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Abstract. It is known that MSO logic for ordered unranked trees is undecidable if
Presburger constraints are allowed at children of nodes. Weshow here that a decidable
logic is obtained if we use a modal fixpoint logic instead. We present a characteriza-
tion of this logic by means ofdeterministicPresburger tree automata and show how
it can be used to express numerical document queries. Surprisingly, the complexity
of satisfiability for the extended logic is asymptotically the same as for the original
fixpoint logic. The non-emptiness for Presburger tree automata (PTA) isPSPACE-
complete, which is moderate given that it is alreadyPSPACE-hard to test whether the
complement of a regular expression is non-empty. We also identify a subclass of PTAs
with a tractable non-emptiness problem. Further, to decidewhether a treet satisfies a
formula' is polynomial in the size of' and linear in the size oft.
A technical construction of independent interest is alinear time construction of a
Presburger formula for the Parikh image of a regular language.

1 Introduction

In XML schema description languages as DTDs and XML Schema, the content of elements,
i.e., the possible sequences of children elements of a node,is described mainly by regular
expressions.1 This is sufficient in very many cases. But often one is interested in expressing
conditions on the frequency of occurrences of elements in the children sequence. When the
order of elements is very constrained regular expressions still do the job, e.g. by(title
author author+) one might express that there have to be at least two authors ina paper.
If the order is not fixed, even simple conditions require complicated regular expressions.
E.g., saying that there is exactly one title and there are at least two authors would re-
quire an expression like(title author author+) | (author+ title author+)
| (author author+ title). It would be desirable to describe this condition simply by
an expression likejtitlej = 1 ^ jauthorj � 2. While these conditions do not go beyond
the scope of regular expressions, others do. A simple example is jauthorj � 2 � jtitlej.

Most of the existing theoretical work on XML schema languages has concentrated on
regular tree languages. These languages can be described bytree automata [14, 15] and a
variety of other formalisms [16, 8] including fixpoint formulas [13]. Typically, the interac-
tion between the children of a node and the node itself are usually expressed in terms of
regular expressions. Other work extended these formalismsto let them formulate (at least
unary) queries. The resulting query facilities usually have the expressive power of monadic? Contact author. The support of this work by the DAAD and Egideunder PROCOPE grant

D/0205766 is kindly acknowledged.
1 We view an XML document here and in the rest of the paper as a labeled, unranked, ordered tree.



second-order (MSO) logic. Here, we study extensions of suchformalisms by numerical
conditions as above. In particular, we are interested in themain complexity questions.

The conditions we allow are Boolean combinations of regularexpressions and Pres-
burger formulas. Presburger formulas basically allow linear (in)equalities and expressions
of the formt �  (modn). A more detailed definition can be found in Section 2. Counting
conditions in schema languages have been used, e.g., in [12].

In a previous paper [22] we considerednon-deterministictree automata with such ex-
tended conditions (PTAs). This kind of automata is not closed under complementation.
Moreover, whereas their non-emptiness problem (whether anautomaton accepts some tree)
is decidable, the universality problem (whether it acceptsall trees) is not. Consequently,
MSO logic extended by such conditions has an undecidable satisfiability problem. In the
present paper, we study two weaker formalisms. We consider afixpoint logic instead of
MSO logic anddeterministicinstead of non-deterministic PTAs. It turns out that these
two formalisms define the same class of tree languages. Furthermore, their non-emptiness
(resp., satisfiability) problem is decidable. Actually, itcame as a surprise that the complex-
ities of these problems are as low as one could hope for2:

– It is alreadyPSPACE-hard to check whether the intersection of several regular expres-
sions is empty. Therefore, the non-emptiness problem for PTAs is trivially PSPACE-
hard. We prove that it is also inPSPACE. Additionally, we show that it becomes tractable
when each precondition of the automaton is a disjunction of formulsr ^ f , wherer is
a regular expression andf is an equation (with existentially quantified variables).

– Satisfiability for fixpoint formulas (without numerical conditions) isEXPTIME-complete.
We show that the complexity does not increase when we add numerical conditions.

– The same complexities can be easily derived for the containment problem.
– Checking whether a treet is accepted by a Presburger tree automatonA or a fixpoint

formula� can be decided in timeO(jtjjAj) andO(jtjj�j2), respectively.

