Flat and One-Variable Clauses: Complexity of Verifying
Cryptographic Protocolswith Single Blind Copying

Helmut Seidl Kumar Neeraj Verma

Institut fur Informatik, TU Munchen, Germany
{seidl,verma}@n. tum de

Abstract. Cryptographic protocols with single blind copying were defl and
modeled by Comon and Cortier using the new cléssf first order clauses,
which extends the Skolem class. They showed its satisfiapiioblem to be in
3-DEXPTIME. We improve this result by showing that satisilibfor this class
is NEXPTIME-complete, using new resolution techniques. 3iew satisfiabil-
ity to be DEXPTIME-complete if clauses are Horn, which is wisaequired for
modeling cryptographic protocols. While translation tarilolauses only gives a
DEXPTIME upper bound for the secrecy problem for these pal&) we further
show that this secrecy problem is actually DEXPTIME-cortgle

1 Introduction

Several researchers have pursued modeling of cryptogrgpbiocols using first or-
der clauses [3, 6, 15] and related formalisms like tree aatarand set constraints[5,
11, 12]. While protocol insecurity is NP-complete in casadfounded number of ses-
sions [14], this is helpful only for detecting some attadkst certifying protocols, the
number of sessions cannot be bounded, although we may usesatie abstractions.
The approach using first order clauses is particularly usefthis class of problems. A
common safe abstraction is to allow a bounded number of rspheerandom numbers,
to be used in infinitely many sessions. Security howevdrrstihains undecidable [5].
Hence further restrictions are necessary to obtain dettiiyab

In this direction, Comon and Cortier [6, 8] proposed the otf protocols with
single blind copying. Intuitively this restriction mearat agents are allowed to copy
at most one piece of data blindly in any protocol step, aic&tn satisfied by most pro-
tocols in the literature. Comon and Cortier modeled theesgcproblem for these pro-
tocols using the new clagsof first order clauses, which extends the Skolem class, and
showed satisfiability fo€ to be decidable [6] in 3-DEXPTIME [8]. The NEXPTIME
lower bound is easy. We show in this paper that satisfiatblitthis class is in NEXP-
TIME, thus NEXPTIME-complete. If clauses are restrictedé&Horn, which suffices
for modeling of cryptographic protocols, we show that $etislity is DEXPTIME-
complete (again the lower bound is easy). While translatioolauses only gives a
DEXPTIME upper bound for the secrecy problem for this cldgsrotocols, we further
show that the secrecy problem for these protocols is also®PHEME-complete.

For proving our upper bounds, we introduce several variahttandard ordered
resolution with selection and splitting [2]. Notably we sigter resolution as consist-
ing of instantiation of clauses, and of generation of prapmsal implications. This is

in the style of Ganzinger and Korovin [10], but we enhancs #ipproach, and gen-
erate interesting implications to obtain optimal compiexMVore precisely, while the
approach of Ganzinger and Korovin [10] has a single phasastamtiation followed
by propositional satisfiability checking, we generate @erinteresting propositional
implications, instantiate them, and iterate the processfifther show how this tech-
nigue can be employed also in presence of rules for replateofiditerals in clauses,
which obey some ordering constraints. To deal with the motibsingle blind copying
we show how terms containing a single variable can be decsetpioto simple terms
whose unifiers are of very simple forms. As byproducts, waiokptimal complexity
for several subclasses 6f involving so calledlat andone-variableclauses.

Outline: We start in Section 2 by recalling basic notions about firsteodogic and
resolution refinements. In Section 3 we introduce cryptplgi@protocols with sin-
gle blind copying, discuss their modeling using the clds¥ first order clauses, and
show that their secrecy problem is DEXPTIME-hard. To dediteclasC we start
with the subclass of one-variable clauses in Section 4 and sts satisfiability to
be DEXPTIME-complete. Satisfiability of the fragment®finvolving flat clauses is
shown to NEXPTIME-complete in Section 5. In Section 6, thehteques from the two
cases are combined with further ideas to show that satifyatair C is NEXPTIME-
complete. In Section 7 we adapt this proof to show that saligity for the Horn frag-
ment ofC is DEXPTIME-complete.

2 Resolution

We recall standard notions from first order logic. Fix a stgn@’ of function symbols
each with a given arity, and containing at least one zeraambol. Letr be the maxi-
mal arity of function symbols i¥. Fix a setX = {x;,x2,x3, ...} of variables. Note
thatxy, xo, ... (in bold face) are the actual elementsXfwhere ase, y, z, x1, y1, - - .
are used to represent arbitrary elementXofThe setT’s;(X) of terms built fromX
andX is defined as usudl’y; is the set ofground termsi.e. those not containing any
variablesAtomsA are of the formP (¢4, .. ., t,,) whereP is ann-ary predicate and’s
are termsLiterals L are either positive literals-A (or simply A) or negative literals
—A, whereA is an atom—(—A) is another notation foA. + denotest or — andF
denotes the opposite sign (and similarly for notatieris¥’, ...). A clauseis a finite
set of literals. Anegative clausé one which contains only negative literals.Mf is
any term, literal or clause then the $et)M) of variables occurring in them is defined
as usual. IC; andC;, are clauses thefi; v C; denoteg”; U Cy. C'V {L} is written as
C' Vv L (In this notation, we allow the possibility df € C). If C4,...,C, are clauses
such thafv(C;)Nfv(C;) = O fori # j, and ifC; is non-empty foi > 2, then the clause
C1V...VC, isalsowritten ag’; L. . .LIC,, to emphasize this proper@round literals
and clausesre ones not containing variables. A term, literal or classevial if it con-
tains no function symbols. A substitution is a function X — 7's;(X). Ground sub-
stitutionsmap every variable to a ground term. We weite= {1 — ¢1,..., 2, — 5}
to say thate;o = t; for1 < ¢ < nandzoc = zfora ¢ {z1,...,x,}. If M is aterm,
literal, clause, substitution or set of such objects, thendffectM o of applyingo to
M is defined as usuaRenamingsre bijectionsr : X — X. If M is a term, literal,

clause or substitution, then a renaming\défis of the formM o for some renaming;,
and an instance ad¥/ is of the formAM o for some substitution. If M andN are terms
or literals then aunifierof M and N is a substitutiorr such thatVM o = No. If such

a unifier exists then there is alsar@st general unifier (mguij.e. a unifiers such that
for every unifiere’ of M and N, there is some” such that’ = oo”. Most general
unifiers are unique upto renamingaif andos are two mgus of\/ and N theno is

a renaming of». Hence we may use the notatioryu (M, N) to denote one of them.
We write M|z, ...,x,] to say thativ(M) C {x1,...,z,}. If t1,...,t, are terms
thenM|tq, ..., t,] denotesM {zy — t1,...,x, — t,}. If N is a set of terms them
M[N] = {MJt1,...,tn] | t1,...,tn, € N}.If M is a set of terms, atoms, literals or
clauses themd/[N]| = J,,c,; m[N]. A Herbrand interpretatior?{ is a set of ground
atoms. A claus& is satisfiedin H if for every ground substitution, eitherA € H
for someA € Co, or A ¢ H for some—A € Co. A setS of clauses is satisfied i

if every clause ofS is satisfied inH. If such aH exists thenS is satisfiable and is

a Herbrand modebf S. A Horn clauseis one containing at most one positive literal.
If a set of Horn clauses is satisfiable then it has a least ldatbmodel wrt the subset
ordering.

