {π̄〈f〉 | π̄ ∈ S}
The operator projj when applied to a set S, extracts the set of
all reaching execution paths π̄ from S where the priority of the
resource set R(π̄, ∅) is less than j, i.e,

projj(S) = {π̄ | π̄ ∈ S,P(R(π̄, ∅)) < j}
The constraints S0, R0 provide values for entry points of all proce-
dures in Proc, and the entry node of procedure main , respectively.
S1 and R1 take care of all non-call edges, by applying the seman-
tics of the edge, i.e., appending the edge to the collected sets of
paths. Procedure calls are handled by the constraints S2 and R2.
In S2 as well as the first part of R2, the same-level executions of
the called procedure are composed with the executions before the
call. Additionally, the second part of R2 describes execution paths
entering procedures. The constraints S3 and R3 deal with inter-
rupts. They correspond to implicitly introducing extra loop edges
with interrupt calls at every node where an interrupt may occur,
given that the dynamic priority of the executing task is sufficiently
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low. Interrupts are summarized by static priority levels. Similarly
the entry sets of the reaching execution paths are summarized into
one set for each static priority level. According to our assumption,
entry nodes are excluded from constraints S3 and R3.

2.3 Data Races and Nontransactional Behavior

Let Acc(cmd) and Acc(f) denote the set of all variables accessed
by the basic command cmd and same-level executions of procedure
f , respectively. For clarity of presentation, we do not distinguish
read and write accesses.

Then a data race at some global variable x occurs if program
execution reaches an access to x at a dynamic priority j while
x also might be accessed by some interrupt q of static priority
exceeding j.

Definition 1. A PCP program contains a data race at variable x if
there exists a reaching execution path

π̄ (u, cmd, v) 〈q〉 π〈/q〉 ∈ R[v, i]

for a basic command cmd with x ∈ Acc(cmd) and a same-level
execution path π of the interrupt q with x ∈ Acc(q).

In the example program of Figure 1, a data race occurs at the
variable z. The interrupt I ′ has static priority 3 and accesses
z while the main task T accesses z at a dynamic priority of
1 and can therefore be preempted by I ′ at T8 or T9. A possi-
ble run of the example program reaching the data race would
be: (Te, get(r

′), T1) . . . (T3, rel(r
′), T4) . . . (T8, z = t ∗ 2, T9)

〈I ′〉(I ′e, get(r′), I ′1) (I ′1, z = 20, I ′2) (I ′2, rel(r
′), I ′r)〈/I ′〉. There

are no further data races in the example program since the variables
x and y are only used by the interrupt I which has a static priority
of 2 and all accesses to these variables occur at a dynamic priority
of at least 2.

A procedure f is considered as transactional (or atomic) if
during every execution of f , no interrupt may occur between the
first and last access to global variables which accesses any of the
globals accessed by f .

Definition 2. Formally, f is nontransactional at static priority j
for a resource set R, if there exists a same-level execution path

〈f〉 π1 〈q〉 π 〈/q〉 π2〈/f〉 ∈ �f�(j)(R)

where the following holds:

• π1π2 ∈ S[fr, j](R) is a same-level execution path which
contains no interrupts;

• π is a same-level execution path of the interrupt q without
further interrupts;

• π1 and π2 contain edges (u1, cmd1, v1),(u2, cmd2, v2) with
Acc(cmd1) �= ∅ �= Acc(cmd2); and

• π contains an edge (u, cmd, v) with Acc(cmd)∩Acc(f) �= ∅.

To exemplify this situation we use again the program of Figure 1.
The first access of the main task T to a global occurs before
program point T2 while the last access is after T10. In between,
e.g., at program point T8, the dynamic priority is 1. At this node, T
can be preempted by the interrupt I which changes the variables x
and y also used by T . Therefore T is not transactional. A possible
run of the example program exhibiting this behavior would be:
〈T 〉 (Te, get(r

′), T1) . . . (T7, rel(r), T8) 〈I〉 (Ie, get(r), I1) . . .
(I3, rel(r), Ir) 〈/I〉 (T8, z = t ∗ 2, T9) . . . (T11, rel(r), Tr) 〈/T 〉.

3. Analyzing Resources
In this section, we present an analysis of sets of resources possibly
held at a given program point. The results of this analysis are fun-
damental for determining the minimal dynamic priority guaranteed

to hold at this program point, as well as all subsequent analyses of
the program.

The analysis determines for each program point a set of possible
resource sets. The complete lattice thus is given by 22Res . Sets of
sets are ordered by subset inclusion. At join points we therefore
take the union of reaching sets.

For analyzing same-level executions, we associate to each pro-
cedure f an abstract semantics �f�� : 2Res → 22Res . Unlike the
collecting semantics, �f�� does not depend on the static priority in
which a call to f is made. The static priority determines the inter-
rupts which may occur during the call of f , but interrupts do not
modify the sets of currently held resources. In order to set up the
corresponding abstract constraint system, we define an abstract se-
mantics from 2Res → 22Res for edges (u, s, v) labeled with basic
statements. We define:

�(u, cmd, v)��(R) = {R}
�(u, get(r), v)��(R) = {R ∪ {r}}
�(u, rel(r), v)��(R) = {R \ {r}}

Additionally, we require an abstract composition operator ◦�
which, for abstract mappings M1,M2 : 2Res → 22Res , returns
the function defined by the following equation:

(M2 ◦� M1)(R) =
⋃

{M2(R
′) | R′ ∈ M1(R)}

As with the concrete semantics we compute the effect of procedures
depending on resource sets they are called with. The functions
�f�� : 2Res → 22Res , f ∈ Proc, then are given by the least solution
of the following constraint system:

[S�0] S[fe]
� � I� f ∈ Proc

[S�1] S[v]� � �(u, s, v)�� ◦� S[u]� (u, s, v) ∈ E

[S�2] S[v]� � �f�� ◦� S[u]� (u, f(), v) ∈ E

[S�3] �f�� � S[fr]
�

where the function I� is given by I�(R) = {R}. No constraints
have been included to deal with interrupts: the reason is that inter-
rupts do not change sets of held resources.

For determining the sets of reaching resource sets, we require
an abstract application operator @� which applies a mapping M :
2Res → 22Res to a set of resource sets S ∈ 22Res as follows:

M@�S =
⋃

{M(R) | R ∈ S}
For approximating the sets of resource sets reaching a node v at

static priority level i, we consider the following constraint system:

[R�0] R[qe, j]
� ⊇ {∅} q∈Task, j=P(q)

[R�1] R[v, j]� ⊇ �(u, s, v)��@�R[u, j]� (u, s, v) ∈ E

[R�2] R[v, j]� ⊇ �f��@�R[u, j]� (u, f(), v) ∈ E

R[fe, i]
� ⊇R[u, i]� (u, f(), v) ∈ E

Note that the constraints R�0 not only provides an abstract start
value for the entry node of main , but also for the entry nodes of
all interrupts q ∈ Irpt. This is because every interrupt may occur,
for example at the exit node of main , and will always start with
the empty resource set. Note further that for reachability, we have
kept the information i about the static priority at which a node
is reached, in order to be able to determine its possible dynamic
priorities.

