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Abstract. It is known that MSO logic for ordered unranked trees is uididde if
Presburger constraints are allowed at children of nodesha® here that a decidable
logic is obtained if we use a modal fixpoint logic instead. \Wesgnt a characteriza-
tion of this logic by means adleterministicPresburger tree automata and show how
it can be used to express numerical document queries. Simglyi, the complexity
of satisfiability for the extended logic is asymptoticalhetsame as for the original
fixpoint logic. The non-emptiness for Presburger tree aatanfPTA) iSPSPACE
complete, which is moderate given that it is alre@ypAcehard to test whether the
complement of a regular expression is non-empty. We alstifgie subclass of PTAs
with a tractable non-emptiness problem. Further, to deeitether a tree satisfies a
formulap is polynomial in the size op and linear in the size af

A technical construction of independent interest inaar time construction of a
Presburger formula for the Parikh image of a regular languag

1 Introduction

In XML schema description languages as DTDs and XML Schemeszantent of elements,
i.e., the possible sequences of children elements of a i®described mainly by regular
expressions This is sufficient in very many cases. But often one is intiex expressing
conditions on the frequency of occurrences of elementsiciiidren sequence. When the
order of elements is very constrained regular expressiiihds the job, e.g. by(title
aut hor aut hor *) one might express that there have to be at least two authansaper.
If the order is not fixed, even simple conditions require coaped regular expressions.
E.g., saying that there is exactly one title and there areadtitwo authors would re-
quire an expression liketitl e author author*) | (author™ title author™)
| (author author™ title).Itwouldbe desirable to describe this condition simply by
an expression lik& i t1 e| = 1 A Jaut hor | > 2. While these conditions do not go beyond
the scope of regular expressions, others do. A simple exaiglut hor | <2-|title].
Most of the existing theoretical work on XML schema langusabas concentrated on
regular tree languages. These languages can be describbegblautomata [14,15] and a
variety of other formalisms [16, 8] including fixpoint fordas [13]. Typically, the interac-
tion between the children of a node and the node itself arallysexpressed in terms of
regular expressions. Other work extended these formaligriet them formulate (at least
unary) queries. The resulting query facilities usuallyenthe expressive power of monadic

* Contact author. The support of this work by the DAAD and Egideler PROCOPE grant
D/0205766 is kindly acknowledged.
1 We view an XML document here and in the rest of the paper asedddbunranked, ordered tree.



second-order (MSO) logic. Here, we study extensions of $aahalisms by numerical
conditions as above. In particular, we are interested imthm complexity questions.

The conditions we allow are Boolean combinations of regalpressions and Pres-
burger formulas. Presburger formulas basically allowdmn@n)equalities and expressions
of the formt = ¢ (modn). A more detailed definition can be found in Section 2. Cougtin
conditions in schema languages have been used, e.g., in [12]

In a previous paper [22] we considenedn-deterministicree automata with such ex-
tended conditions (PTAs). This kind of automata is not dosader complementation.
Moreover, whereas their non-emptiness problem (whethautmaton accepts some tree)
is decidable, the universality problem (whether it accetlitsrees) is not. Consequently,
MSO logic extended by such conditions has an undecidahiiahtlity problem. In the
present paper, we study two weaker formalisms. We considigpaint logic instead of
MSO logic anddeterministicinstead of non-deterministic PTAs. It turns out that these
two formalisms define the same class of tree languages.dfurtite, their non-emptiness
(resp., satisfiability) problem is decidable. Actuallycéime as a surprise that the complex-
ities of these problems are as low as one could hoge for

— Itis alreadypspPAacEhard to check whether the intersection of several reguiares-
sions is empty. Therefore, the non-emptiness problem fésHS trivially PSPACE
hard. We prove that it is also RsPACE Additionally, we show that it becomes tractable
when each precondition of the automaton is a disjunctiomwohtilsr A f, wherer is
a regular expression arydis an equation (with existentially quantified variables).

— Satisfiability for fixpoint formulas (without numerical cditions) iISEXPTIME-complete.
We show that the complexity does not increase when we addnmeaheonditions.

— The same complexities can be easily derived for the contmiproblem.

