
Flat and One-Variable Clauses: Complexity of Verifying
Cryptographic Protocols with Single Blind Copying

Helmut Seidl Kumar Neeraj Verma

Institut für Informatik, TU München, Germany
{seidl,verma}@in.tum.de

Abstract. Cryptographic protocols with single blind copying were defined and
modeled by Comon and Cortier using the new classC of first order clauses,
which extends the Skolem class. They showed its satisfiability problem to be in
3-DEXPTIME. We improve this result by showing that satisfiability for this class
is NEXPTIME-complete, using new resolution techniques. Weshow satisfiabil-
ity to be DEXPTIME-complete if clauses are Horn, which is what is required for
modeling cryptographic protocols. While translation to Horn clauses only gives a
DEXPTIME upper bound for the secrecy problem for these protocols, we further
show that this secrecy problem is actually DEXPTIME-complete.

1 Introduction

Several researchers have pursued modeling of cryptographic protocols using first or-
der clauses [3, 6, 15] and related formalisms like tree automata and set constraints[5,
11, 12]. While protocol insecurity is NP-complete in case ofa bounded number of ses-
sions [14], this is helpful only for detecting some attacks.For certifying protocols, the
number of sessions cannot be bounded, although we may use other safe abstractions.
The approach using first order clauses is particularly useful for this class of problems. A
common safe abstraction is to allow a bounded number of nonces, i.e. random numbers,
to be used in infinitely many sessions. Security however still remains undecidable [5].
Hence further restrictions are necessary to obtain decidability.

In this direction, Comon and Cortier [6, 8] proposed the notion of protocols with
single blind copying. Intuitively this restriction means that agents are allowed to copy
at most one piece of data blindly in any protocol step, a restriction satisfied by most pro-
tocols in the literature. Comon and Cortier modeled the secrecy problem for these pro-
tocols using the new classC of first order clauses, which extends the Skolem class, and
showed satisfiability forC to be decidable [6] in 3-DEXPTIME [8]. The NEXPTIME
lower bound is easy. We show in this paper that satisfiabilityof this class is in NEXP-
TIME, thus NEXPTIME-complete. If clauses are restricted tobe Horn, which suffices
for modeling of cryptographic protocols, we show that satisfiability is DEXPTIME-
complete (again the lower bound is easy). While translationto clauses only gives a
DEXPTIME upper bound for the secrecy problem for this class of protocols, we further
show that the secrecy problem for these protocols is also DEXPTIME-complete.

For proving our upper bounds, we introduce several variantsof standard ordered
resolution with selection and splitting [2]. Notably we consider resolution as consist-
ing of instantiation of clauses, and of generation of propositional implications. This is

in the style of Ganzinger and Korovin [10], but we enhance this approach, and gen-
erate interesting implications to obtain optimal complexity. More precisely, while the
approach of Ganzinger and Korovin [10] has a single phase of instantiation followed
by propositional satisfiability checking, we generate certain interesting propositional
implications, instantiate them, and iterate the process. We further show how this tech-
nique can be employed also in presence of rules for replacement of literals in clauses,
which obey some ordering constraints. To deal with the notion of single blind copying
we show how terms containing a single variable can be decomposed into simple terms
whose unifiers are of very simple forms. As byproducts, we obtain optimal complexity
for several subclasses ofC, involving so calledflat andone-variableclauses.
Outline: We start in Section 2 by recalling basic notions about first order logic and
resolution refinements. In Section 3 we introduce cryptographic protocols with sin-
gle blind copying, discuss their modeling using the classC of first order clauses, and
show that their secrecy problem is DEXPTIME-hard. To decidethe classC we start
with the subclass of one-variable clauses in Section 4 and show its satisfiability to
be DEXPTIME-complete. Satisfiability of the fragment ofC involving flat clauses is
shown to NEXPTIME-complete in Section 5. In Section 6, the techniques from the two
cases are combined with further ideas to show that satisfiability for C is NEXPTIME-
complete. In Section 7 we adapt this proof to show that satisfiability for the Horn frag-
ment ofC is DEXPTIME-complete.