In order to relate the concrete and abstract semantics of pro-
grams, we introduce appropriate abstraction functions α : (2Res →
2ΠS ) → (2Res → 22Res) and ᾱ : 2ΠR → 22Res . These are given by

α(M)(R) = {R(π,R) | π ∈ M(R)}
ᾱ(X) = {R(π̄, ∅) | π̄ ∈ X}
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The following theorem states that the resource sets computed by
the above constraint systems not only safely over-approximate the
set of resources attained by the collecting semantics, but the com-
putations are precise w.r.t. the concrete semantics.

Theorem 1. 1. Let �f� j,S[v, j] and �f��,S[v]� denote the least
solutions of the constraint systems S and S�, respectively. Then
for every procedure f , static priority i, and program point v,

α(�f� j) = �f�� α(S[v, j]) = S[v]�

2. Let R[v, j] and R[v, j]� denote the least solutions of the con-
straint systems R and R�, respectively. Then for every program
point v and possible static priority j,

ᾱ(R[v, j]) = R[v, j]�

Proof. For the proof, we observe that for every edge e = (u, s, v),

α(�e�) = �e��

Also for composition of functions M1,M2 : 2Res → 2ΠS , we have:

α(M2 ◦M1) = α(M2) ◦� α(M1)

Since furthermore, the abstract functions �e��, as well as the op-
eration ◦� are completely distributive, i.e., commute with arbitrary
least upper bounds, the first assertion of the theorem follows by fix-
point induction. A similar argument applies to the second statement
of the theorem.

Let n denote the sum of the number of program points and control
flow edges, and o the number of resources used by the program.
Recall that p is the number of static priority levels. Then the number
of constraints in the systems S� and R� are bounded by O(p · n).
Since the height of the lattice 2Res → 22Res is exponential in the
number of resources, the least solution of these systems can be
computed by a standard work-list algorithm in time O(p · n · 2co)
for some constant c.

Typically, the number of resources used by embedded con-
trollers are quite small. A practical implementation still may tab-
ulate functions �f�� only for those (i, R) of static task priorities i
and resource sets R for which the procedure f may be called at run-
time. Also, elements in 22Res can be naturally modeled by Boolean
functions which in turn can be efficiently operated on, if these are
represented through ordered binary decision diagrams.

The example program in Figure 1 does not use any procedures,
which means we have to look at the constraint R�0 and R�1 only.
Furthermore, each node is only reached with the static priority of
its task. Therefore we directly obtain the following results:

Node [I′e, 3] [I′1, 3] [I′2, 3] [I′r , 3]
Result {∅} {{r′}} {{r′}} {∅}

Node [Ie, 2] [I1, 2] [I2, 2] [I3, 2] [Ir, 2]
Result {∅} {{r}} {{r}} {{r}} {∅}

Node [Te, 1] [T1, 1] [T2, 1] [T3, 1] [T4, 1]
Result {∅} {{r′}} {{r′}} {{r′}} {∅}
Node [T5, 1] [T6, 1] [T7, 1] [T8, 1] [T9, 1]
Result {{r}} {{r}} {{r}} {∅} {∅}
Node [T10, 1] [T11, 1] [Tr, 1]
Result {{r}} {{r}} {∅}

3.1 Flow-independent Must-resource Analysis

One interesting class of PCP programs consists of all programs
where the set of held resources at a program point v does only
depend on the set of resources held at the entry point of a procedure
f but not on the concrete execution path reaching v. More precisely,

we demand that for every procedure f and set of resources R,
the set S[v, j]�(R) is a singleton set {R′}. These programs are
said to have flow-independent resource sets. Such programs can be
analyzed more efficiently, while still being precise w.r.t our model.

The analysis presented above can be further abstracted to com-
pute not all possible resource sets, but the set of definitely held
resource. The domain is then simplified to 2Res ordered by superset
inclusion (⊇) and intersection as the least upper bound. Since every
program point is reachable by some same-level execution path, no
dedicated bottom element is required to denote unreachability. We
consider the abstraction functions αm : (2Res → 22Res) → (2Res →
2Res) and ᾱm : 22Res → 2Res given by:

αm(M)(R) =
⋂

M(R) ᾱm(S) =
⋂

S

where
⋂ ∅ is defined as Res. The resulting analysis is called must

resource analysis. The abstract functions �e��m : 2Res → 2Res for
edges e = (u, s, v) corresponding to this analysis are given by:

�(u, cmd, v)��m(R) = R

�(u, get(r), v)��m(R) = R ∪ {r}
�(u, rel(r), v)��m(R) = R \ {r}

Note that these now are functions of the general format g(R) =
R \K ∪G for suitable constant sets K,G. Let F denote the set of
all these functions. This lattice is well known for gen-kill bit-vector
analyses [12]. Since also the abstract composition of functions as
used by the constraint system S�, for must resource analysis be-
comes ordinary composition of functions, must resource analysis
for PCP programs can be performed by means of an interprocedural
gen-kill approach. Similarly the abstract function application, be-
comes ordinary function application. Let S�

m denote the constraint
system over the complete lattice F corresponding to S�.

Theorem 2. Assume that �f��,S[v]� and �f��m,S[v]�m are the
least solutions of S� and S�

m, respectively, where S[v]�(R) �= ∅ for
all program points v, and resource sets R. Then for every procedure
f , and program point v,

αm(�f��) = �f��m αm(S[v]�) = S[v]�m

The proof is analogous to the proof of Theorem 1. The non-
emptiness assumptions are required as the functions from F only
commute with non-empty least upper bounds (since

⋂ ∅ = Res).
In the analysis results of the example program of Figure 1

presented above every set of resource sets, has only one element.
This is the case because the example program is flow-independent.
Applying αm in this case just removes the extra pair of set brackets.
For the interrupt I ′ we obtain e.g.:

Node [I′e, 3] [I′1, 3] [I′2, 3] [I′r, 3]
Result ∅ {r′} {r′} ∅

For programs with flow-independent resource sets satisfying as-
sumption (S), we obtain:

Corollary 1. Assume that all resource sets are flow-independent.
Assume that �f�,S[v, i] and �f��m,S[v]�m are the least solutions
of the constraint systems S and S�

m, respectively. Then for every
program point v, possible static priority i and resource set R,

α(�f� i)(R) = {�f��m(R)} α(S[v, i])(R) = {S[v]�m(R)}
The least solution to the system S�

m can be computed in O(n · o)
if operations on resource sets (bit vectors) are counted for O(1).
In case a program with flow-independent resource sets consisting
solely of tasks, each program node needs to be analyzed for only a
single context, the static priority of its task and the empty resource
set. However, a node inside a procedure can be reached not only
with different static priorities but also with several distinct resource
sets. In order to deal with this situation, we propose to combine the

97



summary functions �f��m (which can be computed in polynomial
time) with the constraint system R�. This is possible since, by
Corollary 1, the functions �f�� can be recovered from the functions
�f��m by: �f��(R) = {�f��m(R)}.