— Checking whether a treeis accepted by a Presburger tree automatar a fixpoint
formula¢g can be decided in timé (||| A|) andO(|t||¢|?), respectively.

Furthermore, we show how Presburger fixpoint formulas candeel to formulate unary
queries. These queries can be evaluated in time which iarlinethe size of the tree and
polynomialin the size the formula. During our investigatioe also studied the relationship
between regular expressions and Presburger formulasvélisknown that the Parikh im-
age of each regular language (i.e., basically the set of eyfrdquency vectors of words)
can be expressed by a Presburger formula. We show that soctmalé can be constructed
very efficiently, in linear time, even from a non-determiit$inite automaton.

The paper is organized as follows. In Section 2 we give th&clefinitions for Pres-
burger logic. Section 3 explains how to compute efficientlgrasburger formula from a
regular string language. Section 4 introduces Presbusg®ifit formulas. In Section 5 we
define Presburger automata and prove the equivalence vabenger fixpoint formulas.
Section 6 contains the complexity results. In Section 7 wimde query extension of Pres-
burger fixpoint formulas and consider its evaluation comipfeWe end with a conclusion.

Related work. Unordered document trees are closely related to the gérsdrah of fea-
ture trees considered by Niehren and Podelski in [17] whee $tudy the (classical) no-
tion of recognizability and give a characterization of thition by means of feature au-
tomata. No counting constraints are considered. Querykges for unordered trees have

2 Actually these complexities hold only with quantifier-fieeesburger formulas. However, this does
not restrict the expressivity of the logic.



been proposed by Cardelli and Ghelli [2, 1, 3,4]. Their applois based on first-order
logic and fixpoint operators. An extension to numerical ¢@ists has recently been pro-
posed by Dal Zilio et al. [5]. Kupferman et al. study:ecalculus withgradedmodalities
where one can express, e.g., that a node has atisasicessors satisfying a given property
[10]. The numbers, however, are hard-coded into the formula. Ordered suocgase not
considered. Klaedtke and Ruess consider automata on thbaled infinite binary tree,
that have an accepting condition depending on a global Brgsbconstraint [9].

Our notion of Presburger Tree Automata, which combines beghlar constraints on
the children of nodes as well as numerical constraints giweRresburger formulas, has
independently been introduced by Lugiez and Dal Zilio [14l &Seidl et al. [22]. In their
paper, Lugiez and Dal Zilio indeed propose a modal logic fiiXdocuments which they
call Sheaves logicThis logic allows to reason about numerical propertiehefdontents
of elements but still lacks recursion, i.e., fixpoint operat Lugiez and Dal Zilio consider
the satisfiability and the membership problem and they sthawv$heaves logic formulas
can be translated into deterministic PTAs. Seidl et al. ] ffh the other hand, prove that
nondeterministic PTAs precisely correspond to the exigtkbfragment of MSO logic on
ordered trees enhanced with Presburger constraints ohildesn of nodes. As a technical
result, they also show théitst-orderformulas can be translated into deterministic PTAs.

2 Preliminaries

Presburger Logids the first-order logic over the structu(®, <, +). Given a formulaf
and amassignmen# mapping the variables gfto numbers, we write |= f if f holds for

o (in the obvious sense) and calla solution of f. For convenience, we use an extended
language. Thus, we writex for z + - - - + z (c times). Also, we allow terms with negative
coefficients as iy — 3z. A typical Presburger formula iSy (2y = z) stating thatr

is even. It is well-known that the extension of Presburggiddy 0, 1 and the binary
predicates: = y (modn), for each constant, has quantifier elimination, i.e., for each
formula there is an equivalent quantifier-free formula [Z20]., the above formula can be
written asz = 0 (mod2). Here, we call quantifier-free formulas in the extended leaue
with modulo predicates and equality over terms with integeefficientsquantifier-free
Presburger formulasWe say that formulas of the forae, ...,z /|-, fi, where each
fiis a conjunction of equatiorts= ¢ with a term¢ and an integer constantire inequation
normal form Note that formulas in equation normal form do not contaipn aegations.

Lemma 1. Every Presburger formula has an equivalent formula in egurattormal form.