Resolution and its refinements are well known methods faingsatisfiability of
clauses. Given a strict partial orderon atoms, a literal-A is maximalin a clause
C if there is no literal-"B € C with A < B. Binary ordered resolutiomndordered
factorizationwrt ordering< are defined by the following two rules respectively:

CiVA —BV(QCy Ci1 VLAV EB

Cio VvV Cyo CioV Ao
wheres = mgu(A, B) in both rules A andB are maximal in the left and right premises
respectively of the first rule, andland B are both maximal in the premise of the second
rule. We rename the premises of the first rule before resolsb that they don’t share
variables. The ordering: is stableif: whenever4; < As thenA;0 < Aso for all
substitutions. We writeS = SU{C'} to say thaC is obtained by one application of
the binary ordered resolution or binary factorization rateclauses irt' (the subscript
denotes the ordering used).

Another resolution rule isplitting. This can be described usitapleaux A tableau
is of the form$S; | ... | S,, wheren > 0 and eacts;, called abranchof the tableau, is
a set of clauses (tH®perator is associative and commutative). A tableaaisfiablef
at least one of its branches is satisfiable. The tableaulededbsedif each.S; contains
the empty clause, denotéd Thesplitting step on tableaux is defined by the rule;|
S —sp T | (S\{C1UC}HU{C1} | (S\{C1UC2})U{C:} wheneveC;LIC, € S and
C1 andCs are non-emptyC; andCs are calleccomponentsf the clause”; LIC, being
split. It is well known that splitting preserves satisfi@yibf tableaux. We may choose
to apply splitting eagerly, or lazily or in some other faghiblence we define splitting
strategyto be a functionf such thatT —,, f(7) for all tableaux7. The relation
= is extended to tableaux as expected. Ordered resolutidmsplitting strategy is
then defined by the following rulel; = ; f(72) if 71 =« 7». This provides us
with a well known sound and complete method for testing Bakisity. For any binary
relation?, R* will denote the reflexive transitive closure &f and R will denote the
transitive closure oR.

Lemmal ([2]). For any setS of clauses, for any stable orderinrg, and for any split-
ting strategyf, S is unsatisfiable ify =% , 7 for some closed".

If all predicates are zero-ary then the resulting clausegpapositional clauses
In this case we write5 =, T to say that every Herbrand model Sfis a Herbrand
model ofT". This notation will also be used whéhandT are sets of first order clauses,
by treating every (ground or non-ground) atom as a zero-egylipate. For example
{P(a),—P(a)} E, Obut{P(z),—P(a)} ¥, 0. S E, {C} is also written as5 =, C.
If S F, C thenclearlySo F,, Co for all substitution.

3 Cryptographic Protocols

We assume thal’ contains the binary functiods}_and(_, _) denoting encryption and
pairing. Messagesire terms ofl's,(X). A stateis of the formS(My, ..., M,) where
S with arity n is from a finite set ofcontrol pointsand M, are messages. It denotes
an agent at control poinf with messaged/; in its memory. Aninitialization state
is a state not containing variables.pkotocol ruleis of the formS;y (M, ..., M,,) :
recv(M) — S3(N1,...,N,) : send(N). Here M;, N, are messages, add and N
are each either a message, or a dummy syradicating nothing is received (resp.
sent). For secrecy analysis we can replad®y some public message, i.e. one which
is known to everyone including the adversary. The rule sag$ an agent in state
Sy(M, ..., M,,) can receive message, send a messag¥, and then move to state
Sa(Ny,. .., Ny), thus also modifying the messages in its memorprdtocolis a finite
set of initialization states and protocol rules. This madeh the style of [9] and [5].
The assumption of single blind copying then says that eactopol rule contains at
most one variable (which may occur anywhere any number agim that rule). For
example, the public-key Needham-Schroeder protocol below

A— B:{A Natxk,

B — A . {NA;NB}KB

A— B: {NB}KB
is written in our notation as follows. For every pair of agedt and B in our sys-
tem (finitely many of them suffice for finding all attacks agsdisecrecy [7, 6]) we
have two nonce#V} 5 and N% 5 to be used in sessions whedeplays the initiator’s
role andB plays the responder’s role. We have initialization statés (A, N} z) and
Respo(B, N3) for all agents4d andB. Corresponding to the three lines in the protocol
we have rules for all agent$ and B:

Initg(A, N} 5):recv(?) — Inity (A, N}g):send({(A, N)}k p)

Respo(B, N3)recv({(A, 1)} i,) —Respu(B,z, N3 p)send({(z, N3 p)} i)

Init1 (A, N} g)ireev({(Nhg, 2) Y)— Inita(A, Nig, x):send({z} kp)
Respi(B,z, N%5):recv({Nig ks) —Respa(B,x, N3p):send(?)