4. Data Races
In this section, we apply the results from the last section to detect
data races in PCP programs. One can think of a task using its
dynamic priority to defend against interfering interrupts. Interrupts
use their static priority to attack other tasks. Note that it is the static
priority of an interrupt q which decides whether q may interfere
with the computation of another task executing at a given dynamic
priority level. We there refer to the dynamic priority level protecting
an access as defensive priority and the static priority level of an
access as its offensive priority.

Definition 3. Assume that R[v, i]� denotes the least solution to the
constraint system R�. We define:

Po(x) =
∨

{P(q) | x ∈ Acc(q), q ∈ Irpt}
Pd(x) =

∧
{P(R) ∨ i |

(u, cmd, v) ∈ E, x ∈ Acc(cmd), R ∈ R[v, i]� �= ∅}
Where ∧ and ∨ denote minimum and maximum, respectively.

These functions map global variables to their offensive and
defensive priorities, respectively. We have:

Theorem 3. If the program satisfies assumption (S), a data race
occurs at x if and only if Po(x) > Pd(x).

Proof. First we assume that we are given an execution path
π̄(u, s, v)〈q〉π〈/q〉 ∈ R[v, i] for some static priority i where π̄ is
an execution path reaching program point u, π is a same-level exe-
cution path of the interrupt q, (u, s, v) accesses the global x and π
also contains an access to x. Let R = R(π̄, ∅) denote the resource
set held when reaching v along π̄(u, s, v), and j = i ∨ P(R) de-
note the corresponding dynamic priority. Since the interrupt q may
occur after the execution of π̄, we have j < P(q). By Theorem
1, R ∈ R[v, i]�. Therefore, Pd(x) ≤ j < P(q) ≤ Po(x). Con-
versely assume that Po(x) > Pd(x). This means that there is an
interrupt q of priority Po(x) which has a same-level execution path
π containing an access to the global x. Furthermore, there is an
edge (u, cmd, v) accessing x together with a static priority i and
resource set R ∈ R[v, i]� such that P(R) ∨ i = Pd(x) < P(q).
Since R[u, i]� gathers all resource sets possibly reaching u and
cmd may not change resource sets, R is also contained in R[u, i]�.
Therefore by Theorem 1, there exists an execution path π̄ reach-
ing u at static priority i with R(π̄, ∅) = R. It follows that
π̄(u, cmd, v)〈q〉π〈/q〉 is a reaching execution path from R[v, i],
and we have a data race at x.

If the program has flow-independent resource sets, and all ac-
cesses are reachable, an equivalent result can be achieved using the
cheaper must-resource analysis R�

m. In a general setting this would
still yield a safe over-approximation of data races. For the example
program in Figure 1, Po(x) and Pd(x) are as follows:

Po(x) = Po(y) = 2 Po(z) = 3

Pd(x) = Pd(y) = 2 Pd(z) = 1

This means that x and y are safe, but there is a data race at z. Which
is due to I ′ being possible at T9. More generally we can say, that
an access to x or y is safe at a defensive priority of 2 and higher,
while z requires priority 3 or more.

5. Analyzing Transactionality
Nontransactional behavior occurs when a fragment of a program
which is meant to be executed atomically is interrupted by a task
which accesses data manipulated by this fragment. A write access
of the interrupting task may result in inconsistent data for the
program fragment, while a read access may supply the interrupt
with inconsistent data. In the example in Figure 1 the main task
switches the value of x and y and whenever accessing either one
it holds the resource r guaranteeing exclusive access. However, it
releases the resource between the two operations, which allows the
interrupt I to modify x and y. However the old value of x is still
stored in the local variable t which is used later to overwrite y.
This is an instance of the nontransactional behavior described by
Definition 2.

These problems are avoided if the defensive priority is suffi-
ciently large not only for a single access, but for the whole pro-
gram fragment in question. There are several subtle points to be
taken into account. One point is, that a procedure may have leading
and trailing parts which do not access globals. These parts should
not influence the defensive priority of the procedure. Another one
point is, that there can be calls to other procedures which might
release a held resource and then, perhaps, acquire it again. This in-
fluences the defensive priority of the caller, no matter where in the
callee the temporary decrease in priority occurs.

5.1 Tasks Without Procedures

Let us first consider PCP programs with tasks, but no procedure
calls. Thus, transactional behavior may refer to tasks only. Assume
that q is such a task with static priority j. Assume further that for
every program point v of q, we are given a set S[v]�m(∅) ⊆ Res
of (definitely) held resources when reaching program point v. In
particular, S[qe]�m(∅) = ∅. These sets allow to compute a (lower
bound to) the dynamic priority of q when reaching program point
v. This value is given by:

P[v] = P(q) ∨ P(S[v]�m(∅))
Let [p]∗ = {0, . . . , p}∪{∞} equipped with the reverse natural or-
dering ≥. For convenience, we denote the componentwise ordering
on pairs from [p]2∗ by ≥ as well.

For each program point v, we determine values S[v]�t ∈ [p]2∗
where the first component of S[v]�t is the minimal dynamic prior-
ity attained on execution paths reaching v between the first and the
last access to a global. It equals ∞ if and only if no global has been
accessed so far. The second component is the minimal dynamic pri-
ority attained after the first access. The pairs S[v]�t are characterized
as the least solution (least w.r.t. to the ordering ≥) of the following
constraint system:

S[qe]
�
t ≤ (∞,∞)

S[v]�t ≤ let (a1, a2) = S[u]�t
in let a = P[v] ∧ a2

in (a2, a)
(u, s, v) control-flow edge with Acc(s) �= ∅

S[v]�t ≤ let (a1, a2) = S[u]�t
in let a = if a2 < ∞ then P[v] ∧ a2

else ∞
in (a1, a)
(u, s, v) control-flow edge with Acc(s) = ∅

Let Pd(q) be the first component of S[qr]
�
t . Then the task q is

transactional, if and only if Pd(q) ≥ Po(x) holds for all globals x
accessed by q. Where Po(x) is the offensive priority of the global
x as defined in Definition 3. In case that the PCP program has
flow-independent resource sets, also the reverse implication holds.
We will not prove these statements here, since they follow from
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Figure 2. Priority ranges.

the corresponding properties of the more general interprocedural
setting presented in the next subsection. Instead, we consider our
introductory example.