It is well-known that sets of assignments which fulfill a giveresburger formulg are
equivalent tosemi-linear set$7]. A semi-linear set is a finite union dihear setsof the
form {o + >, 052 | z; € N}, whereo and thes; are assignments to a finite set of
variables (using a fixed enumeration of the variables) otoredromN* for a givenk.

The Parikh imageof a wordw = a; - - - ax,a; € X is the assignment € N* which
maps the variablefi|,a € X, to the number of occurrences of the lettemn w, i.e.,
o(la]) = #{j | a = a;}. Accordingly, the Parikh image of a sétC X* is the set of
Parikh images ofv € L.

3 Regular String Languages and Presburger Formulas

The fixpoint formulas as well as the tree automata studiee hee Boolean combinations
of regular expressions and Presburger formulas as conslito the children of nodes.



Whereas it is well-known that the Parikh image of a regulaeecontext-free) language

is semilinear [19] and thus can be described by a Presbungmufa with free variables
lal,a € X, it seems to be not quite as well-known how large the cornmedipg formula
must be. In this section, we show that a Presburger formuléhf Parikh image of the
language of an NFA4 can be computed in linear time. In particular, the size offtre
mula islinear in the size|A| of A (which equals the number of states plus the number of
transitions). For regular expressions we have anothegdinear-time construction.

Theorem 1. For any NFA A, an existential Presburger formula,4 for the Parikh image
of the languageC(A) of A can be constructed in tim@(|A]).

Sketch of proofwith an accepting run of an NFA on a stringw we associate #ow f

as follows: each transitiofp, a, q) of A is labeled by the number of times it is taken in
the computation. We construct a Presburger formula whiatkftwo properties. First,

the flow is locally consistent, e.g., for each inner node ttemining equals the outgoing
flow. Secondly, the subgraph induced by the states with moo{tow is connected. Here

for each node, the distance is guessed fsomr.t. non-zero flow edges. O

4 Presburger Fixpoint Formulas

In many applications, e.g., where documents are autontigtgpanerated from databases
as textual representations of querying results, the eleorelering on the children does
not matter (or it is not known in advance). In other applizasi, though, which are more
related to classical document processing the orderingensatBince we cannot tell just
from looking at a linearized textual representation of tbeuient whether the ordering
of children is irrelevant, we prefer to work with orderedeseonly but allow the logic to
express properties of unordered documents. Thus, givelphatzety of element or node
names, the set of all (ordered but unranked) ttésgjiven by:

t = alty,...,ty)y, a€X k>0

We write 7x; for the set of all such trees. We consider a calculus of fixdfoimulas which
allows to express both regular and Presburger constrainthitdren of nodes. Presburger
fixpoint formulasg are constructed according to the following grammar:

pu=T | x | prod | Vo | oA | a(F) | *(F)
Fu=r | -r | f

Here, %" denotes an arbitrary node label fraly andF’ denotes a generic pre-condition on
the children of a node. Such a pre-condition is either a segxpression over lettersy, ¢
a fixpoint formula, or a Presburger formylavith free variables$¢| denoting the number of
children satisfyingp. Essentially the same calculus is obtained if we enhanc8lieaves
logic of Dal Zilio and Lugiez [11] with recursion.

In the sequel, we assume thiais a formula where all bound variables are distinct. Let
& denote the set of all subformulas@plus T (the constant trued We consider assertions
t:,t € Te,p € . We writel ¢ : o) either if¢p = T (every tree satisfie¥) or if the

3 & also contains the subformulas9fif || occurs ing and so on.



assertiort : ) can be derived from valid assertions by means of the follgwines:

t: prayp ed t:y prap ed
t:x t:pxa
t: t:s t:a;
t:d}l/\wz t11/11\/1/)2
u: F u:F
alu) : a(F) a(u) : x(F)