Any initialization state can be created any number of times any protocol rule
can be executed any number of times. The adversary has fulladt@ver the network:
all messages received by agents are actually sent by thesadyeand all messages
sent by agents are actually received by the adversary. Thersaty can obtain new
messages from messages he knows, e.g. by performing eiocrgpd decryption. To
model this using Horn clauses, we create a unary predieaté to model reachable

states, and a unary predicatewn to model messages known to the adversary. The ini-
tialization stateS (M, . . ., M,) is then modeled by the clausach(S (M, ..., My,)),
where S is a new function symbol we create. The protocol rGléM;, ..., M,,) :
recv(M) — S2(Ni,...,Np) : send(N) is modeled by the clausdsiown(N) Vv
—reach(S1 (M, ..., My,))V —known(M) andreach(S2(Ny, ..., Ny)) V —reach(Sy(
My,...,My,)) V —known(M). Under the assumption of single blind copying it is
clear that all these clauses awae-variable clauses.e. clauses containing at most
one variable. We need further clauses to express adverapapitities. The clauses
known({x1 }x,) V —known(x;) V —known(xz2) andknown(x;) V —known({x1 }x,) V
—known(x2) express the encryption and decryption abilities of the eshrg. We have
similar clauses for his pairing and unpairing abilitieswal as clauseg&nown(f(x;
..y Xpn)) V —known(x1) V ... V —known(x,) for any functionf that the adver-
sary knows to apply. All these are cleaflgat clausesi.e. clauses of the form’ =
Vi £:P(filad, . 2d) v Vi Qi (x;), where{a?, ... o } = f(C) for

1 < i < k. Asymmetric keys, i.e. key& such that messagg\l } x can only be de-
crypted with the inverse kel —!, are also easily dealt with using flat and one-variable
clauses. The adversary’s knowledge of other dditee agent’s names, public keys, etc
are expressed by claudeswn(c). Then the least Herbrand model of this set of clauses
describes exactly the reachable states and the messages tonthe adversary. Then
to check whether some messageremains secret, we add the clausenown(A/) and
check whether the resulting set is satisfiable.

A set of clauses is in the cla¥s if each of its members is a one-variable clause. A
set of clauses is in the clagsif each of its members is a flat clause. More generally we
have the clas§ proposed by Comon and Cortier [6, 8]: a set of clausésin the class
C if for eachC € S one of the following conditions is satisfied:

—(C'is a one-variable clause

-C = Vf:l ilPl(’u,l[fl(.I'll, Ce ,l’;l)]) V vz’:l iij(.I’j), where forl < ¢ < k we
have{z},...,z}, } = fv(C) andu, contains at most one variable.

If all clauses are Horn then we have the corresponding dasde orn, F Horn and
CHorn. Clearly the classe®; (resp.Vy Horn) andF (resp.F Horn) are included in
the clasg (resp.C Horn) since theu;'s above can be trivial. Conversely any clause set
in C can be considered as containing just flat and one-variaélesek. This is because
we canreplace a clause/+P(u[f (z1,...,z,)]) by the claus€vV+Pu(f(2z1,...,zy))
and add clauses Pu(z) V P(u[z]) and Pu(z) V — P(u[z]) wherePu is a fresh predi-
cate. This transformation takes polynomial time and presesatisfiability of the clause
set. Hence now we need to deal with just flat and one-varidhlses. In the rest of the
paper we derive optimal complexity results for all thesessies.

Still this only gives us an upper bound for the secrecy probdé protocols since
the clauses could be more general than necessary. It tutnisawever, that this is not
the case. In order to show this we rely on a reduction of theha&aility problem for
alternating pushdown systems (APDI®)form of Horn clauses, aAPDSis a finite set
of clauses of the form (iP(a) wherea is a zero-ary symbol, (iP(s[z]) V —Q(t[z])
wheres andt involve only unary function symbols, and (i (z) vV —P; (z) V — Py (z).
Given such an APDS, a ground atonP(t) is reachabldf P(t) is in the least Herbrand
model ofS, i.e. if SU {—P(¢)} is unsatisfiable. Reachability in APDS is DEXPTIME-

hard [4]. We encode this problem into secrecy of protoc@$nd9]. Let K be a (sym-
metric) key not known to the adversary. Encode atdg as messageS P, t)} x, by
treating P as some data. Create an initialization staténo message is stored in the
state). Clause (i) is translated &s: recv(?) — S : send({(P,a)}). Clause (ii) is
translated as$' : recv({(Q, t[z])} k) — S : send({(P, s[z]) } k). Clause (iii) is trans-
lated asS : recv(({(P1,z)} i, {{P2, 2)} k) — S : send({({P, z) }). The intuition is
that the adversary cannot decrypt messages encryptediwitte also cannot encrypt
messages witli(. He can only forward messages which are encrypted withHow-
ever he has the ability to pair messages. This is utilizetérttanslation of clause (jii).
Then a messagf\! } i is known to the adversary ifif is of the form(P, ¢) and P(¢)

is reachable in the APDS.

Theorem 1. Secrecy problem for cryptographic protocols with singlatlcopying,
with bounded number of nonces but unbounded number of sesSSIOEXPTIME-
hard, even if no message is allowed to be stored at any copwiat.

4 One Variable Clauses.: Decomposition of Terms

We first show that satisfiability for the classésand); Horn is DEXPTIME-complete.
Note that although we consider only unary predicates, thimirestriction in the case
of one-variable clauses, since we can encode a®fhs . .., t,) asP’(fn(t1...,tn))
for fresh P’ and f,, for every P of arity n. As shown in [6, 8], ordered resolution on
one-variable clauses, for a suitable ordering, leads taeatibound on the height of
terms produced. This does not suffice for obtaining a DEXPH liypper bound and
we need to examine the forms of unifiers produced during uésol. We consider
terms containing at most one variable (call therme-variable termsto be composi-
tions of simpler terms. A non-ground one-variable tefn] is calledreducedif it is
not of the formu[v[z]] for any non-ground non-trivial one-variable termis;] andv|x].
The term f(g(x), h(g(x))) for example is not reduced because it can be written as
f(z, h(x))[g(z)]. The termf’(x, g(x), a) is reduced. Unifying it with the reduced term
1" (h(y), g(h(a)),y) produces ground unifigr — h(y)[a],y — a} and bothi(y) and

a are strict subterms of the given terms. Indeed we find:

Lemma 2. Lets[z] and¢[y] be reduced, non-ground and non-trivial terms wherg y
ands[z] # t[z]. If s andt have a unifielo thenzo,yo € U[V] whereU is the set of
non-ground (possibly trivial) strict subtermsoandt, andV is the set of ground strict
subterms of andt.

In case both terms (even if not reduced) have the same varabhave the follow-
ing easy result:

Lemma 3. Leto be a unifier of two non-trivial, non-ground and distinct onarable
termss[z] and¢[x]. Thenzo is a ground strict subterm of or of ¢.

In the following one-variable clauses are simplified to ireconly reduced terms.

Lemma4. Any non-ground one-variable terpfic] can be uniquely written agx] =
ti[ta[. .. [tn[z]] -..]] wheren > 0 and eacht;[x] is non-trivial, non-ground and re-
duced. This decomposition can be computed in time polynamtize size of.