Applying the analysis to the example program from Figure 1,
we obtain the following results (showing only selected nodes):

Node T2 T5 T8 Tr Ir I′r
Priorities (3, 3) (1, 1) (1, 1) (1, 1) (2, 2) (3, 3)

In each task, the return point is reachable from every program point
of the task. Therefore, the defensive priorities are given by:

Pd(T ) = 1 Pd(I) = 2 Pd(I
′) = 3

We conclude that I ′ and I are transactional, since the sets of
variables accessed by I and I ′ are disjoint, but T is not, since the
offensive priority, e.g., of z exceeds 1. Note that if z is removed
from the program, our analysis still detects that the task T does not
swap x and y transactionally.

5.2 Tasks With Procedures

In presence of procedure calls, the dynamic priority when reaching
a program point v of some procedure f , may depend on the static
priority j of the task which executes f as well as the set R of
resources held when f has been called. Let S[v]�m(R) denote the
set of resources which are (definitely) held when reaching program
point v. Then (a lower bound to) the dynamic priority of v is given
by j ∨ P(S[v]�m(R)).

Moreover, two values per program point do no longer suffice for
analyzing transactionality, since we cannot exclude procedure parts
before the first or after the last access to a global when a procedure
is called. Therefore, we determine four values a1, a2, a3, a4. The
first two components correspond to the two components which have
been used in absence of procedures. Thus, the priority a1 is the
lowest priority attained between the first and the last access to some
global variable, and a2 is the lowest priority attained after the first
access to a global. As before, a1 receives the value of a2 at every
access to a global. At the return node of a procedure, the value of
a1 denotes the procedure’s defensive priority.

Additionally, we compute the lowest priority obtained before
the last access to a global variable in component a3. For that, the
component a4 tracks the lowest priority encountered altogether.
The component a3 then receives the value of component a4 at every
access to a global. This is illustrated in Figure 2.

Let D denote the set of all quadruples (a1, a2, a3, a4) ∈ [p]4∗
where a1 ≥ a2∨a3 and a4 ≤ a2∧a3. Let the ordering on D again
be the componentwise extension of the reverse natural ordering ≥
on quadruples. The minimal element w.r.t. this ordering thus is
given by (∞,∞,∞,∞) which signifies the empty set of same-
level execution paths. The abstract effect �(u, s, v)��t : [p]× 2R →
D of a control-flow edge (u, s, v) is defined by:

�(u, s, v)��t(j, R) =⎧⎪⎨
⎪⎩
(∞, j ∨ P(R), j ∨ P(R), j ∨ P(R)) Acc(s) �= ∅
(∞,∞,∞, j ∨ P(R\{r})) s ≡ rel(r))

(∞,∞,∞, j ∨ P(R)) otherwise

The tuple �(u, s, v)��t(j, R) collects the defensive priorities of the
execution of s with resource set R at static priority j.

The following constraint system characterizes the defensive pri-
orities for triples (u, j, R) of nodes u, static priority level j and re-
source sets R. The resource set R denotes the set of resources held,
when the current procedure has been called. Similarly for non-task
procedures, j denotes the static priority of the calling task.

[S�t0] S[qe, j, ∅]�t ≤ (∞,∞,∞, j) q ∈ Task, j = P(q)

S[fe, j, R]�t ≤ (∞,∞,∞, j ∨ P(R)) f /∈ Task, j ∈ [p]

[S�t1] S[v, j, R]�t ≤ (�(u, s, v)��t (j,S[u]
�
m(R))) ◦�t S[u, j, R]�t

(u, s, v) ∈ E

[S�t2] S[v, j, R]�t ≤ (�f��t(j,S[u]
�
m(R))) ◦�t S[u, j, R]�t

(u, f(), v) ∈ E

[S�t3] �f��t j R ≤ S[fr, j, R]�t

where abstract composition ◦�t : D× D → D is defined by:

(b1, b2, b3, b4) ◦�t (a1, a2, a3, a4) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∞,∞,∞,∞) a4 ∨ b4 = ∞
(a1, a2, a3, a4 ∧ b4) a2 = ∞ = b2
(b1, b2, a4 ∧ b3, a4 ∧ b4) a2 = ∞ �= b2
(a1, a2 ∧ b4, a3, a4 ∧ b4) a2 �= ∞ = b2
(a2 ∧ b3, a2 ∧ b4, a4 ∧ b3, a4 ∧ b4) a2 �= ∞ �= b2

Note that a quadruple represents an execution path containing an
access to some global if and only if the second component is less
than ∞. Let (c1, c2, c3, c4) = (b1, b2, b3, b4) ◦�t (a1, a2, a3, a4).
The abstract composition then is defined by case distinction on
whether the represented execution paths contain accesses to globals
or not. Assume for example the fourth case, i.e., that a2 �= ∞ and
b2 = ∞. Thus, the right quadruple represents an execution path π
containing an access, while the left quadruple represents execution
paths π′ which do not access globals. In this case, c1 = a1 because
first and last accesses in π π′ both are contained in π. Furthermore,
c2 = a2∧b4 as the dynamic priorities encountered during the entire
path π′ occur after the first access to a global. The third component
is c3 = a3, since the last access to a global occurs in π. Finally, the
fourth component is c4 = a4 ∧ b4 since this component provides
the minimal dynamic priority encountered during the whole path
π π′. The other cases are analogous with the exception of the first
case, which takes care of bottom values. We have:

Proposition 1. The abstract composition ◦�t : D × D → D is
distributive in each argument, i.e., for all a, b, c ∈ D,

c ◦�t (a ∧ b) = (c ◦�t a) ∧ (c ◦�t b)
(a ∧ b) ◦�t c = (a ◦�t c) ∧ (b ◦�t c)

Proof. Let a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) and c =
(c1, c2, c3, c4). Consider the first assertion of the proposition If
a2 = b2, then the same case of the composition applies to c◦�t(a∧b)
as well as to c ◦�t a and c ◦�t b, and the assertion follows by
idempotency, commutativity and associativity of the minimum ∧.
Accordingly, assume that w.l.o.g. a2 = ∞ and b2 �= ∞. If
c2 = ∞, we obtain:

c ◦�t (a ∧ b) = (a1 ∧ b1, a2 ∧ b2 ∧ c2, a3 ∧ b3, a4 ∧ b4 ∧ c4)

c ◦�t a = ( a1 , a2 , a3 , a4 ∧ c4 )

c ◦�t b = ( b1 , b2 ∧ c2 , b3 , b4 ∧ c4 )

By inspection of each component, the assertion can be verified. If
on the other hand, c2 �= ∞, we obtain:

c ◦�t (a∧b) = (a2∧b2∧c3, a2∧b2∧c4, a4∧b4∧c3, a4∧b4∧c4)

c ◦�t a = ( c1 , c2 , a4 ∧ c3 , a4 ∧ c4 )

c ◦�t b = ( b2 ∧ c3 , b2 ∧ c4 , b4 ∧ c3 , b4 ∧ c4 )
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In order to prove the assertion, it only must be proven for the first
two columns that:

a2 ∧ b2 ∧ c3 = c1 ∧ b2 ∧ c3 a2 ∧ b2 ∧ c4 = c2 ∧ b2 ∧ c4

Recall that a2 = ∞. Since by assumption on the quadruples in
D, c1 ≥ c3 and c2 ≥ c4, these equalities hold. This completes
the proof of the first assertion. The proof of the second assertion is
analogous.