Furthermore, we show how Presburger fixpoint formulas can beused to formulate unary
queries. These queries can be evaluated in time which is linear in the size of the tree and
polynomial in the size the formula. During our investigation we also studied the relationship
between regular expressions and Presburger formulas. It iswell-known that the Parikh im-
age of each regular language (i.e., basically the set of symbol frequency vectors of words)
can be expressed by a Presburger formula. We show that such a formula can be constructed
very efficiently, in linear time, even from a non-deterministic finite automaton.

The paper is organized as follows. In Section 2 we give the basic definitions for Pres-
burger logic. Section 3 explains how to compute efficiently aPresburger formula from a
regular string language. Section 4 introduces Presburger fixpoint formulas. In Section 5 we
define Presburger automata and prove the equivalence with Presburger fixpoint formulas.
Section 6 contains the complexity results. In Section 7 we define a query extension of Pres-
burger fixpoint formulas and consider its evaluation complexity. We end with a conclusion.

Related work. Unordered document trees are closely related to the generalization of fea-
ture trees considered by Niehren and Podelski in [17] where they study the (classical) no-
tion of recognizability and give a characterization of thisnotion by means of feature au-
tomata. No counting constraints are considered. Query languages for unordered trees have

2 Actually these complexities hold only with quantifier-freePresburger formulas. However, this does
not restrict the expressivity of the logic.



been proposed by Cardelli and Ghelli [2, 1, 3, 4]. Their approach is based on first-order
logic and fixpoint operators. An extension to numerical constraints has recently been pro-
posed by Dal Zilio et al. [5]. Kupferman et al. study a�-calculus withgradedmodalities
where one can express, e.g., that a node has at leastn successors satisfying a given property
[10]. The numbersn, however, are hard-coded into the formula. Ordered successors are not
considered. Klaedtke and Ruess consider automata on the unlabeled infinite binary tree,
that have an accepting condition depending on a global Presburger constraint [9].

Our notion of Presburger Tree Automata, which combines bothregular constraints on
the children of nodes as well as numerical constraints givenby Presburger formulas, has
independently been introduced by Lugiez and Dal Zilio [11] and Seidl et al. [22]. In their
paper, Lugiez and Dal Zilio indeed propose a modal logic for XML documents which they
call Sheaves logic. This logic allows to reason about numerical properties of the contents
of elements but still lacks recursion, i.e., fixpoint operators. Lugiez and Dal Zilio consider
the satisfiability and the membership problem and they show that Sheaves logic formulas
can be translated into deterministic PTAs. Seidl et al. in [22] on the other hand, prove that
nondeterministic PTAs precisely correspond to the existential fragment of MSO logic on
ordered trees enhanced with Presburger constraints on the children of nodes. As a technical
result, they also show thatfirst-order formulas can be translated into deterministic PTAs.

2 Preliminaries

Presburger Logicis the first-order logic over the structure(N;�;+). Given a formulaf
and anassignment� mapping the variables off to numbers, we write� j= f if f holds for� (in the obvious sense) and call� a solution off . For convenience, we use an extended
language. Thus, we writex for x+ � � �+ x ( times). Also, we allow terms with negative
coefficients as in2y � 3x. A typical Presburger formula is9y (2y = x) stating thatx
is even. It is well-known that the extension of Presburger logic by 0, 1 and the binary
predicatesx � y (modn), for each constantn, has quantifier elimination, i.e., for each
formula there is an equivalent quantifier-free formula [20]. E.g., the above formula can be
written asx � 0 (mod2). Here, we call quantifier-free formulas in the extended language
with modulo predicates and equality over terms with integercoefficientsquantifier-free
Presburger formulas. We say that formulas of the form9x1; : : : ; xk Wmi=1 fi, where eachfi is a conjunction of equationst =  with a termt and an integer constant are inequation
normal form. Note that formulas in equation normal form do not contain any negations.

Lemma 1. Every Presburger formula has an equivalent formula in equation normal form.

It is well-known that sets of assignments which fulfill a given Presburger formulaf are
equivalent tosemi-linear sets[7]. A semi-linear set is a finite union oflinear setsof the
form f� +Pmi=1 �izi j zi 2 Ng, where� and the�i are assignments to a finite set of
variables (using a fixed enumeration of the variables) or vectors fromNk for a givenk.