Above and elsewhere,if = 0 thent; [t2]. .. [t,[x]] .. .]] denotes:. Now if a clause
set contains a claus€ = C’ Vv +£P(t[z]), with ¢t[z] being non-ground, if[z] =
ti[... [tn]z]] . . .] where each; is non-trivial and reduced, then we create fresh predi-
catesPt; ...t;for1 < i < p—1andreplac€ by the claus€’V+Pt; ... t,—1(t,[z]).
Also we add ClauseBtl - tl(tz+1[$]) vV —Pt... ti+1($) and—Ptl - tl(tz+1[$]) \Y
Pty ...tip1(x) for 0 < i < n — 2to our clause set. Note that the predicafs. . . ¢;
are considered invariant under renaming of tetmd~or: = 0, Pt; ...t; is same as
P. Our transformation preserves satisfiability of the clasete By Lemma 4 this takes
polynomial time and eventually all non-ground literals lauses are of the forat P(t)
with reduced. Next if the clause set is of the for§ iU {C; U Cs}, whereC is non-
empty and has only ground literals, and is non-empty and has only non-ground
literals, then we do splitting to producgU {C1} | SU{C>}. This process produces at
most exponentially many branches each of which has polyalsize. Now it suffices
to decide satisfiability of each branch in DEXPTIME. Hencemnee assume that each
clause is either:

(Ca) a ground clause, or

(Ch) a clause containing exactly one variable, each of whoseali is of the form
+P(t[x]) wheret is non-ground and reduced.
Consider a sef of clauses of type Ca and Ch. We show how to decide satisfiabfli
the setS. Wlog we assume that all clausesSrof type Cb contain the variabte, . Let
Ng be the set of non-ground terntix;] occurring as arguments in literals.$h Let Ngs
be the set of non-ground subtermisg;] of terms inNg. We assume thailg andNgs
always contain the trivial terng;, otherwise we add this term to both sets. Gebe
the set of ground subterms of terms occurring as argumetitgiials in S. The sizes
of Ng, Ngs andG are polynomial. LeSST be the set of clauses of type Ca and Cb which
only contain literals of the formt:P(t) for somet € Ng U Ng[Ngs[G]] (observe that
G C Ngs[G] C Ng[Ngs[G]]). The size ofST is at most exponential.

For resolution we use ordering: P(s) < Q(t) iff s is a strict subterm of. We
call < the subterm ordering without causing confusion. This isdjestable. This is
the ordering that we are going to use throughout this pap@aiticular this means that
if a clause contains literals P(x) and+'Q(¢t) wheret is non-trivial and contains,
then we cannot choose the liteealP(x) to resolve upon in this clause. Because of the
simple form of unifiers of reduced terms we have:

Lemma 5. Binary ordered resolution and ordered factorization, whetsubterm or-
dering, on clauses i8S produces clauses which are againsf (upto renaming).

Hence to decide satisfiability & C ST, we keep generating new clausesSf
by doing ordered binary resolution and ordered factorwatirt the subterm ordering
till no new clause can be generated, and then check whethentipty clause has been
produced. Also recall that APDS consist of Horn one-vagatthuses. Hence:

Theorem 2. Satisfiability for the classel; andV; Horn is DEXPTIME-complete.

5 Flat Clauses: Resolution Modulo Propositional Reasoning

Next we show how to decide the clagsof flat clauses in NEXPTIME. This is well
known when the maximal arity is a constant, or when all non-trivial literals in a

clause have the sansequencdinstead of the samse) of variables. But we are not
aware of a proof of NEXPTIME upper bound in the general caseskéw how to ob-
tain NEXPTIME upper bound in the general case, by doing te&oi modulo propo-
sitional reasoning. While this constitutes an interestesylt of its own, the techniques
allow us to deal with the full clas€ efficiently. Also this shows that the general-
ity of the classC does not cost more in terms of complexity. Afblock is a one-
variable clause which contains only trivial literals. A cplex clause’ is a flat clause
Visy £:iPi(fild, .. 20,) v V-, £;Q;(x;) inwhichk > 1. Aflat clause is either
a complex clause, or anclausewhich is defined to be a disjunction eblocks, i.e. to
be of the formCy [z1]U. . .U C,, [z,] where eaclf; is ane-block. e-clauses are difficult
to deal with, hence we split them to producklocks. Hence define-splitting as the
restriction of the splitting rule in which one of the compatseis anc-block.

Recall thatr is the maximal arity of symbols itv'. Any complex claus€' can be
renamed to make ggoodi.e. such thatv(C) C X, = {xi1,...,%,}. An e-block C
can be renamed to makegbodi.e. of the formC[x,+1]. The choice ofk,1 is not
crucial. Now notice that ordered resolution between complauses and-blocks only
produces flat clauses, which can then be split to be left with complex and-blocks.
E.g. Resolution betweeR, (x1) V —Pa(x2) V P3(f(x1,%2)) V —Ps(g(x2,%1)) and
Py (g(Xl, Xl)) vV —P; (h(Xl)) V Py (Xl) producesPl (Xl) V=P, (Xl) V Ps (f(Xl, Xl)) V
—Ps5(h(x1)) V Ps(x1). Resolution betweeRs (x,4+1) and—Pa(f(x1,x2)) V P3(x1) V
Py (x2) producesPs(x1) V Ps(x2) which can then be split. The point is that we always
choose a non-trivial literal from a clause for resolutidnthiere is one. As there are
finitely many complex clauses areblocks this gives us a decision procedure. Note
however that the number of complex clauses is doubly exg@ienhis is because we
allow clauses of the forn®; (fl (Xl7 X1, Xg))\/PQ (fg (Xg7 X1))\/Pg (f3 (Xg, X1, Xg))\/...,
i.e. the nontrivial terms contain arbitrary number of réats of variables in arbitrary
order. The number of such variable sequences wériables is exponentially many,
hence the number of clauses is doubly exponential. Lettiegrtaximal arityr to be
a constant, or forcing all non-trivial literals in a clausehave the same variable se-
quence would have produced only exponentially many clalisgsesence of splitting,
this would have given us the well-known NEXPTIME upper bountlich is also opti-
mal. But we are not aware of a proof of NEXPTIME upper bounchia general case.
To obtain NEXPTIME upper bound in the general case we inttedhe technique of
resolution modulo propositional reasoning.