Assume that S[v, j, R]�t and �f��t j R is the least solution of the
constraint system S�

t . Assume further that Po(x) is the offensive
priority of the global x as defined in Definition 3. Then we have:

Theorem 4. Assume that assumption (S) is satisfied, i.e., all pro-
gram points are reachable by some same-level execution path. For
a procedure f of a program with control-flow independent resource
sets, a static priority j and a resource set R, let (a1, a2, a3, a4) =
�f��t(j, R). Then the procedure f called with resource set R at
static priority level j is nontransactional, if and only if there ex-
ists a global variable x ∈ Acc(f) with Po(x) > a1.

Proof. For a given static priority level j and an initial resource set
R, we assign to each same-level execution path π not containing
interrupts, a priority tuple (b1, b2, b3, b4) = αt(π, j, R) ∈ D where
b1 is the minimal dynamic priority between the first and the last
access to a global in π; b2 is the minimal dynamic priority after
the first access to the end of π; b3 is the minimal dynamic priority
from the beginning of π to the last access to a global; and b4
is the minimal dynamic priority through π. By the definition of
�(u, s, v)��t and ◦�t , the tuple αt(π, j, R) is inductively defined by:

αt(ε, j, R) = (∞,∞,∞, j ∨ P(R))

αt(π1(u, s, v), j, R) =

�(u, s, v)��t(j,R(π1, R)) ◦�t αt(π1, j, R)

αt(π1〈f〉π2〈/f〉, j, R) = αt(π2, j,R(π1, R)) ◦�t αt(π1, j, R)

We extend the mapping αt to sets S ⊆ ΠS of same-level execution
paths by:

αt(S, j, R) =
∧

{αt(π, j, R) | π ∈ S}
Note that according to this definition, αt(S, j, R)=(∞,∞,∞,∞)
if and only if S = ∅. Let S[v, j]′(R) denote the set of same-level
execution paths at static priority j and initial resource set R reach-
ing v which do not contain interrupts. These sets can be character-
ized by a constraint system S′ which is obtained from constraint
system S characterizing all same-level execution paths by remov-
ing the constraints S3. By definition, the operator ◦�t preserves the
least element. Since by Proposition 1, ◦�t is also distributive in each
argument, it follows that αt(S[v, j]

′(R), j, R) = S[v, j, R]�t for all
program points v.

Now assume that the procedure f is nontransactional at static
priority level j and initial resource set R, i.e., there is an execution
path 〈f〉 π1 〈q〉 π 〈/q〉 π2〈/f〉 ∈ �f�(j)(R) such that π1π2 ∈
S[fr, j](R) is a same-level execution path containing no interrupts;
π is a same-level execution path of the interrupt q; both π1 and
π2 contain an edge accessing a global; and π contains an edge
which accesses a global variable x ∈ Acc(f). Thus in particular,
Po(x) ≥ P(q). Let αt(π1π2, j, R) = (b1, b2, b3, b4). Since the
interrupt q may occur between the two global accesses in π1 and
π2, we have P(q) > b1. From the definition of αt we obtain that:

(b1, b2, b3, b4) ≥ (a1, a2, a3, a4) = �f��t(j, R)

Therefore,

Po(x) ≥ P(q) > b1 ≥ a1

I ′e33 I ′1 I ′2 I ′r

Ie22 I1 I2 I3 Ir

Te11 T1 T2 T3 T4 Tr

fe f1 f2 f3 f4 f5

frge g1 g2 gr

get(r′) z=20 rel(r′)

get(r) y++ x-- rel(r)

get(r′) x=10 y=0 rel(r′) f()

get(r) t=x+y x=t-x g() y=t-y

rel(r)
rel(r) z=t*2 get(r)

Figure 3. Example program with procedures.

Conversely assume that �f��t(j, R) = (a1, a2, a3, a4) and there
is a global x ∈ Acc(f) such that Po(x) > a1. This means that
a1 < ∞, and that there is an interrupt q with P(q) = Po(x) >
0 = P(main) which has a same-level execution path π which
accesses x. Since a4 ≤ a1 < ∞, Recall that

S[fr, j, R]�t = αt(S[fr, j]
′(R), j, R)

=
∧{αt(π

′, j, R) | π′ ∈ S[fr, j]
′(R)}

Therefore, there exists an interrupt-free same-level execution path
π′ ∈ S[fr, j]

′(R) such that a1 equals the first component of
αt(π

′, j, R). Since a1 < ∞, there exist at least two accesses to
globals in π′. Moreover, π′ can be factored into π′ = π1π2 where
π1 and π2 both contain at least one access to a global and the dy-
namic priority after π1 equals a1. Since P(q) > a1 interrupt q may
occur between π1 and π2. Thus by Definition 2, f is not transac-
tional when called at static priority j with resource set R.

For programs with flow-dependent resource acquisition, this anal-
ysis still yields a safe over-approximation, i.e., transactional proce-
dures may be considered as possibly nontransactional, but not the
other way round. Alternatively, the flow-precise resource analysis
S� could be used to obtain more precise results.

Consider the example program of Figure 3 where the part of
T after the initialization has been wrapped into the procedure f
and the nodes T9 to T10 of the original example program have
into procedure g. The procedure g is transactional since it only
contains one access to a global variable. The procedure f holds
the resource r at all nodes between its first and last access to a
global variable. However the call to g compromises the transaction-
ality of f since it temporarily releases r. The analysis presented
above captures this behavior. For the procedure g called at static
priority 1 with resource set {r} we obtain the following summary:
�g��t(j, {r}) = (∞, 1, 1, 1). When applied to the tuple reaching f3
we have: (∞, 1, 1, 1) ◦�t (2, 2, 1, 1) = (1, 1, 1, 1). Since tuple en-
tries may not increase, this tuple is then carried over to fr and with
Pd(x) = 2 we see that f is not transactional.

6. Linear Equalities For PCP Programs
The resource analysis presented in Section 3 need not explicitly
deal with interrupts. The reason is that interrupts neither change
sets of held resources nor affect the current priorities of tasks.
Values of globals on the other hand, can be affected by interrupts.

Fortunately, summary-based interprocedural analyses [28] can
be adapted to resource aware value analyses of PCP programs
rather easily. As a prototypic example we extend the approach
presented in [21] for analyzing linear equalities to take resources
and interrupts into account. The goal of this analysis is to compute
the linear closure of extended states of the collecting semantics.
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For simplicity, we restrict ourselves to PCP programs with flow-
independent resource sets.