2 Resolution

We recall standard notions from first order logic. Fix a signatureΣ of function symbols
each with a given arity, and containing at least one zero-arysymbol. Letr be the maxi-
mal arity of function symbols inΣ. Fix a setX = {x1,x2,x3, . . .} of variables. Note
thatx1,x2, . . . (in bold face) are the actual elements ofX, where asx, y, z, x1, y1, . . .
are used to represent arbitrary elements ofX. The setTΣ(X) of terms built fromΣ
andX is defined as usual.TΣ is the set ofground terms, i.e. those not containing any
variables.AtomsA are of the formP (t1, . . . , tn) whereP is ann-ary predicate andti’s
are terms.Literals L are either positive literals+A (or simplyA) or negative literals
−A, whereA is an atom.−(−A) is another notation forA. ± denotes+ or − and∓
denotes the opposite sign (and similarly for notations±′,∓′, . . .). A clauseis a finite
set of literals. Anegative clauseis one which contains only negative literals. IfM is
any term, literal or clause then the setfv(M) of variables occurring in them is defined
as usual. IfC1 andC2 are clauses thenC1 ∨C2 denotesC1 ∪C2. C ∨{L} is written as
C ∨ L (In this notation, we allow the possibility ofL ∈ C). If C1, . . . , Cn are clauses
such thatfv(Ci)∩fv(Cj) = ∅ for i 6= j, and ifCi is non-empty fori ≥ 2, then the clause
C1∨. . .∨Cn is also written asC1⊔. . .⊔Cn to emphasize this property.Ground literals
and clausesare ones not containing variables. A term, literal or clauseis trivial if it con-
tains no function symbols. A substitution is a functionσ : X → TΣ(X). Ground sub-
stitutionsmap every variable to a ground term. We writeσ = {x1 7→ t1, . . . , xn 7→ tn}
to say thatxiσ = ti for 1 ≤ i ≤ n andxσ = x for x /∈ {x1, . . . , xn}. If M is a term,
literal, clause, substitution or set of such objects, then the effectMσ of applyingσ to
M is defined as usual.Renamingsare bijectionsσ : X → X. If M is a term, literal,

clause or substitution, then a renaming ofM is of the formMσ for some renamingσ,
and an instance ofM is of the formMσ for some substitutionσ. If M andN are terms
or literals then aunifier of M andN is a substitutionσ such thatMσ = Nσ. If such
a unifier exists then there is also amost general unifier (mgu), i.e. a unifierσ such that
for every unifierσ′ of M andN , there is someσ′′ such thatσ′ = σσ′′. Most general
unifiers are unique upto renaming: ifσ1 andσ2 are two mgus ofM andN thenσ1 is
a renaming ofσ2. Hence we may use the notationmgu(M, N) to denote one of them.
We write M [x1, . . . , xn] to say thatfv(M) ⊆ {x1, . . . , xn}. If t1, . . . , tn are terms
thenM [t1, . . . , tn] denotesM{x1 7→ t1, . . . , xn 7→ tn}. If N is a set of terms them
M [N] = {M [t1, . . . , tn] | t1, . . . , tn ∈ N}. If M is a set of terms, atoms, literals or
clauses themM [N] =

⋃
m∈M m[N]. A Herbrand interpretationH is a set of ground

atoms. A clauseC is satisfiedin H if for every ground substitutionσ, eitherA ∈ H
for someA ∈ Cσ, or A /∈ H for some−A ∈ Cσ. A setS of clauses is satisfied inH
if every clause ofS is satisfied inH. If such aH exists thenS is satisfiable, andH is
a Herbrand modelof S. A Horn clauseis one containing at most one positive literal.
If a set of Horn clauses is satisfiable then it has a least Herbrand model wrt the subset
ordering.

Resolution and its refinements are well known methods for testing satisfiability of
clauses. Given a strict partial order< on atoms, a literal±A is maximalin a clause
C if there is no literal±′B ∈ C with A < B. Binary ordered resolutionandordered
factorizationwrt ordering< are defined by the following two rules respectively:

C1 ∨ A − B ∨ C2

C1σ ∨ C2σ

C1 ∨ ±A ∨ ±B

C1σ ∨ Aσ

whereσ = mgu(A, B) in both rules,A andB are maximal in the left and right premises
respectively of the first rule, andA andB are both maximal in the premise of the second
rule. We rename the premises of the first rule before resolution so that they don’t share
variables. The ordering< is stableif: wheneverA1 < A2 thenA1σ < A2σ for all
substitutionsσ. We writeS ⇒< S∪{C} to say thatC is obtained by one application of
the binary ordered resolution or binary factorization ruleon clauses inS (the subscript
denotes the ordering used).