Thus, besides assertiohs v, t € Ty, we additionally need auxiliary assertions: F
whereu is a sequence of trees afds either a regular expression or a Presburger formula.
A sequence: = t; ...t satisfies a regular pre-conditien(or —r) iff there are formulas
¥, ..., such that; : ¢; and the sequenag; . .. ¢, is (not) contained in the language
L(r) of r. In case of a Presburger formuyfawe collect for every formula the number of
childrent; satisfyingy into an assignment. Thenu satisfiesf iff o |= f. Thus we have:

ti (i:l,...,k) 1/}11/}k€£(T) ti (i:l,...,k) 1/;11/)k§1£(r)
t1...tk:1" tl...tk-:—!T‘
o= f where o([9]) =#{i|ti: ¢}
...tk f

Note that according to this rule for Presburger formulas,ghme tre¢; may be counted
several times, once for everysuch that; : ¢). A proof of an assertion : 1) consists of all
rule applications to derive this assertion. In particubas means fot = a(t; ...t¢;) and

¥ = a(f), f a Presburger formula, that a prooff ¢ contains for every = 1,...,k,
and every)’ a subproof of- ¢; : ¢y’ —whenever it exists. Moreover, we assume that a proof
always has tree-like structure. Thus, we may have sevepasof a subproof for distinct
occurrences of the same subtree withifrinally, the language denoted by the formula
isgivenby: L(¢) ={t € Tx |Ft:¢}.Inparticular,L(T) = Ty andL(pz.x) = 0.
Using the convenient abbreviatiod'for T*, we may writey z. (a{-) V =(_ = _)) for the
set of all trees with at least one inner node labeleNote that our fixpoint expressions do
not provide an explicit notion of negation. However, we afg/aan construct an equivalent
expression witlguardedfixpoints for which complementation is easy [23].

5 Presburger Automata

We recall the notion of a Presburger tree automaton (PTApfdered trees from [22,
11]. A Presburger tree automatoA is a tuple(@, ¥, 0, T') where, as usualy, ¥, 6 and
T C @ are the finite set of states, the input alphabet, the transiglation and the set
of accepting states of, respectively. Here the transition relatiérs given by a mapping
from @ x X to a pre-condition on the children of a node with labaéb reachy in a bottom-
up run over an input tree. For PTAs, pre-conditions are Booleombinations of regular
expressions over the state s&p and Presburger formulgswith free variablesq|, ¢ € Q.
We define satisfaction relations = p for « € Q* and pre-conditiong andt =4 q for
te€Ts,q€Q:

Q...qe =T iff gi...qr € L(r)
a...qr Ef iff o |= f whereo(|q|) = #{i | = q}
@ .qrEn VD iffq...qe EpLOrg...qr Ep2
qi...qk '=p1/\p2 iff qi...qk |=p1andq1...qk '=p2
qi...qx Ep iff gi...qn P

alti...te)y Eaq iff t; =4 gi foralliandg ...q. | 6(q,a),



Note here that satisfaction of a Presburger pre-condjtitakes a different flavor than the
corresponding definition for fixpoint formulas: In an autdoraeach subtree of a node
takes only one state and thus contributes exactly once teathe of somer(|¢|). Opposed
to this, the variableg)| in fixpoint formulas count every subtree on whigtholds, hence
a subtree might contribute to the value of several (or naptes.

The automatord is calleddeterministidff for all « € ¥ and allu € Q*, u = 6(q,a)
for exactly oney € (). In the proof that deterministic PTA and Presburger fixptontnulas
are equivalent we use the following notion. For a sulis€t ¢ of subformulas of), define
theclosurecl(B) as the least supersBt of B such that:

- T e B

If $; € B’ andg, € B’ then alsap; A ¢o € B’, wheneve; A ¢ € b;
If ¢, € B’ or ¢, € B’ then alsap; V ¢ € B’, whenever, V ¢; € &;
If ¢ € B thenuz.¢' € B andx € B', whenevep, z.¢' € .

Intuitively, the closure of a s of subformulas contains all subformulas which are implied
by the formulas inB and reachable by a (virtual) bottom-up traversal over antitge
constructing a proof for the fixpoint formuta

Theorem 2. For a tree languagd. C T the following statements are equivalent:

(1) L = L(¢) for some fixpoint formula;
(2) L = L(A) for some deterministic PTA.