Let X = {x1, . . . , xk} denote the set of global variables, where
k = |X| is the number of global variables. We consider affine
assignments of the form xj := t0 + Σk

i=1ti · xi with ti ∈ Q. We
write V for the complete lattice of linear subspaces of (k+1)×(k+
1) matrices over the rationals Q. Each matrix A describes the effect
of an execution onto the global state. Thereby, each global state is
represented by a vector v = [v0, . . . , vk]

T ∈ Qk+1 where v0 = 1
and for i > 0, vi records the value of the variable xi. We write
V ′ for the complete lattice of linear subspaces of (k + 1) vectors
over the rationals Q. The extra component v0 allows to linearize
affine transformations. A set S ⊆ Q(k+1)×(k+1) of transformation
matrices is abstracted by the linear space SpanS∈V of all linear
combinations of matrices in S.

The concrete resource sensitive semantics �(u, s, v)�l : 2
Res →

Q(k+1)×(k+1) of an edge is then given by:

�(u, s, v)�l(R) =[
1 | 0 | 0
0 | Ij−1 | 0
t0 | t1 ... tk
0 | 0 | Ik−j

]
s = xj := t0 +Σk

i=1ti · xi

�(u, s, v)�l(R) = Ik+1 otherwise

Where Im denotes the m-dimensional identity matrix. Note, that
the resource parameter is not used here, but might be in another
instance of the framework and is therefore given for completeness.

The resource sensitive semantics of an execution path π ∈ Π is
defined as follows:

�ε�l = Ik+1

�eπ′�l = �π′�l · �e�l
�〈f〉π1〈/f〉π2�l = �π2� · �π1�l

�〈f1〉π1 . . . 〈fs〉πs�l = �πs�l · . . . · �π1�L

The concrete resource sensitive collecting semantics R[u, i]l :
2Res → Qk+1 of a program point u and static priority level i is
then given by:

R[u, i]l(R) = {�π̄�(x) | R = R(π̄, ∅), x ∈ Q
k+1, π̄ ∈ R[u, i]}

As in [21] we approximate this by its span, i.e.:

R[u, i]�l (R) = Span(R[u, i]l(R))

We define the abstract semantics �e��l : 2Res → V by �e��l (R) =
Span{�e�l(R)}. Since in the end we are interested in equalities
holding at a program point, we can model non-affine assignments,
xj =?, by assignments of all constant values. For the abstract
semantics we therefore have:

�xj :=?��l (R) = Span

{[
1 | 0 | 0
0 | Ij−1 | 0
0 | 0 | 0
0 | 0 | Ik−j

]
,

[
1 | 0 | 0
0 | Ij−1 | 0
1 | 0 | 0
0 | 0 | Ik−j

]}

To each procedure f , we assign an abstract function �f��l : [p] →
2Res → V which summarizes the abstract effect of f . These effects
are characterized by the least solution of the constraint system:

[S�
l 0] S[fe, i, R]�l ⊇ I

[S�
l 1] S[v, i, R]�l ⊇ (�(u, s, v)��lR) ◦�l S�

l [u, i, R]�l
(u, s, v) ∈ E

[S�
l 2] S[v, i, R]�l ⊇ (�f��l i (S[u]

�
m (R))) ◦�l S[u, i, R]�l

(u, f(), v) ∈ E

[S�
l 3] S[u, i, R]�l ⊇ �j��l ◦�l S[u, i, R]�l

u /∈ Ne, j > i ∨ P(S�
m[u] (R))

[S�
l 4] �f��l i R ⊇ H�

f (S[fr, i, R]�l )

�j��l ⊇ �q��l j ∅ q ∈ Irpt, P(q = j)

For two sets of matrices M1,M2 ∈ V , the operator ◦�l :
V × V → V is defined as follows:

M1 ◦�l M2 = Span{A1A2 | A1 ∈ M1, A2 ∈ M2}
By using the precomputed transformers for resource sets, we can
statically check the priority condition including the resource set in-
formation and therefore, for this instance, we do not need a ded-
icated •�l operator performing this check. Instead, we use ◦�l for
interrupts as well. Since we consider global variables only, the op-
erator H�

f which transforms the abstract semantics of a procedure
into the abstract semantics of its call, is simply the identity. For
tasks the resource set parameter R is always the empty set and the
static priority i is the static priority of that task. Thus, if the pro-
gram does not contain procedures, the summaries can be simplified
to vector spaces of matrices.

In the second phase, we compute for every program point v and
static priority i a mapping R�

l [v, i] : 2Res → V ′. For any given
resource set R, this mapping is meant to return the linear hull of all
concrete states x ∈ Qk+1 possibly reaching program point v within
a task with static priority i given the current resource set equals R.
The set of all functions 2Res → V ′ forms a complete lattice w.r.t.
the partial ordering on functions induced by the partial ordering on
V ′. From a basis B of R�

l [u, i](R) for a program point u with static
priority i and resource set R, we obtain the set of valid equalities
t0 +

∑k
i=1 ti · xi = 0 as the set of solutions of the system

t0 · b0 + . . .+ tk · bk = 0 , (b0, . . . , bk) ∈ B

In order to describe the effect of a procedure f for this second
phase, we rely on two ingredients:

• the summary �f��m computed by same-level must resource
analysis, which records how the execution of f may change
the sets of held resources, and

• the summary �f��l computed by the same-level analysis of lin-
ear transformations in the first phase, which for each static pri-
ority i and resource set before the call returns the vector space
of possible linear transformations.

This yields the following constraint system:

[R�
l 0] R[maine , 0 ]�l � M0

[R�
l 1] R[v, i]�l � (�e��l , �e�

�
m)@�

lR[u, i]�l
e = (u, s, v) ∈ E

[R�
l 2] R[v, i]�l � ((�f��l i), �f��m)@�

lR[u, i]�l
(u, f(), v) ∈ E

R[fe, i]
�
l � enter�f,l(R[u, i]�l ) (u, f(), v) ∈ E

[R�
l 3] R[u, i]�l � �j��l@

�
j,lR[u, i]�l u /∈ Ne, j > i

R[j]�l � proj�j,l(Rl[u, i]) u /∈ Ne, j > i

R[qe, j]
�
l � enter�q,l(R[j]�l ) q ∈ Irpt, P(q) = j

Here, M0 is the mapping which assigns the full vector space Qk+1

to the empty resource set R = ∅ and the zero space {0} to all
resource sets R �= ∅. The operator @�

l : ((2Res → V ′) × (2Res →
2Res))× (2Res → V ′) → (2Res → V ′) is defined by:

((M,h)@�
lφ)(R

′) =

Span{Ax | R′ = h(R), A ∈ M(R), x ∈ φ(R)}
Since we consider global variables only, the function enter�f,l is the

identity function, i.e., enter�f,l φ = φ.