TheParikh imageof a wordw = a1 � � � ak; aj 2 � is the assignment� 2 N� which
maps the variablesjaj; a 2 �, to the number of occurrences of the lettera in w, i.e.,�(jaj) = #fj j a = ajg. Accordingly, the Parikh image of a setL � �� is the set of
Parikh images ofw 2 L.

3 Regular String Languages and Presburger Formulas

The fixpoint formulas as well as the tree automata studied here use Boolean combinations
of regular expressions and Presburger formulas as conditions on the children of nodes.



Whereas it is well-known that the Parikh image of a regular (even context-free) language
is semilinear [19] and thus can be described by a Presburger formula with free variablesjaj; a 2 �, it seems to be not quite as well-known how large the corresponding formula
must be. In this section, we show that a Presburger formula for the Parikh image of the
language of an NFAA can be computed in linear time. In particular, the size of thefor-
mula islinear in the sizejAj of A (which equals the number of states plus the number of
transitions). For regular expressions we have another, direct linear-time construction.

Theorem 1. For any NFAA, an existential Presburger formula'A for the Parikh image
of the languageL(A) ofA can be constructed in timeO(jAj).
Sketch of proof.With an accepting run of an NFAA on a stringw we associate aflow f
as follows: each transition(p; a; q) of A is labeled by the number of times it is taken in
the computation. We construct a Presburger formula which checks two properties. First,
the flow is locally consistent, e.g., for each inner node the incoming equals the outgoing
flow. Secondly, the subgraph induced by the states with non-zero flow is connected. Here
for each node, the distance is guessed froms w.r.t. non-zero flow edges. ut
4 Presburger Fixpoint Formulas

In many applications, e.g., where documents are automatically generated from databases
as textual representations of querying results, the element ordering on the children does
not matter (or it is not known in advance). In other applications, though, which are more
related to classical document processing the ordering matters. Since we cannot tell just
from looking at a linearized textual representation of the document whether the ordering
of children is irrelevant, we prefer to work with ordered trees only but allow the logic to
express properties of unordered documents. Thus, given an alphabet� of element or node
names, the set of all (ordered but unranked) treest is given by:t ::= aht1; : : : ; tki ; a 2 �; k � 0
We writeT� for the set of all such trees. We consider a calculus of fixpoint formulas which
allows to express both regular and Presburger constraints on children of nodes. Presburger
fixpoint formulas� are constructed according to the following grammar:� ::= > j x j �x: � j �1 _ �2 j �1 ^ �2 j ahF i j �hF iF ::= r j :r j f
Here, “�” denotes an arbitrary node label from�, andF denotes a generic pre-condition on
the children of a node. Such a pre-condition is either a regular expressionr over letters�, �
a fixpoint formula, or a Presburger formulaf with free variablesj�j denoting the number of
children satisfying�. Essentially the same calculus is obtained if we enhance theSheaves
logic of Dal Zilio and Lugiez [11] with recursion.

In the sequel, we assume that� is a formula where all bound variables are distinct. Let� denote the set of all subformulas of� plus> (the constant true).3 We consider assertionst :  , t 2 T� ;  2 �. We write` t :  either if � > (every tree satisfies>) or if the

3 � also contains the subformulas of if j j occurs in� and so on.