Another resolution rule issplitting. This can be described usingtableaux. A tableau
is of the formS1 | . . . | Sn, wheren ≥ 0 and eachSi, called abranchof the tableau, is
a set of clauses (the| operator is associative and commutative). A tableau issatisfiableif
at least one of its branches is satisfiable. The tableau is calledclosedif eachSi contains
the empty clause, denoted2. Thesplitting step on tableaux is defined by the rule:T |
S →spl T | (S\{C1⊔C2})∪{C1} | (S\{C1⊔C2})∪{C2} wheneverC1⊔C2 ∈ S and
C1 andC2 are non-empty.C1 andC2 are calledcomponentsof the clauseC1⊔C2 being
split. It is well known that splitting preserves satisfiability of tableaux. We may choose
to apply splitting eagerly, or lazily or in some other fashion. Hence we define asplitting
strategyto be a functionf such thatT →spl f(T) for all tableauxT . The relation
⇒< is extended to tableaux as expected. Ordered resolution with splitting strategy is
then defined by the following rule:T1 ⇒<,f f(T2) if T1 ⇒< T2. This provides us
with a well known sound and complete method for testing satisfiability. For any binary
relationR, R∗ will denote the reflexive transitive closure ofR, andR+ will denote the
transitive closure ofR.

Lemma 1 ([2]). For any setS of clauses, for any stable ordering<, and for any split-
ting strategyf , S is unsatisfiable iffS ⇒∗

<,f T for some closedT .

If all predicates are zero-ary then the resulting clauses are propositional clauses.
In this case we writeS �p T to say that every Herbrand model ofS is a Herbrand
model ofT . This notation will also be used whenS andT are sets of first order clauses,
by treating every (ground or non-ground) atom as a zero-ary predicate. For example
{P (a),−P (a)} �p 2 but{P (x),−P (a)} 2p 2. S �p {C} is also written asS �p C.
If S �p C then clearlySσ �p Cσ for all substitutionσ.

3 Cryptographic Protocols

We assume thatΣ contains the binary functions{ } and〈 , 〉 denoting encryption and
pairing.Messagesare terms ofTΣ(X). A stateis of the formS(M1, . . . , Mn) where
S with arity n is from a finite set ofcontrol pointsandMi are messages. It denotes
an agent at control pointS with messagesMi in its memory. Aninitialization state
is a state not containing variables. Aprotocol rule is of the formS1(M1, . . . , Mm) :
recv(M) → S2(N1, . . . , Nn) : send(N). HereMi, Nj are messages, andM andN
are each either a message, or a dummy symbol? indicating nothing is received (resp.
sent). For secrecy analysis we can replace? by some public message, i.e. one which
is known to everyone including the adversary. The rule says that an agent in state
S1(M1, . . . , Mm) can receive messageM , send a messageN , and then move to state
S2(N1, . . . , Nn), thus also modifying the messages in its memory. Aprotocolis a finite
set of initialization states and protocol rules. This modelis in the style of [9] and [5].
The assumption of single blind copying then says that each protocol rule contains at
most one variable (which may occur anywhere any number of times in that rule). For
example, the public-key Needham-Schroeder protocol below

A → B : {A, NA}KB

B → A : {NA, NB}KB

A → B : {NB}KB

is written in our notation as follows. For every pair of agents A and B in our sys-
tem (finitely many of them suffice for finding all attacks against secrecy [7, 6]) we
have two noncesN1

AB andN2
AB to be used in sessions whereA plays the initiator’s

role andB plays the responder’s role. We have initialization statesInit0(A, N1
AB) and

Resp0(B, N2
AB) for all agentsA andB. Corresponding to the three lines in the protocol

we have rules for all agentsA andB:
Init0(A, N1

AB):recv(?) → Init1(A, N1
AB):send({〈A, N1

AB〉}KB
)

Resp0(B, N2
AB):recv({〈A, x〉}KB

) →Resp1(B, x, N2
AB):send({〈x, N2

AB〉}KA
)

Init1(A, N1
AB):recv({〈N1

AB, x〉}KA
)→ Init2(A, N1

AB, x):send({x}KB
)

Resp1(B, x, N2
AB):recv({N2

AB}KB
) →Resp2(B, x, N2

AB):send(?)
Any initialization state can be created any number of times and any protocol rule

can be executed any number of times. The adversary has full control over the network:
all messages received by agents are actually sent by the adversary and all messages
sent by agents are actually received by the adversary. The adversary can obtain new
messages from messages he knows, e.g. by performing encryption and decryption. To
model this using Horn clauses, we create a unary predicatereach to model reachable

states, and a unary predicateknown to model messages known to the adversary. The ini-
tialization stateS(M1, . . . , Mn) is then modeled by the clausereach(S(M1, . . . , Mn)),
whereS is a new function symbol we create. The protocol ruleS1(M1, . . . , Mm) :
recv(M) → S2(N1, . . . , Nn) : send(N) is modeled by the clausesknown(N) ∨
−reach(S1(M1, . . . , Mm))∨−known(M) andreach(S2(N1, . . . , Nn))∨−reach(S1(
M1, . . . , Mm)) ∨ −known(M). Under the assumption of single blind copying it is
clear that all these clauses areone-variable clauses, i.e. clauses containing at most
one variable. We need further clauses to express adversary capabilities. The clauses
known({x1}x2