For a clause”, define the set of its projections a$C') = C[X,]. Essentially
projection involves making certain variables in a clauseabgAs we saw, resolution
between two complex clauses amounts to propositionalutsolbetween their pro-
jections. Define the s = {f(x1,...,z,) | f € XY and eachy; € X, } of size ex-
ponential inr. Resolution betweeeablock C; and a good complex claug& amounts
to propositional resolution of a clause fratfjU] with Cs. Also note that propositional
resolution followed by further projection is equivalenttimjection followed by propo-
sitional resolution. Each complex clause has exponeytiadiny projections. This sug-
gests that we can compute beforehand the exponentially prajsctions of complex
clauses and exponentially many instantiations-tfocks. All new complex clauses
generated by propositional resolution are ignored. Burafeveral such propositional

resolution steps, we may get astlause, which should then be split and instantiated
and used for obtaining further propositional resolvemsother words we only com-
pute such propositionally implieg-clauses, do splitting and instantiation and iterate
the process. This generates all resolvents upto propealtimplication. The difference
from the approach of Ganzinger and Korovin [10] is that thayeha single phase of
instantiation followed by propositional satisfiabilityetking. In contrast, we compute
certain interesting propositional implications which &rgher instantiated, and iterate
the process. We now formalize our approach.

For a setS of clauses, letomp(.S) be the set of complex clauses.$h eps(.S) be
the set ok-blocks inS, 7(S) = Upe g (C) andl(S) = SUm(comp(S))Ueps(S)[U].
For setsS andT' of complex clauses andblocks, writeS C 7" to mean that:
—if C'is a complex clause if thenl(T") £, 7(C'), and
— everye-block in S can be renamed as so¢x, 1] € 7.
For tableaux7; and7 involving only complex clauses areblocks we writeZ; T 75
if 7; can be written as | ... | S, and7; can be written ag? | ... | T, (note same)
suchthatS; C T; for 1 < < n. Intuitively 75 is a succinct representationdf. Define
the splitting strategy’ as the one which repeatedly appliesplitting on a tableau as
long as possible. The relatios-~ ; provides us a sound and complete method for
testing unsatisfiability. We define the alternative procedor testing unsatisfiability
by using succinct representations of tableaux. We defifmy the rule:7 | S » 7 |
SU{Ci[xrq1]} | .. | SU{Ck[xr41]} Whenevel(S) E, C = Ci[x;,|U. .. UCk[x;,],
C'is ane-clause, and < iy, ...,%; < r. Thenp» simulates=_ ;:

Lemma6. If Sis a set of complex clauses aadblocks,S T 7" andS =_ ¢ 7, then
all clauses occurring i7" are complex clauses aerblocks andl” »* 7' for some7”’
suchthat7 C 7".

Hence we have completenessaf

Lemma 7. IfasetS of good complex clauses ardblocks is unsatisfiable thes\»* 7°
for some closed".

Proof. By Lemma 1,5 =255 | ... | S, such that eacly; > O. Since all complex
clauses and-blocks inS are good, we havg C S. Hence by Lemma 6, we have some
Ty,...,T, suchthatS »* 7y | ... | T, andS; C T; for 1 <4 < n. Sinced € S; and

O is ane-block, henced € T;; for1 < i < n. O

Call a setS of good complex clauses ameblockssaturatedf the following condi-
tion is satisfied: ifi(S) £, Bi[x;,] U ... U Bg[x;, | with 1 <iq,...,4; < r, eachB;
being anc-block, then there is some< j < k such thatB;[x,+1] € S.

Lemma8. If S is a satisfiable set of good complex clauses abtbcks therS »* 7 |
T for some7 and some saturated s&t of good complex clauses ameblocks, such
thatO ¢ T.

Proof. We construct a sequenée= Sy C S; C S5 C ... of good complex clauses
ande-blocks such thab; is satisfiable and; »* S;11 | 7; for someZ; for eachi.
S = Sy is satisfiable by assumption. Now assume we have alreadyedeiy. . ., .S;

andZp, ..., 7;_1. LetC' = Bi[x;]U... U Bj[x;]for1 <1< N be all the possible
1

e-clauses such thats;) =, C', 1 <it,... i} < r. SinceS; is satisfiableS; U {C" |
1 <1 < N} is satisfiable. Since; , ..., x; are mutually distinct fol < I < N,
°l

there arel < j; < k; for1 < [< N such thatS; U {Bél xp] |1 <1< N}is
Il

satisfiable. LetS;11 = S; U {Bj-L [xr41] | 1 <1 < N} S;4 is satisfiable. Also it is
clearthatS; »* S;11 | 7; forsomeZ;. If S; 11 = S; thensS; is saturated, otherwisg | ;
has strictly more-blocks. As there are only finitely many goedblocks, eventually we
will end up with a saturated s@t in this way. Sincel is satisfiabled ¢ T. From
construction it is clear that there is somiesuch thatS »* 7 | T'. O

Theorem 3. Satisfiability for the clasg is NEXPTIME-complete.

Proof. The lower bound comes from reduction of satisfiability of ifes set con-
straints which is NEXPTIME-complete [1]. For the upper bddet S be a finite set
of flat clauses. Repeatedly apghgplitting to obtainf (S) = S1 | ... | Si,. S is satisfi-
able iff somesS; is satisfiable. The numbet of branches iry (S) is at most exponential.
Also each branch has size linear in the siz&' 0fVe non-deterministically choose some
S; and check its satisfiability in NEXPTIME.

Hence wlog we may assume that the given Sdtas only complex clauses and
e-blocks. Wilog all clauses i$ are good. We non-deterministically choose a certain
number of good-blocks By [x,+1], - - ., By [%r+1] and check thal' = S;U{ By [x,+1],

..., Bn[x,41]} is saturated andl ¢ T. By Lemma 8, ifS is satisfiable then clearly
there is such a sé&t. Conversely if there is such a $Efthen whenever »* 7, we will
have7 = T | 7' for some7’. Hence we can never haé»* 7 whereT is closed.
Then by Lemma 7 we conclude tHAts satisfiable. Hencg C T is also satisfiable.