assertiont :  can be derived from valid assertions by means of the following rules:t :  � x: 2 �t : x t :  �x: 2 �t : �x: t :  1 t :  2t :  1 ^  2 t :  it :  1 _  2u : Fahui : ahF i u : Fahui : �hF i
Thus, besides assertionst :  , t 2 T� , we additionally need auxiliary assertionsu : F
whereu is a sequence of trees andF is either a regular expression or a Presburger formula.
A sequenceu = t1 : : : tk satisfies a regular pre-conditionr (or :r) iff there are formulas 1; : : : ;  k such thatti :  i and the sequence 1 : : :  k is (not) contained in the languageL(r) of r. In case of a Presburger formulaf , we collect for every formula the number of
childrenti satisfying into an assignment�. Thenu satisfiesf iff � j= f . Thus we have:ti :  i (i = 1; : : : ; k)  1 : : :  k 2 L(r)t1 : : : tk : r ti :  i (i = 1; : : : ; k)  1 : : :  k 62 L(r)t1 : : : tk : :r� j= f where �(j j) = #fi j ti :  gt1 : : : tk : f
Note that according to this rule for Presburger formulas, the same treeti may be counted
several times, once for every such thatti :  . A proof of an assertiont :  consists of all
rule applications to derive this assertion. In particular this means fort = aht1 : : : tki and = ahfi, f a Presburger formula, that a proof oft :  contains for everyi = 1; : : : ; k,
and every 0 a subproof of̀ ti :  0 – whenever it exists. Moreover, we assume that a proof
always has tree-like structure. Thus, we may have several copies of a subproof for distinct
occurrences of the same subtree withint. Finally, the language denoted by the formula�
is given by: L(�) = ft 2 T� j ` t : �g . In particular,L(>) = T� andL(�x: x) = ;.
Using the convenient abbreviation “” for >�, we may write�x: (ah i _ �h x i) for the
set of all trees with at least one inner node labeleda. Note that our fixpoint expressions do
not provide an explicit notion of negation. However, we always can construct an equivalent
expression withguardedfixpoints for which complementation is easy [23].

5 Presburger Automata

We recall the notion of a Presburger tree automaton (PTA) forordered trees from [22,
11]. A Presburger tree automatonA is a tuple(Q;�; Æ; T ) where, as usual,Q, �, Æ andT � Q are the finite set of states, the input alphabet, the transition relation and the set
of accepting states ofA, respectively. Here the transition relationÆ is given by a mapping
fromQ�� to a pre-condition on the children of a node with labela to reachq in a bottom-
up run over an input tree. For PTAs, pre-conditions are Boolean combinations of regular
expressionsr over the state setQ and Presburger formulasf with free variablesjqj; q 2 Q.
We define satisfaction relationsu j= p for u 2 Q� and pre-conditionsp andt j=A q fort 2 T� ; q 2 Q: q1 : : : qk j= r iff q1 : : : qk 2 L(r)q1 : : : qk j= f iff � j= f where�(jqj) = #fi j qi = qgq1 : : : qk j= p1 _ p2 iff q1 : : : qk j= p1 or q1 : : : qk j= p2q1 : : : qk j= p1 ^ p2 iff q1 : : : qk j= p1 andq1 : : : qk j= p2q1 : : : qk j= :p iff q1 : : : qk 6j= paht1 : : : tki j=A q iff ti j=A qi for all i andq1 : : : qk j= Æ(q; a);



Note here that satisfaction of a Presburger pre-conditionf takes a different flavor than the
corresponding definition for fixpoint formulas: In an automaton each subtree of a node
takes only one state and thus contributes exactly once to thevalue of some�(jqj). Opposed
to this, the variablesj j in fixpoint formulas count every subtree on which holds, hence
a subtree might contribute to the value of several (or no) variables.

The automatonA is calleddeterministiciff for all a 2 � and allu 2 Q�, u j= Æ(q; a)
for exactly oneq 2 Q. In the proof that deterministic PTA and Presburger fixpointformulas
are equivalent we use the following notion. For a subsetB � � of subformulas of�, define
theclosurel(B) as the least supersetB0 of B such that:

– > 2 B0;
– If �1 2 B0 and�2 2 B0 then also�1 ^ �2 2 B0, whenever�1 ^ �2 2 �;
– If �1 2 B0 or �2 2 B0 then also�1 _ �2 2 B0, whenever�1 _ �2 2 �;
– If �0 2 B0 then�x:�0 2 B0 andx 2 B0, whenever�x:�0 2 �.

Intuitively, the closure of a setB of subformulas contains all subformulas which are implied
by the formulas inB and reachable by a (virtual) bottom-up traversal over an input tree
constructing a proof for the fixpoint formula�.

Theorem 2. For a tree languageL � T� the following statements are equivalent:

(1) L = L(�) for some fixpoint formula�;
(2) L = L(A) for some deterministic PTAA.