)∨−known(x1) ∨−known(x2) andknown(x1) ∨−known({x1}x2
) ∨

−known(x2) express the encryption and decryption abilities of the adversary. We have
similar clauses for his pairing and unpairing abilities, aswell as clausesknown(f(x1

, . . . ,xn)) ∨ −known(x1) ∨ . . . ∨ −known(xn) for any functionf that the adver-
sary knows to apply. All these are clearlyflat clauses, i.e. clauses of the formC =
∨k

i=1 ±iPi(fi(x
i
1, . . . , x

i
ni

)) ∨
∨l

j=1 ±jQj(xj), where{xi
1, . . . , x

i
ni
} = fv(C) for

1 ≤ i ≤ k. Asymmetric keys, i.e. keysK such that message{M}K can only be de-
crypted with the inverse keyK−1, are also easily dealt with using flat and one-variable
clauses. The adversary’s knowledge of other datac like agent’s names, public keys, etc
are expressed by clausesknown(c). Then the least Herbrand model of this set of clauses
describes exactly the reachable states and the messages known to the adversary. Then
to check whether some messageM remains secret, we add the clause−known(M) and
check whether the resulting set is satisfiable.

A set of clauses is in the classV1 if each of its members is a one-variable clause. A
set of clauses is in the classF if each of its members is a flat clause. More generally we
have the classC proposed by Comon and Cortier [6, 8]: a set of clausesS is in the class
C if for eachC ∈ S one of the following conditions is satisfied:
– C is a one-variable clause
– C =

∨k
i=1 ±iPi(ui[fi(x

i
1, . . . , x

i
ni

)]) ∨
∨l

j=1 ±jQj(xj), where for1 ≤ i ≤ k we
have{xi

1, . . . , x
i
ni
} = fv(C) andui contains at most one variable.

If all clauses are Horn then we have the corresponding classes V1Horn, FHorn and
CHorn. Clearly the classesV1 (resp.V1Horn) andF (resp.FHorn) are included in
the classC (resp.CHorn) since theui’s above can be trivial. Conversely any clause set
in C can be considered as containing just flat and one-variable clauses. This is because
we can replace a clauseC∨±P (u[f(x1, . . . , xn)]) by the clauseC∨±Pu(f(x1, . . . , xn))
and add clauses−Pu(x)∨P (u[x]) andPu(x)∨−P (u[x]) wherePu is a fresh predi-
cate. This transformation takes polynomial time and preserves satisfiability of the clause
set. Hence now we need to deal with just flat and one-variable clauses. In the rest of the
paper we derive optimal complexity results for all these classes.

Still this only gives us an upper bound for the secrecy problem of protocols since
the clauses could be more general than necessary. It turns out, however, that this is not
the case. In order to show this we rely on a reduction of the reachability problem for
alternating pushdown systems (APDS). In form of Horn clauses, anAPDSis a finite set
of clauses of the form (i)P (a) wherea is a zero-ary symbol, (ii)P (s[x]) ∨ −Q(t[x])
wheres andt involve only unary function symbols, and (iii)P (x)∨−P1(x)∨−P2(x).
Given such an APDSS, a ground atomP (t) is reachableif P (t) is in the least Herbrand
model ofS, i.e. if S ∪ {−P (t)} is unsatisfiable. Reachability in APDS is DEXPTIME-

hard [4]. We encode this problem into secrecy of protocols, as in [9]. LetK be a (sym-
metric) key not known to the adversary. Encode atomsP (t) as messages{〈P, t〉}K , by
treatingP as some data. Create an initialization stateS (no message is stored in the
state). Clause (i) is translated asS : recv(?) → S : send({〈P, a〉}K). Clause (ii) is
translated asS : recv({〈Q, t[x]〉}K) → S : send({〈P, s[x]〉}K). Clause (iii) is trans-
lated asS : recv(〈{〈P1, x〉}K , {〈P2, x〉}K〉) → S : send({〈P, x〉}K). The intuition is
that the adversary cannot decrypt messages encrypted withK. He also cannot encrypt
messages withK. He can only forward messages which are encrypted withK. How-
ever he has the ability to pair messages. This is utilized in the translation of clause (iii).
Then a message{M}K is known to the adversary iffM is of the form〈P, t〉 andP (t)
is reachable in the APDS.