Proof. (1) = (2): Let¢ be a Presburger fixpoint formula. We construct a PIas follows.
Let % denote the set of all subformulas®bf the forma(F) or «(F). The set) of states
of A is given as the set of all subsd®sC . The setl” of accepting states consists of all
subsetsB such thatp € cl(B), i.e., whose closure contains the whole formglasiven a
stateB € Q anda € ¥, we determine the pre-conditiofB, a) as

6(Bva) = /\¢€B 60("/}7(1) A /\qpex[/\B _‘50("/}7(1)

where: _
o(a(F).a) = F
do(x(F),a) = F
do(b{F),a) = false ifa#b

and F is constructed as follows. For a possibly negated regularessionr, we ob-
tain 7 from r by substituting(B, | ... | B.,) for every occurrence of a formula if
{B1,..., By} is the set of all state® such that) € cl(B). For a Presburger formulf,
let f be obtained frony by substitutingd s, | Bi| for every occurrence of the free
variable||. By construction, the resulting automaton is determiaidtfe claim:

1. Foreveryp € &, t: ¢ iff t =4 B for someB € @ with ¢ € cl(B);

2. bty ...ty riff t; =4 B; for some state®; such thatB, ... By, € L(T);

3.k ty...t : fiff t; =4 B; for some state®; such that = f whereo is the Parikh
image ofB; ... By.

In particular, the first item of the claim implies thaf¢) = £(A).

(2) = (1): For the reverse implication, consider a determinifld A = (Q, Y, 9, F).
W.l.o.g. we may assume that no negation occurs in precongit\e introduce one vari-
ablez, for every statey € (). For these variables, we construct an equation system

Ty = 1/’(15 qg€ER



where the right-hand sides are fixpoint formulas. The seicgof such equation systems
is an extension of the semantics for fixpoint formulas. Thig addition is a rule:

t:y

t:x

for every equation: = . Thus, whenever a tree satisfies the right-hand side of aatiequ!
then it also satisfies the variable to the left. The rightehsidesp, of the equation system
S 4 are constructed from the right-hand sidég, a), a € X, as follows:

¢g = Vaexld(a:0)la
where].], takes a pre-condition and returns a fixpoint formula (witHogoints):

[r]a =a(r{g— 2, | g € Q})
[fla = a(f{lq| = |zq| | g € Q})
[p1 V p2la = [p1]a V [p2]a

[p1 A p2la = [Pi]a A [P2]a

Thus, a regular expressionover stateg; is transformed by first substituting the states
by the corresponding variables and then putting a node top. A Presburger formula is
transformed by first replacing the frég with |z,|, ¢ € @, and again putting a node
on top, whereas conjunctions and disjunctions are tram&fdiby recursively proceeding
to the involved conjuncts and disjuncts, respectively. Byuiction on the depth of terms
t,t1,...,t, and pre-conditiong, we prove for every € (Q anda € X

V) t=aq iff t:zg
2 tiFaqgifori=1,....m,withq,...qm =p Iff alty...tn): [Pl

The first claim then proves the correctness of the constuciihe only non-trivial point
in the proof of the claim is the inductive step for assertigh ( O

6 Complexity

In this section we study the complexity of decision probleeaiated to Presburger automata
and Presburger fixpoint formulas. The complexity of tesiatisfiability of arbitrary Pres-
burger formulas is prohibitively high, since the problenh&d for non-deterministic dou-
ble exponential time [6]. As we are interested to study tierpiay between regular expres-
sions, Presburger formulas and tree automata, we assuimg foomplexity considerations
that all Presburger formulas are givenq&ntifier-free formulagpossibly with modulo
predicates and subtraction). Coefficients, kika cz, are in binary notation, except in the-
orem 4, which is a special case that can be dealt with effigidRe¢call also from Lemma 1
that any quantifier-free Presburger formula can be transfdrinto equation normal form.
The DNF transformation might yield an exponential numbedisfuncts. However, each
disjunct can only contain a linear number of atoms. Furttier,normalization does not
increase the size of the occurring numbers.

First, we consider the non-emptiness problem for Presbuagmmata, i.e., given a
PTA A it has to be checked whethdraccepts at least one tree. It is alre@$ypAckehard to
decide whether a given set of regular expressions has amptyéntersection or whether
the complement of a single regular expression is non-erdgtyHence, the non-emptiness
problem for PTA ispspPACEhard. Surprisingly, it can also be solvedrAsPACE For that,



the following observation about the representation ofkPamages of finite word automata
turns out to be useful. It follows with a pumping argumentolmgerving that every path in
the automaton can be decomposed into a union of simple cgottsne simple path.