Proof. (1)) (2): Let� be a Presburger fixpoint formula. We construct a PTAA as follows.
Let 	 denote the set of all subformulas of� of the formahF i or �hF i. The setQ of states
of A is given as the set of all subsetsB � 	 . The setT of accepting states consists of all
subsetsB such that� 2 l(B), i.e., whose closure contains the whole formula�. Given a
stateB 2 Q anda 2 �, we determine the pre-conditionÆ(B; a) asÆ(B; a) = V 2B Æ0( ; a) ^ V 2	nB :Æ0( ; a)
where: Æ0(ahF i; a) = �FÆ0(�hF i; a) = �FÆ0(bhF i; a) = false if a 6= b
and �F is constructed as follows. For a possibly negated regular expressionr, we ob-
tain �r from r by substituting(B1 j : : : j Bm) for every occurrence of a formula iffB1; : : : ; Bmg is the set of all statesB such that 2 l(B). For a Presburger formulaf ,
let �f be obtained fromf by substituting

P 2l(Bi) jBij for every occurrence of the free
variablej j. By construction, the resulting automaton is deterministic. We claim:

1. For every 2 �, ` t :  iff t j=A B for someB 2 Q with  2 l(B);
2. ` t1 : : : tk : r iff ti j=A Bi for some statesBi such thatB1 : : : Bk 2 L(�r);
3. ` t1 : : : tk : f iff ti j=A Bi for some statesBi such that� j= �f where� is the Parikh

image ofB1 : : : Bk.

In particular, the first item of the claim implies thatL(�) = L(A).
(2) ) (1): For the reverse implication, consider a deterministicPTA A = (Q;�; Æ; F ).
W.l.o.g. we may assume that no negation occurs in preconditions. We introduce one vari-
ablexq for every stateq 2 Q. For these variables, we construct an equation systemSA:xq =  q ; q 2 Q



where the right-hand sides are fixpoint formulas. The semantics of such equation systems
is an extension of the semantics for fixpoint formulas. The only addition is a rule:t :  t : x
for every equationx =  . Thus, whenever a tree satisfies the right-hand side of an equation,
then it also satisfies the variable to the left. The right-hand sides�q of the equation systemSA are constructed from the right-hand sidesÆ(q; a); a 2 �; as follows:�q = Wa2� [Æ(q; a)℄a
where[:℄a takes a pre-condition and returns a fixpoint formula (without fixpoints):[r℄a = ahrfq 7! xq j q 2 Qgi[f ℄a = ahffjqj 7! jxqj j q 2 Qgi[p1 _ p2℄a = [p1℄a _ [p2℄a[p1 ^ p2℄a = [p1℄a ^ [p2℄a
Thus, a regular expressionr over statesq is transformed by first substituting the states
by the corresponding variables and then putting a nodea on top. A Presburger formula is
transformed by first replacing the freejqj with jxq j, q 2 Q, and again putting a nodea
on top, whereas conjunctions and disjunctions are transformed by recursively proceeding
to the involved conjuncts and disjuncts, respectively. By induction on the depth of termst; t1; : : : ; tm and pre-conditionsp, we prove for everyq 2 Q anda 2 �:

(1) t j=A q iff t : xq ;
(2) ti j=A qi for i = 1; : : : ;m, with q1 : : : qm j= p iff aht1 : : : tmi : [p℄a
The first claim then proves the correctness of the construction. The only non-trivial point
in the proof of the claim is the inductive step for assertion (2). ut
6 Complexity

In this section we study the complexity of decision problemsrelated to Presburger automata
and Presburger fixpoint formulas. The complexity of testingsatisfiability of arbitrary Pres-
burger formulas is prohibitively high, since the problem ishard for non-deterministic dou-
ble exponential time [6]. As we are interested to study the interplay between regular expres-
sions, Presburger formulas and tree automata, we assume forour complexity considerations
that all Presburger formulas are given asquantifier-free formulas(possibly with modulo
predicates and subtraction). Coefficients, like in x, are in binary notation, except in the-
orem 4, which is a special case that can be dealt with efficiently. Recall also from Lemma 1
that any quantifier-free Presburger formula can be transformed into equation normal form.
The DNF transformation might yield an exponential number ofdisjuncts. However, each
disjunct can only contain a linear number of atoms. Further,the normalization does not
increase the size of the occurring numbers.