Theorem 1. Secrecy problem for cryptographic protocols with single blind copying,
with bounded number of nonces but unbounded number of sessions is DEXPTIME-
hard, even if no message is allowed to be stored at any controlpoint.

4 One Variable Clauses: Decomposition of Terms

We first show that satisfiability for the classesV1 andV1Horn is DEXPTIME-complete.
Note that although we consider only unary predicates, this is no restriction in the case
of one-variable clauses, since we can encode atomsP (t1, . . . , tn) asP ′(fn(t1 . . . , tn))
for freshP ′ andfn for everyP of arity n. As shown in [6, 8], ordered resolution on
one-variable clauses, for a suitable ordering, leads to a linear bound on the height of
terms produced. This does not suffice for obtaining a DEXPTIME upper bound and
we need to examine the forms of unifiers produced during resolution. We consider
terms containing at most one variable (call themone-variable terms) to be composi-
tions of simpler terms. A non-ground one-variable termt[x] is calledreducedif it is
not of the formu[v[x]] for any non-ground non-trivial one-variable termsu[x] andv[x].
The termf(g(x), h(g(x))) for example is not reduced because it can be written as
f(x, h(x))[g(x)]. The termf ′(x, g(x), a) is reduced. Unifying it with the reduced term
f ′(h(y), g(h(a)), y) produces ground unifier{x 7→ h(y)[a], y 7→ a} and bothh(y) and
a are strict subterms of the given terms. Indeed we find:

Lemma 2. Lets[x] andt[y] be reduced, non-ground and non-trivial terms wherex 6= y
ands[x] 6= t[x]. If s and t have a unifierσ thenxσ, yσ ∈ U [V] whereU is the set of
non-ground (possibly trivial) strict subterms ofs andt, andV is the set of ground strict
subterms ofs andt.

In case both terms (even if not reduced) have the same variable we have the follow-
ing easy result:

Lemma 3. Letσ be a unifier of two non-trivial, non-ground and distinct one-variable
termss[x] andt[x]. Thenxσ is a ground strict subterm ofs or of t.

In the following one-variable clauses are simplified to involve only reduced terms.

Lemma 4. Any non-ground one-variable termt[x] can be uniquely written ast[x] =
t1[t2[. . . [tn[x]] . . .]] wheren ≥ 0 and eachti[x] is non-trivial, non-ground and re-
duced. This decomposition can be computed in time polynomial in the size oft.

Above and elsewhere, ifn = 0 thent1[t2[. . . [tn[x]] . . .]] denotesx. Now if a clause
set contains a clauseC = C′ ∨ ±P (t[x]), with t[x] being non-ground, ift[x] =
t1[. . . [tn[x]] . . .] where eachti is non-trivial and reduced, then we create fresh predi-
catesPt1 . . . ti for 1 ≤ i ≤ p−1 and replaceC by the clauseC′∨±Pt1 . . . tn−1(tn[x]).
Also we add clausesPt1 . . . ti(ti+1[x]) ∨−Pt1 . . . ti+1(x) and−Pt1 . . . ti(ti+1[x]) ∨
Pt1 . . . ti+1(x) for 0 ≤ i ≤ n − 2 to our clause set. Note that the predicatesPt1 . . . ti
are considered invariant under renaming of termstj . For i = 0, Pt1 . . . ti is same as
P . Our transformation preserves satisfiability of the clauseset. By Lemma 4 this takes
polynomial time and eventually all non-ground literals in clauses are of the form±P (t)
with reducedt. Next if the clause set is of the formS ∪ {C1 ∪ C2}, whereC1 is non-
empty and has only ground literals, andC2 is non-empty and has only non-ground
literals, then we do splitting to produceS ∪ {C1} | S ∪ {C2}. This process produces at
most exponentially many branches each of which has polynomial size. Now it suffices
to decide satisfiability of each branch in DEXPTIME. Hence now we assume that each
clause is either:

(Ca) a ground clause, or
(Cb) a clause containing exactly one variable, each of whose literals is of the form

±P (t[x]) wheret is non-ground and reduced.
Consider a setS of clauses of type Ca and Cb. We show how to decide satisfiability of
the setS. Wlog we assume that all clauses inS of type Cb contain the variablex1. Let
Ng be the set of non-ground termst[x1] occurring as arguments in literals inS. LetNgs

be the set of non-ground subtermst[x1] of terms inNg. We assume thatNg andNgs

always contain the trivial termx1, otherwise we add this term to both sets. LetG be
the set of ground subterms of terms occurring as arguments inliterals inS. The sizes
of Ng, Ngs andG are polynomial. LetS† be the set of clauses of type Ca and Cb which
only contain literals of the form±P (t) for somet ∈ Ng ∪ Ng[Ngs[G]] (observe that
G ⊆ Ngs[G] ⊆ Ng[Ngs[G]]). The size ofS† is at most exponential.