Lemma 2. AssumeA is a (hon-deterministic) finite word automaton withstates and
input alphabet of sizé&. Then the Parikh image of(A) is a union of linear set§oy +
>, @i -0 | z; > 0} where each component of each veetgre N* is at mostn.

In particular, the numbem of occurring vectors is at most*.

Theorem 3. The non-emptiness problem for (non-deterministic) PTARsiCEcomplete.

Proof. It remains to prove the upper bound. For thatAet (@, X', §,T) be a PTA of size

n. We call a statg of A reachableif there is a tre¢ such that =4 ¢. We have to check
whether there is a reachable statd/inThe setR of reachable states can be computed in
a standard fashion as follows. First, the &tonsists of all stateg such that for some
single-node tree, we havet = ¢. Then, given a sel of reachable states, we obtain a
(possibly larger) seR’ of reachable stategby checking whether there is a stringover

R and a symbok, such thatw = 6(q,a). This process stops after at m¢& iterations.
Hence, to get the desired upper bound, it suffices to showotteiing claim.

Claim.Given a PTAA = (Q, X,46,T),R C Q,q € Q,a € X, it can be checked in space
polynomial in| A|, whether there is a string € R* such thatw = 6(q, a).
The proof of the claim proceeds in two steps. First, we shawtte length of the shortest
word satisfyingd(¢, a) has length at most*(™, p a suitably defined polynomial not de-
pending ond. Second, we show that checking whether there exists someR* of length
at most2?(™ with w |= §(¢, a) can be checked in polynomial space.

The preconditiond(gq,a) can be written in disjunctive normal form. Each disjunct is
a conjunction of regular expressions . . ., r, negated regular expressiofs, , . . ., -},
andm < n Presburger equations of the fortn = ¢; over variabledq|,¢ € @, and
possibly other, free variables (at ma@st). The formulad(g, a) has a model if and only
if one of these disjuncts has a model. Since the regular egjmes all occur in4, the
sum of their sizes is less than Let 4,,..., A; and A1, ..., A; be the corresponding
non-deterministic automata. Then the natural deterniérasttomatond’ for their product
has at mos2” states. By Lemma 2, the Parikh image&fA’) is a union of linear sets
{o0 + Z?:l zi0; | z; € N}, whereh < 271Q1 < 27" and the entries of the vectors, o;
are smaller tha™. Hence, a word fulfills the disjunct iff its Parikh imagefulfills the
Presburger equations and is in one of these linear setsalteed¢an be expressed by:

lal = 0o(q) + X1 zi-0i(a) ,q€Q.

Together we havel = m + |Q| < 2n equations with at mos¥ = 6n + 2" variables and
coefficients of values bounded by= 2". By a result of Papadimitriou [18] such a system
has a solution with numbers bounded by

N - (M a4+ 1)2M+4 — (6n + 2n2) . (2n2n + 1)4n+4 — 2O(n2)

This proves the first step, for some polynomiét) = O(n?).

It remains to describe the algorithm which checks whethétiragsw of size2”(™) over
@ exists such thaty = d(q,a). The algorithm is non-deterministic. It simply guesses
symbol by symbol. For each regular expressian §(q, a), it computes the set of states
that can be reached by the corresponding automatomhen readingv. Further, for each



q¢" € @ it counts how often;’ occurs inw. All this can be done in polynomial space
without actually storingw. A counter keeps track of the length of In the end, it can
be checked whethes = §(q, a). By Savitch’s theorem this non-deterministic polynomial
space algorithm can be turned into a deterministic oneustiig polynomial space. 0O

Since our PTAs are deterministic and thus complementabkxblganging the sets of ac-
cepting and non-accepting states, we obtain as an immexdiagequence:

Corollary 1. The containment problem for deterministic PTAB$®ACECcOmMplete. O

For certain PTAs non-emptiness can be tested in polynoimial+ actually with the same
complexity as for tree automata with single regular expoessas preconditions.