First, we consider the non-emptiness problem for Presburger automata, i.e., given a
PTAA it has to be checked whetherA accepts at least one tree. It is alreadyPSPACE-hard to
decide whether a given set of regular expressions has a non-empty intersection or whether
the complement of a single regular expression is non-empty[24]. Hence, the non-emptiness
problem for PTA isPSPACE-hard. Surprisingly, it can also be solved inPSPACE. For that,



the following observation about the representation of Parikh images of finite word automata
turns out to be useful. It follows with a pumping argument, byobserving that every path in
the automaton can be decomposed into a union of simple cyclesand one simple path.

Lemma 2. AssumeA is a (non-deterministic) finite word automaton withn states and
input alphabet of sizek. Then the Parikh image ofL(A) is a union of linear setsf�0 +Pmi=1 xi � �i j xi � 0g where each component of each vector�j 2 Nk is at mostn.

In particular, the numberm of occurring vectors is at mostnk.

Theorem 3. The non-emptiness problem for (non-deterministic) PTAs isPSPACE-complete.

Proof. It remains to prove the upper bound. For that, letA = (Q;�; Æ; T ) be a PTA of sizen. We call a stateq of A reachable, if there is a treet such thatt j=A q. We have to check
whether there is a reachable state inT . The setR of reachable states can be computed in
a standard fashion as follows. First, the setR consists of all statesq such that for some
single-node treet, we havet j= q. Then, given a setR of reachable states, we obtain a
(possibly larger) setR0 of reachable statesq by checking whether there is a stringw overR and a symbola, such thatw j= Æ(q; a). This process stops after at mostjQj iterations.
Hence, to get the desired upper bound, it suffices to show the following claim.

Claim.Given a PTAA = (Q;�; Æ; T ),R � Q, q 2 Q, a 2 �, it can be checked in space
polynomial injAj, whether there is a stringw 2 R� such thatw j= Æ(q; a).
The proof of the claim proceeds in two steps. First, we show that the length of the shortest
word satisfyingÆ(q; a) has length at most2p(n), p a suitably defined polynomial not de-
pending onA. Second, we show that checking whether there exists somew 2 R� of length
at most2p(n) with w j= Æ(q; a) can be checked in polynomial space.

The preconditionÆ(q; a) can be written in disjunctive normal form. Each disjunct is
a conjunction of regular expressionsr1; : : : ; rk, negated regular expressions:r01; : : : ;:r0l,
andm � n Presburger equations of the formti = i over variablesjqj; q 2 Q, and
possibly other, free variables (at most5n). The formulaÆ(q; a) has a model if and only
if one of these disjuncts has a model. Since the regular expressions all occur inA, the
sum of their sizes is less thann. Let A1; : : : ; Ak andA01; : : : ; A0l be the corresponding
non-deterministic automata. Then the natural deterministic automatonA0 for their product
has at most2n states. By Lemma 2, the Parikh image ofL(A0) is a union of linear setsf�0 +Phi=1 xi�i j xi 2 Ng, whereh < 2n�jQj � 2n2 and the entries of the vectors�0; �i
are smaller than2n. Hence, a word fulfills the disjunct iff its Parikh image� fulfills the
Presburger equations and is in one of these linear sets. The latter can be expressed by:jqj = �0(q) +Phi=1 xi � �i(q) ; q 2 Q :
Together we haveM = m+ jQj � 2n equations with at mostN = 6n+2n2 variables and
coefficients of values bounded bya = 2n. By a result of Papadimitriou [18] such a system
has a solution with numbers bounded byN � (M � a+ 1)2M+4 = (6n + 2n2 ) � (2n2n + 1)4n+4 = 2O(n2)
This proves the first step, for some polynomialp(n) = O(n2).

It remains to describe the algorithm which checks whether a stringw of size2p(n) overQ exists such thatw j= Æ(q; a). The algorithm is non-deterministic. It simply guessesw
symbol by symbol. For each regular expressionr in Æ(q; a), it computes the set of states
that can be reached by the corresponding automatonAr when readingw. Further, for each



q0 2 Q it counts how oftenq0 occurs inw. All this can be done in polynomial space
without actually storingw. A counter keeps track of the length ofw. In the end, it can
be checked whetherw j= Æ(q; a). By Savitch’s theorem this non-deterministic polynomial
space algorithm can be turned into a deterministic one stillusing polynomial space. ut
Since our PTAs are deterministic and thus complementable byexchanging the sets of ac-
cepting and non-accepting states, we obtain as an immediateconsequence:

Corollary 1. The containment problem for deterministic PTAs isPSPACE-complete. ut
For certain PTAs non-emptiness can be tested in polynomial time — actually with the same
complexity as for tree automata with single regular expressions as preconditions.