Guessing the séf' requires non-deterministically choosing from among exgmon
tially many e-blocks. To check thal” is saturated, for every-clauseC' = By [x;,] U
L UBg[xG,], withl <y, ..., 4 <7, andBj[x,41] ¢ T'forl < j <k, we check that
I(T) ¥, C,i.e.l(T)uU—~C'is propositionally satisfiable (wherg L V...V L,) denotes
{—L1,...,—L,}). This can be checked in NEXPTIME since propositional fiatisl-
ity can be checked in NPTIME. We need to do such checks for &t exponentially
many possible values @f. O

6 Combination: Ordered Literal Replacement

Combining flat and one-variable clauses creates additdifi@ulties. First observe that
resolving a one variable claugg Vv £P(f(s1]z], ..., sx[z])) with a complex clause
FP(f(z1,...,xn)) V Cq produces a one-variable clausesifz] = s;[z] for all z; =
x;, and if Cy contains a literalP(x;) then the resolvent contains a litefa(s;[z]). The
problem now is that even if (s1[z], ..., s,[x]) is reduceds;[x] may not be reduced.
E.g. f(g(h(x)),) is reduced buy(h(z)) is not reduced. Like in Section 4 we may
think of replacing this literal by simpler literals involwy fresh predicates. Firstly we
have to ensure that in this process we would not generatet@hfimany predicates.
Secondly it is not clear that mixing ordered resolution stefih replacement of literals
is still complete. Correctness is easy to show since the nauwse is in some sense

equivalent to the old deleted clause. However deletionais#s arbitrarily can violate
completeness of the resolution procedure. The key factatwireserves completeness
is that we replace literals by smaller literals wrt the givedering<.

Formally areplacement rulas of the formA4; — As whereA; and A, are (hot
necessarily ground) atoms. The clausesssbciatedvith this rule is{ A vV— A, — A1V
As}. Intuitively such a replacement rule says tlatand A, are equivalent. The clause
setcl(R) associated with a s&® of replacement rules is the union of the clause sets
associated with the individual replacement rulesRinGiven a stable ordering on
atoms, a replacement rulé; — A, is orderediff A; < A;. We define the relation
—g as:S —g (S\ {410V C})U{LtAy0 vV C} wheneverS is a set of clauses,
+A,0vC €S, A — Ay € R ando is some substitution. Hence we replace literals
in a clause by smaller literals. The relation is extendedatdetaux as usual. This is
reminiscent of the well-studied case of resolution with s@quational theory on terms.
There, however, the ordering used for resolution is compatible with the equational
theory and one essentially works with the equivalence efassterms and atoms. This
is not the case here.

Next note that in the above resolution example, evef{sf [z], . . ., s,[z]) is non-
ground, some,; may be ground. Hence the resolvent may have ground as wellres n
ground literals. We avoided this in Section 4 by initial pegessing. Now we may
think of splitting these resolvents during the resolutisagedure. This however will
be difficult to simulate using the alternative resolutiongedure on succinct represen-
tations of tableaux because we will generate doubly expalnmany one-variable
clauses. To avoid this we use a variant of splitting ca#iptitting-with-naming13].
Instead of creating two branches after splitting, this pué both components into the
same set, but with tags to simulate branches produced biyasgdéplitting. Fix a finite
setP of predicate symbolsP-clauses are clauses whose predicates are all from-
troduce fresh zero-ary predicai€dor P-clauses” modulo renaming, i.eC, = Cs iff
Cyo = C, for some renaming. Literals+C for P-clause<” aresplitting literals The
splitting-with-namingule is defined as$ —,,s,; (S\{C1C2})U{C1V—Cs, C2VCa}
whereC; L Cy € S, Cy is non-empty and has only non-splitting literals, ardhas at
least one non-splitting literal. Intuitivelg/, represents the negation 6. We will use
both splitting and splitting-with-naming according to sepredefined strategy. Hence
for a finite setQ of splitting atoms, defin@-splitting as the restriction of the splitting-
with-naming rule where the splitting atom produced is fetd to be fromQ. Call
this restricted relation as» g_,p. This is extended to tableaux as usual. Now once we
have generated the clausés\ —C5 andC, v Cy we would like to keep resolving on
the second part of the second clause till we are left with theseCs (possibly with
other positive splitting literals) which would then be resal with the first clause to
produceC; (possibly with other positive splitting literals) and orthen the literals in
C1 would be resolved upon. Such a strategy cannot be ensuredibyed resolution,
hence we introduce a new rule. An orderiigover non-splitting atoms is extended
to the ordering<; by lettingg <, A whenevel is a splitting atom and! is a non-
splitting atom, andd <, B wheneverA, B are non-splitting atoms and < B. We

definemodified ordered binary resolutidwy the following rule:
CiVA —BVQC

CioV Cyo

wheres = mgu(A, B) and the following conditions are satisfied:
(1) ¢4 has no negative splitting literal, andlis maximal inC' .
(2) (a) eitherB € Q, or

(b) Cs has no negative splitting literal, ariglis maximal inCs.
As usual we rename the premises before resolution so thatith&t share variables.
This rule says that we must select a negative splittingditey resolve upon in any
clause, provided the clause has at least one such literal dfich literal is present in the
clause, then the ordering, enforces that a positive splitting literal will not be sekt
as long as the clause has some non-splitting literal. WeeWirit> . S U {C'} to say
thatC' is obtained by one application of the modified binary ordeesblution or the
(unmodified) ordered factorization rule on clausesSinThis is extended to tableaux
as usual. AQ-splitting-replacement strategig a function f such thatZ (—g_sp
U —sp U —g)*f(T) for any tableauxZ. Hence we allow both normal splitting
and Q-splitting. Modified ordered resolution wit@-splitting-replacement strategy
is defined by the relations =, s f(1') wheneverS = - T. This is extended to
tableaux as usual. The above modified ordered binary résolutle can be considered
as an instance afrdered resolution with selectidg], which is known to be sound and
complete even with splitting and its variants. Our mannexdénding< to < is essen-
tial for completeness. We now show that soundness and ctenples hold even under
arbitrary ordered replacement strategies. It is not clesudh rules have been studied
elsewhere. Wlog we forbid the useless case of replacembas cantaining splitting
symbols. The relatior: is enumerabléf the set of all ground atoms can be enumerated
asAp, As,...suchthatifd; < A; theni < j. The subterm ordering is enumerable.

Theorem 4. Modified ordered resolution, wrt a stable and enumerablesdrdy, with

O-splitting and ordered literal replacement is sound and ptete for any strategy.
I.e. for any setS of P-clauses, for any strict stable and enumerable partial oree
on atoms, for any seR of ordered replacement rules, for any finite €20of splitting

atoms, and for any-splitting-replacement strategy, S U ¢l(R) is unsatisfiable iff
S =% ;g 7T forsome closed.