Theorem 4. Non-emptiness can be decided in polynomial time for PTAsendeery pre-
condition is of the forr'r\/f:1 (r; A fi), with regular expressions and Presburger formulas
fi in equation normal form with only one equation and coeffitseapresented in unary.

Allowing coefficients in binary notation makes this problérss tractable.

Theorem 5. The non-emptiness problem for PTAs as in Theorem 4 but wéfficients
represented in binary isP-complete.

Now we turn to the related problem of deciding satisfiabifity Presburger fixpoint
formulas. Here, aExPTIME lower bound is given by the same problem for fixpoint for-
mulas without Presburger subformulas. The lower bound lisesed already by formu-
las with only one occurrence ¢f (a similar result holds for model-checkingcalculus
against pushdown graphs, [25]). Testing whether such fasrare satisfiable by some tree
is EXPTIME-complete. Again, it turns out that adding Presburger fdasidoes not increase
the complexity, i.e., we get the following result.

Theorem 6. Satisfiability for Presburger fixpoint formulasgxpPTIME-complete.

The proof follows a similar line as the one for Theorem 3. Ne&tshow that membership
for deterministic PTA as well as for fixpoint formulas can loéved efficiently. This means
that properties expressed by deterministic PTA are indépdbatical use:

Theorem 7. Given a treg and a deterministic PTA, it can be checked in tim@(|¢|-|A|)
whethert € L(A).

Proof. Since the PTA is deterministic, it suffices to compute botiguthe state reached
by each node of. Since every Presburger formula and thus, every precondith a node
with & children can be evaluated in tind®(% - | A|), the claim follows. a

Theorem 8. Given a treet and a fixpoint formulap, it can be checked in tim@(|¢| - ||*)
whethert = ¢.

Proof. We compute bottom-up the set of formulas satisfied by eactiesild~or each node
we have to simulate the NFA corresponding to regular express, by keeping the set of
reachable states of the NFA. Since each NFA is of size at mgstach such simulation
costs at most)(|¢|?). For Presburger constraints we just need to count how madreh
satisfy a given subformula, which can be don&lij¢|). |



7 The Query Language

Fixpoint formulas allow to express properties of (documeees. We now construct an ex-
pressive querying language which still allows for efficialgorithms to collect all matches
inatree. In the example shown in Figure 7 we might ask foteths containingBar t ol i "

A second query could ask for items containirgaft ol i ” and having at least three re-
views. with at least three reviews, Presburger fixpoint fdias easily can express that
a tree contains a node (at unkown depth) satisfying a givepegsty. E.g., the formula
¢1 = =(_"Bartoli" _) describes all elements containinggf t ol i . Note that text con-
tents can be taken into account by (conceptually) consigerach text character as a sepa-
rate element node. We are interested in the class of all destsnontaining sub-documents
satisfying the specific property;. These are described by:x.(x(_ z -) V ¢1).

<nmusic> ...
<cl assical > ...
<oper a>
<title> The Salieri Album</title>
<conposer> Bartoli </conposer>
<review> ... </review>
<review> ... </review
<review> ... </review></opera>
<oper a>
<title> The No. 1 Opera Album</title>
<conposer> Puccini ; Verdi </conposer>
<performer> Bartoli ; Pavarotti </perforner>
<review> ... </revi ew></opera>
</classical> ...
</ nusi c>
<dvd> ...
<musi ¢ dvd>
<oper a>
<title> Rossini - La Cenerentola </title>
<performer> Bartoli </perforner>
<review> ... </review>
<review> ... </review></opera> ...
</ nusi c dvd>
</ dvd>

Figure 1 Part of an example document containing informagioout items sold by a store.