For resolution we use ordering≺: P (s) ≺ Q(t) iff s is a strict subterm oft. We
call ≺ the subterm ordering without causing confusion. This is clearly stable. This is
the ordering that we are going to use throughout this paper. In particular this means that
if a clause contains literals±P (x) and±′Q(t) wheret is non-trivial and containsx,
then we cannot choose the literal±P (x) to resolve upon in this clause. Because of the
simple form of unifiers of reduced terms we have:

Lemma 5. Binary ordered resolution and ordered factorization, wrt the subterm or-
dering, on clauses inS† produces clauses which are again inS† (upto renaming).

Hence to decide satisfiability ofS ⊆ S†, we keep generating new clauses ofS†

by doing ordered binary resolution and ordered factorization wrt the subterm ordering
till no new clause can be generated, and then check whether the empty clause has been
produced. Also recall that APDS consist of Horn one-variable clauses. Hence:

Theorem 2. Satisfiability for the classesV1 andV1Horn is DEXPTIME-complete.

5 Flat Clauses: Resolution Modulo Propositional Reasoning

Next we show how to decide the classF of flat clauses in NEXPTIME. This is well
known when the maximal arityr is a constant, or when all non-trivial literals in a

clause have the samesequence(instead of the sameset) of variables. But we are not
aware of a proof of NEXPTIME upper bound in the general case. We show how to ob-
tain NEXPTIME upper bound in the general case, by doing resolution modulo propo-
sitional reasoning. While this constitutes an interestingresult of its own, the techniques
allow us to deal with the full classC efficiently. Also this shows that the general-
ity of the classC does not cost more in terms of complexity. Anǫ-block is a one-
variable clause which contains only trivial literals. A complex clauseC is a flat clause
∨k

i=1 ±iPi(fi(x
i
1, . . . , x

i
ni

)) ∨
∨l

j=1 ±jQj(xj) in whichk ≥ 1. A flat clause is either
a complex clause, or anǫ-clausewhich is defined to be a disjunction ofǫ-blocks, i.e. to
be of the formC1[x1]⊔ . . .⊔Cn[xn] where eachCi is anǫ-block.ǫ-clauses are difficult
to deal with, hence we split them to produceǫ-blocks. Hence defineǫ-splitting as the
restriction of the splitting rule in which one of the components is anǫ-block.

Recall thatr is the maximal arity of symbols inΣ. Any complex clauseC can be
renamed to make itgood i.e. such thatfv(C) ⊆ Xr = {x1, . . . ,xr}. An ǫ-block C
can be renamed to make itgood i.e. of the formC[xr+1]. The choice ofxr+1 is not
crucial. Now notice that ordered resolution between complex clauses andǫ-blocks only
produces flat clauses, which can then be split to be left with only complex andǫ-blocks.
E.g. Resolution betweenP1(x1) ∨ −P2(x2) ∨ P3(f(x1,x2)) ∨ −P4(g(x2,x1)) and
P4(g(x1,x1))∨−P5(h(x1))∨P6(x1) producesP1(x1)∨−P2(x1)∨P3(f(x1,x1))∨
−P5(h(x1))∨P6(x1). Resolution betweenP2(xr+1) and−P2(f(x1,x2))∨P3(x1)∨
P4(x2) producesP3(x1)∨P4(x2) which can then be split. The point is that we always
choose a non-trivial literal from a clause for resolution, if there is one. As there are
finitely many complex clauses andǫ-blocks this gives us a decision procedure. Note
however that the number of complex clauses is doubly exponential. This is because we
allow clauses of the formP1(f1(x1,x1,x2))∨P2(f2(x2,x1))∨P3(f3(x2,x1,x2))∨...,
i.e. the nontrivial terms contain arbitrary number of repetitions of variables in arbitrary
order. The number of such variable sequences ofr variables is exponentially many,
hence the number of clauses is doubly exponential. Letting the maximal arityr to be
a constant, or forcing all non-trivial literals in a clause to have the same variable se-
quence would have produced only exponentially many clauses. In presence of splitting,
this would have given us the well-known NEXPTIME upper bound, which is also opti-
mal. But we are not aware of a proof of NEXPTIME upper bound in the general case.
To obtain NEXPTIME upper bound in the general case we introduce the technique of
resolution modulo propositional reasoning.