Theorem 4. Non-emptiness can be decided in polynomial time for PTAs where every pre-
condition is of the form

Wki=1(ri^fi), with regular expressionsri and Presburger formulasfi in equation normal form with only one equation and coefficients represented in unary.

Allowing coefficients in binary notation makes this problemless tractable.

Theorem 5. The non-emptiness problem for PTAs as in Theorem 4 but with coefficients
represented in binary isNP-complete.

Now we turn to the related problem of deciding satisfiabilityfor Presburger fixpoint
formulas. Here, anEXPTIME lower bound is given by the same problem for fixpoint for-
mulas without Presburger subformulas. The lower bound is achieved already by formu-
las with only one occurrence of� (a similar result holds for model-checking�-calculus
against pushdown graphs, [25]). Testing whether such formulas are satisfiable by some tree
is EXPTIME-complete. Again, it turns out that adding Presburger formulas does not increase
the complexity, i.e., we get the following result.

Theorem 6. Satisfiability for Presburger fixpoint formulas isEXPTIME-complete.

The proof follows a similar line as the one for Theorem 3. Nextwe show that membership
for deterministic PTA as well as for fixpoint formulas can be solved efficiently. This means
that properties expressed by deterministic PTA are indeed of practical use:

Theorem 7. Given a treet and a deterministic PTAA, it can be checked in timeO(jtj � jAj)
whethert 2 L(A).
Proof. Since the PTA is deterministic, it suffices to compute bottom-up the state reached
by each node oft. Since every Presburger formula and thus, every precondition on a node
with k children can be evaluated in timeO(k � jAj), the claim follows. ut
Theorem 8. Given a treet and a fixpoint formula�, it can be checked in timeO(jtj � j�j2)
whethert j= �.

Proof. We compute bottom-up the set of formulas satisfied by each subtree. For each node
we have to simulate the NFA corresponding to regular expressionsr, by keeping the set of
reachable states of the NFA. Since each NFA is of size at mostj�j, each such simulation
costs at mostO(j�j2). For Presburger constraints we just need to count how many children
satisfy a given subformula, which can be done inO(j�j). ut



7 The Query Language

Fixpoint formulas allow to express properties of (document) trees. We now construct an ex-
pressive querying language which still allows for efficientalgorithms to collect all matches
in a tree. In the example shown in Figure 7 we might ask for all items containing “Bartoli”.
A second query could ask for items containing “Bartoli” and having at least three re-
views. with at least three reviews, Presburger fixpoint formulas easily can express that
a tree contains a node (at unkown depth) satisfying a given property. E.g., the formula�1 = �h "Bartoli" i describes all elements containing “Bartoli”. Note that text con-
tents can be taken into account by (conceptually) considering each text character as a sepa-
rate element node. We are interested in the class of all documents containing sub-documents
satisfying the specific property�1. These are described by:� x:(�h x i _ �1).
<music> ...

<classical> ...
<opera>

<title> The Salieri Album </title>
<composer> Bartoli </composer>
<review> ... </review>
<review> ... </review>
<review> ... </review></opera>

<opera>
<title> The No. 1 Opera Album </title>
<composer> Puccini ; Verdi </composer>
<performer> Bartoli ; Pavarotti </performer>
<review> ... </review></opera>

</classical> ...
</music>
<dvd> ...

<music dvd>
<opera>

<title> Rossini - La Cenerentola </title>
<performer> Bartoli </performer>
<review> ... </review>
<review> ... </review></opera> ...

</music dvd>
</dvd>

Figure 1 Part of an example document containing informationabout items sold by a store.