For the rest of this section fix a sBtof one-variabldP-clauses and compleR-
clauses whose satisfiability we need to decide.Ngbe the set of non-ground terms
occurring as arguments in literals in the one-variables#alofS. We rename all terms
in Ng to contain only the variable, . ;. Wlog assume,.,; € Ng. LetNgs be the set of
non-ground subterms of termshlg, andNgr = {s[x,+1] | s is non-ground and reduced,
and for some, s[t] € Ngs}. DefineNgrr = {s1[...[sm]...] | si[.-.[sn]...] € Ngs,

m < n, and eacls; is non-trivial and reduced Define the set of predicatéd =

{Ps | P € P,s € Ngrr}. Note thatP C Q. Define the set of replacement rules
R =A{Ps1...5m-1(sm[Xr41]) = Ps1...8m([xr41]) | Ps1...5m € Q}. They are
clearly ordered wr<. Let G be the set of ground subterms of terms occurring as ar-
guments in literals irb. For the rest of this section the set of splitting atoms that w
are going to use i9Qy = {£P(t) | P € P,t € G}. Their purpose is to remove

ground literals from a non-ground clause. All sets definealathave polynomial size.
We also need the sélgry = {x,4+1} U {f(s1,---,8n) | Jg(t1,...,tm) € Ngr-
{s1,...,8n} = {t1,...,tm}} Which has exponential size. These terms are produced
by resolution of non-ground one-variable clauses with demplauses, and are also
reduced. In the ground case we have theGget {f(s1,...,s,) | Jg(t1, ..., tm) €

G| {s1,...,8n} = {t1,...,tm}} Of exponential size. For a s&t of predicates and

a setU of terms, the seP’[U] of atoms is defined as usual. For a §ebf atoms the
set—V and+V of literals is defined as usual. The following types of clausdl be
required during resolution:

C1 clauseg’ v D, whereC'is ane-block with predicates fron), andD C +Q,.

C2 clauses” Vv D where(' is a one-variable clause with literals frorQ(Ngry), C
has at least one non-trivial literal, addl C + Q.

C3 clause€’v D whereC' is a non-empty clause with literals frotaQ(Ngr: [Ngrr[G1]]),
andD C +Q,.

C4 clauses” v D whereC = \/*_ £, P(f;(a,... 2%) V \/é}:1 +,Q;(z;) is a

complex clause with each; € Q, each@; € P andD C £Q,

We have already argued why we need splitting literals in bava clauses, and why
we need\gr; instead olNgr in type C2. In type C3 we hawdgrr in place of the seltlgs
that we had in Section 4, to take care of interactions betweenvariable clauses and
complex clauses. In type C4 the trivial literals involvedicates only fron? (and not
Q). This is what ensures that we need only finitely many fregdisates (those from
Q \ P) because these are the literals that are involved in replants when this clause
is resolved with a one-variable clause. T®g-splitting steps that we use in this section
consist of replacing a tabledu | S by the tablead | (S\{CVL})u{CVv—L,LVL},
whereC' is non-ground[€ +P(G) andC Vv L € S. The replacement steps we are
going to use are of the following kind:

(1) replacing claus€'[x] = C' V £P(t4]... [tn[s[z]]]...]) by clauseCs[z] = C V
+Pt1...to(s[z])} whereP € P, s[x,41] € Ngr is non-trivial, andt,[... [t,]...] €
Ngrr. We have{C [x,+1]} U cl(R)[Ngrr] Fp Co[x,41].

(2) replacing ground claus€; = C V £P(t1]...[tnlg]]-..]) by clauseCy = C Vv
+Pty...t,[g]} whereP € P, g € Ngrr[G1] andtq]... [t,]...] € Ngrr. This replace-
ment is done only whety[. .. [t,[g]] . . .] € Ngrr[Ngrr[G1]] \ Ngri[Ngrr[G1]]. We have
{C1} Ucl(R)[Ngrr[Ngrr[Gi]]] Ep Ca.

Define theQ,-splitting-replacement strateglyas one which repeatedly applies fiest
splitting, then the abov@,-splitting steps, then the above two replacement stepsatill
further change is possible. Thesi._ ; gives us a sound and complete method for
testing unsatisfiability.

As in Section 5 we now define a succinct representation oétald and an alterna-
tive resolution procedure for them. As we said, a litdrat Q, represents-L. Hence
for a clauseC we defineC as the clause obtained by replacing evedy by the literal
FL. This is extended to sets of clauses as usual. As bé&fere{ f (z1,...,z,) | f €
XY, and eachr; € X, }. The functiongps andcomp of Section 5 are now extended to
returne-blocks and complex clauses respectively, possibly irudigion with splitting
literals. For a seb' of clauses, definev(S) as the set of clauses of type C2Sn The
functionr is as before. We need to define which kinds of instantiatioesabe used

to generate propositional implications. For a clagsalefinel, (C) = {C} U C[U] U
C[U[NgrrUNgrr[Ngrr[G1]]]JUC[Ngr1JUC[Ngr1[Ngrr[G1]]]. These are the instantiations
necessary far-blocks. Defind, (C) = {C'}UC[Ngrr[G:]]. These are necessary for one-
variable clauses. Defing(C') = {C}. Ground clauses require no instantiation. Define
14(C) = 7(C) U C[Ngrr U [Ngrr[Ngrr[G1]]]]. These are necessary for complex clauses.
For a setS of clauses, defing(S) = U4 1:(C). For asefS of clauses of type C1-C4
definel(S) = SUIl; (eps(.S))Ulx(ov(S))Uls(comp(S))Ucl(R)[NgrrUNgrr[Ngrr[G1]]].
Note that instantiations of clausesdi{R) are necessary for the replacement rules, as
argued above. For a sétof clauses define the following properties:

(P1y) C satisfies property PAiff C[x,4+1] € T.

(P2r) C satisfies property P2iff I(T) Ep 12(C[xr41]).

(P3r) C satisfies property R3iff 1(T) F,, 13(C).

(P4r) C satisfies property P4iff 1(T) F,, 14(C).

For sets of clauseS and7’, defineS C 7' to mean that everg' € S is of type G and
satisfies property# for somel < i < 4. This is extended to tableaux as usual. The
alternative resolution procedure for testing unsatidlitgtddy using succinct represen-
tations of tableaux is now defined by the rule:| S » 7 | S U {Ci[x,4+1] U D} |

SU{Cs[xr41]} | .. | SU{Ck[x,r+1]} Wwhenevelt(S) F, C[x;,|U...UCk[x;,]UD,
eachC; is ane-block,1 < iy, ..., < randD C +Qq. The simulation property now
states:

Lemma9. If SC T'andS =, s r 7 thenT »* 7' for some7’ suchthat? C 7".
Hence as for flat clauses we obtain:

Theorem 5. Satisfiability for the clas€ is NEXPTIME-complete.