For a clauseC, define the set of its projections asπ(C) = C[Xr]. Essentially
projection involves making certain variables in a clause equal. As we saw, resolution
between two complex clauses amounts to propositional resolution between their pro-
jections. Define the setU = {f(x1, . . . , xn) | f ∈ Σ and eachxi ∈ Xr} of size ex-
ponential inr. Resolution betweenǫ-blockC1 and a good complex clauseC2 amounts
to propositional resolution of a clause fromC[U] with C2. Also note that propositional
resolution followed by further projection is equivalent toprojection followed by propo-
sitional resolution. Each complex clause has exponentially many projections. This sug-
gests that we can compute beforehand the exponentially manyprojections of complex
clauses and exponentially many instantiations ofǫ-blocks. All new complex clauses
generated by propositional resolution are ignored. But after several such propositional

resolution steps, we may get anǫ-clause, which should then be split and instantiated
and used for obtaining further propositional resolvents. In other words we only com-
pute such propositionally impliedǫ-clauses, do splitting and instantiation and iterate
the process. This generates all resolvents upto propositional implication. The difference
from the approach of Ganzinger and Korovin [10] is that they have a single phase of
instantiation followed by propositional satisfiability checking. In contrast, we compute
certain interesting propositional implications which arefurther instantiated, and iterate
the process. We now formalize our approach.

For a setS of clauses, letcomp(S) be the set of complex clauses inS, eps(S) be
the set ofǫ-blocks inS, π(S) =

⋃
C∈S π(C) andI(S) = S∪π(comp(S))∪eps(S)[U].

For setsS andT of complex clauses andǫ-blocks, writeS ⊑ T to mean that:
– if C is a complex clause inS thenI(T) �p π(C), and
– everyǫ-block inS can be renamed as someC[xr+1] ∈ T .
For tableauxT1 andT2 involving only complex clauses andǫ-blocks we writeT1 ⊑ T2

if T1 can be written asS1 | . . . | Sn andT2 can be written asT1 | . . . | Tn (note samen)
such thatSi ⊑ Ti for 1 ≤ i ≤ n. IntuitivelyT2 is a succinct representation ofT1. Define
the splitting strategyf as the one which repeatedly appliesǫ-splitting on a tableau as
long as possible. The relation⇒≺,f provides us a sound and complete method for
testing unsatisfiability. We define the alternative procedure for testing unsatisfiability
by using succinct representations of tableaux. We define◮ by the rule:T | S ◮ T |
S∪{C1[xr+1]} | . . . | S∪{Ck[xr+1]} wheneverI(S) �p C = C1[xi1]⊔ . . .⊔Ck[xik

],
C is anǫ-clause, and1 ≤ i1, . . . , ik ≤ r. Then◮ simulates⇒≺,f :

Lemma 6. If S is a set of complex clauses andǫ-blocks,S ⊑ T andS ⇒≺,f T , then
all clauses occurring inT are complex clauses orǫ-blocks andT ◮∗ T ′ for someT ′

such thatT ⊑ T ′.

Hence we have completeness of◮:

Lemma 7. If a setS of good complex clauses andǫ-blocks is unsatisfiable thenS ◮∗ T
for some closedT .

Proof. By Lemma 1,S ⇒∗
≺,f S1 | . . . | Sn such that eachSi ∋ 2. Since all complex

clauses andǫ-blocks inS are good, we haveS ⊑ S. Hence by Lemma 6, we have some
T1, . . . , Tn such thatS ◮∗ T1 | . . . | Tn andSi ⊑ Ti for 1 ≤ i ≤ n. Since2 ∈ Si and
2 is anǫ-block, hence2 ∈ Ti for 1 ≤ i ≤ n. ⊓⊔

Call a setS of good complex clauses andǫ-blockssaturatedif the following condi-
tion is satisfied: ifI(S) �p B1[xi1] ⊔ . . . ⊔ Bk[xik

] with 1 ≤ i1, . . . , ik ≤ r, eachBi

being anǫ-block, then there is some1 ≤ j ≤ k such thatBj [xr+1] ∈ S.

Lemma 8. If S is a satisfiable set of good complex clauses andǫ-blocks thenS ◮∗ T |
T for someT and some saturated setT of good complex clauses andǫ-blocks, such
that2 /∈ T .