In order to indicate the sub-formula corresponding to requested sub-documents, we intro-
duce an extra marker “�”. Thus, we specify the query as 1 = �x:(�h x i _ (� ^ �1)).
Accordingly for the second query, we describe the set of all elements containing at least
three reviews by:�2 = �hjreviewj � 3i. The query formula then can be formulated as: 2 = �x:(�h x i _ (� ^ �1 ^ �2))
Thus, a query language is obtained by extending Presburger fixpoint formulas by one case:� ::= : : : j � j : : :
Accordingly, we add new axioms ` t : � for all treest. A matchs of a formula�
containing a subformula� is a proof fort : � containing the facts : �. We want to construct



an algorithm to determine for a fixed query formula�, all matches inside a document treet. We first observe that we can determine in linear time for every subtrees of t the set of all
subformulas 0 of � such that̀ s :  0. For that, we could construct, e.g., the deterministic
PTA A for � as considered in the last section. In order to deal with the special symbol�
occurring in�, we extend the notion of closure of states by adding the formula �. The rest
of the construction we leave unchanged. Let thenS(s) denote the unique state ofA withs j=A S(s). By construction, 0 2 l(S(s)) iff ` s :  0. Moreover, all these sets can be
determined by a single run ofA over the treet, i.e., in linear time.

In a second topdown pass over the treet, we determine for every subtree (occurrence)s the subsetR(s) � l(S(s)) containing all those 0 which may occur in some proof oft : �. Thens is a match iff� 2 R(s). For a closed set of subformulasB, we introduce the
auxiliary functionoreB which takes a subformula 0 of � and returns the set of subformu-
las inB which potentially contribute to proofs of 0. So,oreB( 0) = f 0g [ ore0B( 0)
whereore0B(�) = ore0B(>) = ore0B(ahF i) = ore0B(�hF i) = ; and:ore0B(�x: 0) = oreB( 0)ore0B(x) = oreB( 0) if �x: 0 2 Bore0B( 1 ^  2) = ore( 1)B [ oreB( 2)ore0B( 1 _  2) = � ore( i) if  3�i 62 Bore( 1) [ ore( 2) otherwise

Moreover, we set:oreB(R) = S 2R oreB( ) for R � B.
The second pass overt starts at the root oft. There, we have:R(t) = oreB(�) forB = l(S(t)). Now assume we have already computed the setR(s) for the occurrences of

a subtreeahs1 : : : ski. LetR0 = R(s)\	 denote the set of subformulas inR(s) of the formahF i or �hF i. ThenR(si) = S 02R0 R 0(i) whereR 0(i) equals the set of subformulas
for thei-th child ofs which may occur atsi in a proof ofs :  0. If  0 = ahfi or 0 = �hfi
for a Presburger formulaf , then we must compute the assignment to the global variablesoff . In fact,all valid sub-formulas at child treessi contribute to this assignment. Therefore,R 0(si) = S(si) for all i. On the other hand, if 0 = ahri or  0 = �hri for a regular
expressionr, thenR 0(si) = oreBi(Ri) whereBi = l(S(si)) andRi = f i j 9 1 : : :  k 2 L(r) : 8 j :  j 2 S(sj)g
The setRi denotes all subformulas provable forsi which may contribute to the validation
of r. From these, we take all the formulasahF i or �hF i in S(si) which may contribute to
a proof of these. According to this definition, the setsR 0(si), i = 1; : : : ; k can jointly be
computed by a left-to-right followed by a right-to-left pass of a finite (string) automaton
for r over the children ofs. The case of negated regular expressions is treated analogously.
Summarizing we conclude:

Theorem 9. The set of matches of a fixpoint query� in an input treet can be computed in
time linear injtj. If � is part of the input, the joint query complexity isO(j�j2 � jtj). ut
8 Conclusion

We have enhanced a simple fixpoint logic for unranked trees with Presburger constraints.
For the basic decision problems such as satisfiability, membership and containment the re-
sulting logic turned out to have comparable complexities tothe fixpoint logic without Pres-
burger constraints. Therefore, our logic is a promising candidate for a smooth enhancement
of classical Schema and querying languages for XML documents.



It remains a challenging engineering problem to obtain an implementation of the new
logic which behaves well on practical examples. Also, we would like to know more about
the complexity of the satisfiability problem for other restrictions on the transition function
of a PTA or the fixpoint formula to obtain further useful classes with efficient algorithms.

Since the class of tree languages defined by deterministic PTA is a strict superclass of
the regular tree languages, we would also like to see other characterizations of this class.
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