7 TheHorn Case

We show that in the Horn case, the upper bound can be imprav&@EXPTIME.
The essential idea is that propositional satisfiability @friiclauses is in PTIME in-
stead of NPTIME. But now we need to eliminate the use of taedtogether. To
this end, we replace thesplitting rule of Section 6 by splitting-with-naming. Ac-
cordingly we define the set of splitting atoms @s= Q, U Q; whereQ; = {C |
C'is a non-empty negative— block with predicates frori?}. We know that binary res-
olution and factorization on Horn clauses produces Horomsda. Replacements on
Horn clauses using the rules froR produces Horn clause®);-splitting on Horn
clauses produces Horn clauses. E.g. cla@isg)V —Q(x1)V—R(x2) produces(x;)V
—Q(x1) V ——R(x2) and—R(x2) V —R(x2). Qp-splitting onP(f(x)) V —Q(a) pro-
ducesP(f(x1))V——Q(a)and—Q(a)V—Q(a) which are Horn. Howeve®,-splitting
onC = —P(f(x1)) V Q(a) produces”; = —P(f(x1)) V —Q(a) andCy = Q(a) V
Q(a). Cy is not Horn. Howeverl; = C' andCy = —Q(a) V Q(a) are Horn. Finally,
asQ; has exponentially many atoms, we must restrict their oetwoes in clauses. Ac-
cordingly, forl < < 4, define clauses of typeiQo be of the formC' v E whereC' is
oftype G, £ C +£9,,C VvV Eis Horn andE has at most negative literals is defined
as before, hence it leaves atoms fr@nunchanged). Now th@-splitting-replacement

strategyf first appliesQ;-splitting as long as possible, then appli@s-splitting as
long as possible and then applies the replacement stepstidisé as long as possible.
Succinct representations are now definedsas: 7' iff for eachC € S, C'is of type G’

and satisfies /7 for somel < i < 4. The abstract resolution procedure is defined as:
Ty TU{B1[%r+1]V—qV...V—qUDUE}YU{q;V B;[xr+1] | 2 < ¢ < k} whenever
|(T) ':p Q, C = Bl[xil] ... I_IBk[xik] uDu E,Q is Horn,1 < eyl <1,

B, is ane-block, B; is a negative-block andg; = B; for2 < i < k, D C +Q, and

E C +£0Q; such that ift = 1 thenE has at most: negative literals, and if > 1 then

FE has no negative literal.

Lemmal0. If S C T andS =<, ;r S’ thenT »* T’ for somel” such thats’ C T".

Now for deciding satisfiability of a set of flat and one-vat@blauses we proceed
as in the non-Horn case. But now instead of non-determiaiyi adding clauses, we
compute a sequence= Sy » 51 » S5 ... starting from the given sef, till no more
clauses can be added, and then check whéihes been generated. The length of this
sequence is at most exponential. Compusig, from S; requires at most exponential
time because the number of possibilities ¢6in the definition of.- above is exponen-
tial. (Note that this idea of;-splitting would not have helped in the non-Horn case
because we cannot bound the number of positive splittiacalis in a clause in the non-
Horn case, whereas Horn clauses by definition have at mogpasitive literal). Also
note that APDS can be encoded using flat Horn clauses. Hence:

Theorem 6. Satisfiability for the class&sH orn andF Horn is DEXPTIME-complete.

Together with Theorem 1, this gives us optimal complexitypimtocol verification:

Theorem 7. Secrecy of cryptographic protocols with single blind coyiwith bounded
number of nonces but unbounded number of sessions is DEXXRGdkhplete.

8 Conclusion

We proved DEXPTIME-hardness of secrecy for cryptographatqols with single
blind copying, and improved the upper bound from 3-DEXPTIMBEXPTIME. We
improved the 3-DEXPTIME upper bound for satisfiability féretclassC to NEXP-
TIME in the general case and DEXPTIME in the Horn case, whieltamknown lower
bounds. For this we invented new resolution techniquesdikiered resolution with
splitting modulo propositional reasoning, ordered liteegplacements and decomposi-
tions of one-variable terms. As byproducts we obtainechaytn complexity for several
fragments of’ involving flat and one-variable clauses. Security for sevether decid-
able classes of protocols with unbounded number of sesaimh®ounded number of
nonces is in DEXPTIME, suggesting that DEXPTIME is a reabtmaomplexity class
for this class of protocaols.

References

10.

11.

12.

13.

14.

15.

. A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complgxdf set constraints. In
CSL'93 pages 1-17. Springer-Verlag LNCS 832, 1993.

L. Bachmair and H. Ganzinger. Resolution theorem pravilmgHandbook of Automated
Reasoningvolume |, chapter 2, pages 19-99. North-Holland, 2001.

B. Blanchet. An efficient cryptographic protocol verifised on Prolog rules. @SFW’01
pages 82-96. IEEE Computer Society Press, 2001.

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alteoratdournal of the ACM28(1),
1981.

H. Comon and V. Cortier. Tree automata with one memongaastraints and cryptographic
protocols.Theoretical Computer Scienc2004. To appear.

H. Comon-Lundh and V. Cortier. New decidability resutis fragments of first-order logic
and application to cryptographic protocols. RTA'03 pages 148-164. Springer-Verlag
LNCS 2706, 2003.

H. Comon-Lundh and V. Cortier. Security properties: Terts are sufficient. IESOP’03
pages 99-113. Springer-Verlag LNCS 2618, 2003.

V. Cortier. Veérification Automatique des Protocoles Cryptographgju@hD thesis, ENS
Cachan, France, 2003.

N. A. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Unigability of bounded security
protocols. INFMSP’99 Trento, Italy, 1999.

H. Ganzinger and K. Korovin. New directions in instatitia-based theorem proving. In
LICS’01, pages 55-64. IEEE Computer Society Press, 2003.

J. Goubault-Larrecq, M. Roger, and K. N. Verma. Absteacand resolution modulo AC:
How to verify Diffie-Hellman-like protocols automaticallyournal of Logic and Algebraic
Programming2004. To Appear. Available as Research Report LSV-04-¥, EBIS Cachan.
D. Monniaux. Abstracting cryptographic protocols withe automata. I18AS’99 pages
149-163. Springer-Verlag LNCS 1694, 1999.

A. Riazanov and A. Voronkov. Splitting without backtkaw. In1JCAI'01, pages 611-617,
2001.

M. Rusinowitch and M. Turuani. Protocol insecurity withite number of sessions is NP-
complete. INCSFW'01 IEEE Computer Society Press, 2001.

C. Weidenbach. Towards an automatic analysis of sgqunitocols. INCADE’99, pages
378-382. Springer-Verlag LNAI 1632, 1999.