In the constraint R�
l3, a modified version of the application and

the enter operator are required which take into account that an
interrupt q can only be enabled if the static priority of q exceeds the
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dynamic priority at a given program point. Therefore, we define:

(M@�
j,lφ)R = Span{Av | A ∈ M(∅), v ∈ φ(R), j > P(R)}

(proj�j,lφ)R =

{
Span{v ∈ φ(R′) | j > P(R′)} if R = ∅
{0} otherwise

In any case we have the following theorem:

Theorem 5. Assume that the PCP program has flow-independent
resource sets and satisfies (S) Let furthermore S[v, i], �f� and
S[v, i, R]�l , �f��l , S[v]

�
m, �f��m as well as R[v, i]�l denote the least

solutions of the constraint systems S, S�
l , S�

m, and R�
l , respectively.

Then the following holds:

1. For every program point v, static priority i, resource set R and
procedure f ,

Span{�π�l | π ∈ S[v, i](R)} = S[v, i, R]�l

Span{�π�l | π ∈ �f� i R} = �f��l i R

2. For every program point v, static priority i and resource set R

Span{�π̄�l(x) | π̄ ∈ R[v, i], x ∈ Q
k+1,R(π̄, ∅) = R} =

R[v, i]�l (R)

For the constraint system S�
l we have at most n ·p2 ·2o constraints.

Using the techniques from [21], this implies that the least solution
can be computed in time O(n ·p2 ·2o ·k8). This is a smooth gener-
alization of the results obtained in [21] to the case of programs with
interrupts and resources. Note that a practical implementation may
explore the given constraint systems in a demand-driven fashion
such that only those resource sets are considered which actually
are necessary for computing the reachability information as pro-
vided by the least solution of R�

l . For the special case of tasks only
without auxiliary procedures, this means that the factor 2o can be
dropped completely.

We exemplify our analysis for the example program in Figure 1.
Due to their non-deterministic nature, interrupts may occur arbitrar-
ily often, creating an infinite number of program executions for a
given program point, each corresponding to linear transformations
of the state vectors. Since we are only interested in the linear hull
of these transformations, it suffices to maintain a basis of the gen-
erated sub-space of matrices. Accordingly, we obtain the following
summaries for the interrupts I and I ′:

�I ′��l (3, ∅) = Span

{[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
20 0 0 0 0
0 0 0 0 1

]}

�I��l (2, ∅) = Span

{[
1 0 0 0 0
−1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
,

[
1 0 0 0 0
−1 1 0 0 0
1 0 1 0 0
20 0 0 0 0
0 0 0 0 1

]}

These transformations can be applied to compute the subspace of
possible values for each program point of the main task. For T4, we
obtain:

R[T4, 1]
�
l∅ = Span

{[
1
10
0
0
0

]
,

[
0
1
−1
0
0

]
,

[
0
0
0
1
0

]
,

[
0
0
0
0
1

]}

The second vector is due to the potential occurrence of the
interrupt I . The interrupt I ′ has no impact, since I ′ is not enabled
and there are no restrictions on the value of z, at T4. From the basis
we obtain the system of equalities:

1 · t0 + 10 · t1 = 0
1 · t1 + (−1) · t2 = 0

1 · t3 = 0
1 · t4 = 0

Solving this yields the equality x + y = 10. Overall we have the
following equalities:

Node Example Equalities
T3 x = 10, y = 0, x+ y = 10
T4, T5 x+ y = 10
T6 t = x+ y = 10
T7 x− y + t = 0
T8 z = 10
T9, . . . , Tr z = 20, t = 10
I ′2, I

′
r z = 20

This means that at the end of the main task T and the interrupt I ′,
the equality z = 20 holds. Moreover, the equality 10 = x+y holds
although interrupts may freely occur at nodes T4 and T5. Finally,
the local variable t equals 10, once it has been written. Note that
the equalities for z and t cannot be guaranteed in I , since I may
occur at node T3 where both variables may still be uninitialized.

Note that while this analysis directly fits into the framework,
it is also possible to use analyses, which for example use infi-
nite lattices, evaluate branching conditions, or even are unable to
provide closed function summaries. For infinite lattices one would
use a demand-driven local solver ([9]) and possibly widenings ([6].
The branching conditions could be added to the flow-graph and the
framework semantics extended to treat them as nops while allowing
the concrete analysis instance to fully evaluate them. Finally sum-
mary functions can be handled by tabulating them. This technique
is used in the Goblint analyzer and proved to be very useful.

7. Implementation
The data race and transactionality analyses from Sections 4 and 5,
respectively, have been implemented in the analyzer Goblint for
multi-threaded C [31]. This analyzer framework is based on a local
fixpoint engine and provides basic analyses such as constant prop-
agation and alias analysis, which then can be enhanced with addi-
tional specific domains and transfer functions. The analyzer differ-
entiates between read and write accesses in order to avoid read-read
warnings. Beyond the path-based approach presented in sections 4
and 5, Goblint takes conditions into account whenever possible. By
that, the analysis may exclude some unrealizable execution paths
and therefore may raise less false alarms.

The test suite consists of sample programs from the nxtOSEK
implementation [29] together with our own examples. Program
biped robot is part of the control software of a self-balancing
two wheeled robot, which uses resources to synchronize the bal-
ancing with remote control commands. The programs xxx test
are examples for preemptive scheduling (pe), resource synchro-
nization (res), time-triggered tasks (tt) and usb communication
(usb). Each of these tests uses two tasks and one resource. Pro-
grams example and example fun are from Figure 1 and Figure 3,
respectively. Program pingpong consists of two tasks which al-
ternately set a variable to ”ping” and ”pong” synchronizing via a
single resource. Program counter consists of an interrupt which
increases two fields of a struct if an integer flag is set and does noth-
ing otherwise as well as a task which unsets the flag, then prints the
struct and re-sets the flag. The integer flag itself is protected by the
resource.

The results of running the analyzer on these examples are
summarized in Table 1. We ran these experiments on a Intel(R)
Core(TM)2 Quad CPU machine with 3.00GHz under Ubuntu
10.04. The analyzer verifies that the two programs pingpong and
usb test are free of data races. The data races in both versions
of the example program are discovered, as well as the unsafe ac-
cess to counters in pe test and tt test. The race warning in
biped robot occurs since re-running the initialization task is not
ruled out. For counter, race warnings are produced for the fields
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Program Size Time Race Trans.
biped robot 151 lines 0,02 s 1 0
pe test 97 lines 0,06 s 1 1
res test 74 lines 0,03 s 0 1
tt test 101 lines 0,07 s 1 1
usb test 140 lines 0,04 s 0 0
example 38 lines 0,01 s 1 1
example fun 51 lines 0,01 s 1 2
pingpong 53 lines 0,03 s 0 0
counter 58 lines 0,02 s 2 1

Table 1. Result of analyzing example programs

of the struct since they are accessed both by the task and the inter-
rupt without protection with a resource. While we verify that the
integer flag accesses are safe, the analysis presented here approxi-
mates conditional branching with non-deterministic branching and
therefore does not relate the flag value with the accesses to the
struct. Other analyses provided by the Goblint analyzer, however,
may split the execution path based on the value of the flag and thus
may separately analyze the cases for a set and an un-set flag.