In order to indicate the sub-formula corresponding to retpeesub-documents, we intro-
duce an extra marke®". Thus, we specify the query ag = pz.(x(-z ) V (o A ¢1)).
Accordingly for the second query, we describe the set oflathents containing at least
three reviews byp, = *(|r evi ew| > 3). The query formula then can be formulated as:

o = px.(x(-x ) V (¢ Ad1 A d2))
Thus, a query language is obtained by extending Presbuxgeirit formulas by one case:
o = .| e |

Accordingly, we add new axioms - ¢ : e for all treest. A matchs of a formula¢
containing a subformuleis a proof fort : ¢ containing the fact : . We want to construct



an algorithm to determine for a fixed query formglaall matches inside a document tree
t. We first observe that we can determine in linear time forysabtrees of ¢ the set of all
subformulas)’ of ¢ such that- s : +/'. For that, we could construct, e.g., the deterministic
PTA A for ¢ as considered in the last section. In order to deal with tleeighsymbole
occurring ing, we extend the notion of closure of states by adding the ftamurhe rest
of the construction we leave unchanged. Let t8¢g) denote the unique state df with
s Ea S(s). By constructiong)’ € cl(S(s)) iff F s : ¢'. Moreover, all these sets can be
determined by a single run of over the treg, i.e., in linear time.

In a second topdown pass over the tteee determine for every subtree (occurrence)
s the subsefR(s) C cl(S(s)) containing all those)’ which may occur in some proof of
t: ¢. Thens is a match iffe € R(s). For a closed set of subformul#@s we introduce the
auxiliary functioncore g which takes a subformuld’ of ¢ and returns the set of subformu-
las in B which potentially contribute to proofs af'. So,coreg(1)') = {¢'} U core’ g(v')
wherecore’ g (o) = core’ g(T) = core’ g(a(F)) = core’ g(x(F)) = () and:

core'g(px.ap’) = coreg(y’)
core' g () = corep(¢') if nz.y)' € B
!

(
core’ g (11 A 1hy) = core(1p1) g U corep()2)
/ _ J core(vy;) if s_; ¢ B
core’p (Y1 Vihs) = {core(z/;l) U core(2)2) oth;rwise

Moreover, we setcorep (R) = |,,c g corep(y) for R C B.

The second pass overstarts at the root of. There, we haveR(t) = coreg(¢) for
B = cl(S(t)). Now assume we have already computed th&ej for the occurrence of
asubtree(s; ...si). LetR' = R(s)N¥ denote the set of subformulasfi{s) of the form
a(F) or «(F). ThenR(s;) = U, cp Ry (i) whereRy, (i) equals the set of subformulas
for thei-th child of s which may occur at; in a proof ofs : ¢'. If ' = a(f) ory’ = *(f)
for a Presburger formul, then we must compute the assignment to the global variables
f- Infact,all valid sub-formulas at child trees contribute to this assignment. Therefore,
Ry (s;) = S(s;) for all i. On the other hand, if' = a(r) or ¢’ = «(r) for a regular
expression, thenRy, (s;) = corep, (R;) whereB; = cl(S(s;)) and

Rz:{wz|3w1¢k EC(’I‘) : Vj:dlj ES(Sj)}

The setR; denotes all subformulas provable fgrwhich may contribute to the validation
of r. From these, we take all the formula&") or «(F") in S(s;) which may contribute to
a proof of these. According to this definition, the sBts (s;),7 = 1, ...,k can jointly be
computed by a left-to-right followed by a right-to-left [gasf a finite (string) automaton
for r over the children of. The case of negated regular expressions is treated analggo
Summarizing we conclude:

Theorem 9. The set of matches of a fixpoint quérin an input treet can be computed in
time linear in|t|. If ¢ is part of the input, the joint query complexity@|¢|? - |t]). 0

8 Conclusion

We have enhanced a simple fixpoint logic for unranked tre#s Riesburger constraints.
For the basic decision problems such as satisfiability, neggfitip and containment the re-
sulting logic turned out to have comparable complexitigh&ofixpoint logic without Pres-
burger constraints. Therefore, our logic is a promisinglédaite for a smooth enhancement
of classical Schema and querying languages for XML docusent



It remains a challenging engineering problem to obtain golémentation of the new
logic which behaves well on practical examples. Also, we lddike to know more about
the complexity of the satisfiability problem for other résions on the transition function
of a PTA or the fixpoint formula to obtain further useful classvith efficient algorithms.

Since the class of tree languages defined by determinisfd$a strict superclass of
the regular tree languages, we would also like to see otlaacterizations of this class.
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