Regarding transactionality, the analyzer verifies that the tasks of
usb test and pingpong are transactional. It discovers the viola-
tion of transactionality of the running example and also produces
warnings for pe test and tt test where the race occurs between
accesses to the counter. In res test, a variable whose accesses
are otherwise protected by a resource, is read after the release of
the resource — thus violating our definition of transactionality. In
biped robot, on the other hand, the accesses to globals may be
involved in data races, but are the only accesses to globals in their
respective procedures. Accordingly, transactionality is not violated.
For counter, a transactionality warning is produced, since the re-
source is released between un-setting and re-setting the flag.

All examples are small and therefore analyzed in negligible
time. In order to get an intuition how the analyses scales, we eval-
uated the analyzer on the synthetic benchmarks chain n. While
the estimates for the asymptotic complexity of our analyses grow
exponentially with the number of resources, they depend only lin-
early on the program size. Therefore, we do not expect the pro-
gram size to be the major bottleneck for scalability but the num-
ber of resourced and interrupt levels. Thus, we vary these latter
parameters in the benchmarks. For n ≥ 1, program chain n
has globals x0, . . . , xn, n interrupt levels and n resources which
are used to successively copy the value of the variable xi into
the variable xi−1. The running times of the analyzer for the in-
stances n = 100, 200, . . . , 1000 are shown in Figure 4. For each
of them, the analyzer verified absence of data races and transac-
tionality of all tasks. The increase in run time for these instances
is slightly worse than linear. Even for 1000 interrupt levels and re-
sources, the runtime is still quite acceptable. The source code of
our analyses, all benchmarks, and a script to run them are available
at http://goblint.in.tum.de/popl11.html.

8. Related Work
While the ceiling and inheritance protocols [4, 27] have been for-
mally studied [7, 23], these papers focus on schedulability rather
than data consistency; that is, one assumes the program is cor-
rectly synchronized and characterizes the impact of synchroniza-
tion primitives on meeting hard deadlines as a function of resource
usage. In contrast, we are interested in detecting erroneous use of
these synchronization primitives.

Already simple analysis problems for concurrent programs
with recursion and synchronization are undecidable [24]. Practi-
cal approaches therefore either over-approximate the interaction
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Figure 4. Runtimes of the analyzer on chain n.

between threads, as in thread-modular model checking [10], or
ignore synchronization altogether [5, 8]. Some also place restric-
tions on concurrency. In a number of papers, Kahlon et al. [14–
16] discuss model checking of pushdown systems synchronized
via locks where the usage of locks must be well nested. This ap-
proach has been generalized to pushdown systems with dynamic
thread creation [19, 20]. With the exception, perhaps, of dynam-
ically changing priorities, PCP programs extended with dynamic
task creation can also be cast within the more general model of
multi-set pushdown systems. For these, Atig et al. [2] show that
control point reachability is decidable. Their approach is based on
Petri net reachability and does not support the inference of more
complicated invariants such as linear equalities.

Kidd et al. [18] observe that every priority preemptive system
can be transformed into a pushdown system. Beyond that, they ad-
ditionally represent the schedulers corresponding to synchroniza-
tion protocols as exponentially large pushdown systems. In case of
PCP as well as for priority inheritance with well-nested resource
usage, these two systems can be combined into one pushdown sys-
tem. From that, they conclude that reachability is decidable for PCP
as well as for priority inheritance with well-nested resource usage.
Our approach cannot be applied to priority inheritance directly,
while for PCP, our analysis is exponential only in the number of
resources (not in the number of interrupts).

Summarizing abstract effects of interrupts has also been consid-
ered by Regehr et al. [26] for analyzing stack overflow in assembly
code. Their summaries describe the stack consumption of an inter-
rupt together with the set of interrupts which become enabled/dis-
abled by the execution. Their model does not deal with specific
protocols such as PCP. Additionally, Regehr and Cooprider [25]
present a transformation technique to turn interrupt-driven embed-
ded code into thread-based code and apply off-the-shelf race de-
tection tools to the transformed code. They introduce artificial in-
terrupt locks to make interrupt disabling/(re-)enabling visible to the
analysis. They assume fixed static priorities and suffer from the im-
precision possibly incurred by the thread analyzer. In contrast, our
approach directly exploits the properties of the PCP protocol for
interrupt-driven concurrency and explicitly deals with dynamically
changing priorities. This allows us to handle the set of possible in-
terleavings precisely.

Flanagan et al. [11] present a type system for atomicity in con-
current Java programs. A transactional procedure as defined in this
paper is atomic in their sense since every execution of a transac-
tional procedure that is possibly interrupted has an equivalent se-
rial execution, i.e., no interrupts occur during its execution. This
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atomicity condition is relaxed by Vaziri et al. [30], who provide a
set of problematic access patterns and show that they are complete,
i.e., the absence of all these patterns guarantee that the execution
is serializable w.r.t. the critical variables and demarcated critical
sections. Our notion of transactionality for a procedure f considers
all, potentially accessed, global variables as critical for f where the
critical section of f is the section between the first and last access
to global variables. Kidd et al. [17] provide a static analysis for Java
programs to verify the absence of such patterns in a given program.
Artho et al. [1] give a static analysis to detect stale-value atomicity
violations, i.e., accesses to outdated values of globals stored in a
local variable that has escaped the critical section.

9. Conclusions
We have provided practical methods to analyze data races and
transactionality in PCP programs. Moreover, our analysis of linear
equalities can be considered as one instance of an analysis frame-
work which generalizes the functional approach of [28] from pro-
grams with procedures to programs with procedures, interrupts, pri-
orities and resources following the PCP protocol. Other instances
of this framework can be obtained by providing specific domains V
and V ′ for summary functions and abstract states, respectively, to-
gether with transfer functions for the basic statements and specific
versions of the operators ◦, •j , Hf , @, enterf , @j and projj .

We have implemented the analyses of potential data races and
transactionality within the static analyzer Goblint [31]. Preliminary
experiments with typical examples as well as a scalable synthetic
benchmark, are encouraging. Still, experiments with larger and
more complicated real-world examples are desirable. We would
also like to analyze further kinds of concurrency flaws in PCP pro-
grams and explore in how far the given approach can be gener-
alized to more general programming models, e.g., PCP programs
with task creation.
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