Proof. We construct a sequenceS = S0 ⊆ S1 ⊆ S2 ⊆ . . . of good complex clauses
andǫ-blocks such thatSi is satisfiable andSi ◮∗ Si+1 | Ti for someTi for eachi.
S = S0 is satisfiable by assumption. Now assume we have already definedS0, . . . , Si

andT0, . . . , Ti−1. Let Cl = Bl
1[xil

1

] ⊔ . . . ⊔ Bl
k[xil

kl

] for 1 ≤ l ≤ N be all the possible

ǫ-clauses such thatI(Si) �p Cl, 1 ≤ il1, . . . , i
l
kl

≤ r. SinceSi is satisfiable,Si ∪ {Cl |
1 ≤ l ≤ N} is satisfiable. Sincexil

1

, . . . ,xil
kl

are mutually distinct for1 ≤ l ≤ N ,

there are1 ≤ jl ≤ kl for 1 ≤ l ≤ N such thatSi ∪ {Bl
jl

[xil
jl

] | 1 ≤ l ≤ N} is

satisfiable. LetSi+1 = Si ∪ {Bl
jl
[xr+1] | 1 ≤ l ≤ N}. Si+1 is satisfiable. Also it is

clear thatSi ◮∗ Si+1 | Ti for someTi. If Si+1 = Si thenSi is saturated, otherwiseSi+1

has strictly moreǫ-blocks. As there are only finitely many goodǫ-blocks, eventually we
will end up with a saturated setT in this way. SinceT is satisfiable,2 /∈ T . From
construction it is clear that there is someT such thatS ◮∗ T | T . ⊓⊔

Theorem 3. Satisfiability for the classF is NEXPTIME-complete.

Proof. The lower bound comes from reduction of satisfiability of positive set con-
straints which is NEXPTIME-complete [1]. For the upper bound let S be a finite set
of flat clauses. Repeatedly applyǫ-splitting to obtainf(S) = S1 | . . . | Sm. S is satisfi-
able iff someSi is satisfiable. The numberm of branches inf(S) is at most exponential.
Also each branch has size linear in the size ofS. We non-deterministically choose some
Si and check its satisfiability in NEXPTIME.

Hence wlog we may assume that the given setS has only complex clauses and
ǫ-blocks. Wlog all clauses inS are good. We non-deterministically choose a certain
number of goodǫ-blocksB1[xr+1], . . . , BN [xr+1] and check thatT = S1∪{B1[xr+1],
. . . , BN [xr+1]} is saturated and2 /∈ T . By Lemma 8, ifS is satisfiable then clearly
there is such a setT . Conversely if there is such a setT , then wheneverT ◮∗ T , we will
haveT = T | T ′ for someT ′. Hence we can never haveT ◮∗ T whereT is closed.
Then by Lemma 7 we conclude thatT is satisfiable. HenceS ⊆ T is also satisfiable.

Guessing the setT requires non-deterministically choosing from among exponen-
tially many ǫ-blocks. To check thatT is saturated, for everyǫ-clauseC = B1[xi1] ⊔
. . .⊔Bk[xik

], with 1 ≤ i1, . . . , ik ≤ r, andBj [xr+1] /∈ T for 1 ≤ j ≤ k, we check that
I(T) 2p C, i.e.I(T)∪¬C is propositionally satisfiable (where¬(L1∨ . . .∨Ln) denotes
{−L1, . . . ,−Ln}). This can be checked in NEXPTIME since propositional satisfiabil-
ity can be checked in NPTIME. We need to do such checks for at most exponentially
many possible values ofC. ⊓⊔

6 Combination: Ordered Literal Replacement

Combining flat and one-variable clauses creates additionaldifficulties. First observe that
resolving a one variable clauseC1 ∨ ±P (f(s1[x], . . . , sn[x])) with a complex clause
∓P (f(x1, . . . , xn)) ∨ C2 produces a one-variable clause. Ifsi[x] = sj [x] for all xi =
xj , and ifC2 contains a literalP (xi) then the resolvent contains a literalP (si[x]). The
problem now is that even iff(s1[x], . . . , sn[x]) is reduced,si[x] may not be reduced.
E.g. f(g(h(x)), x) is reduced butg(h(x)) is not reduced. Like in Section 4 we may
think of replacing this literal by simpler literals involving fresh predicates. Firstly we
have to ensure that in this process we would not generate infinitely many predicates.
Secondly it is not clear that mixing ordered resolution steps with replacement of literals
is still complete. Correctness is easy to show since the new clause is in some sense

equivalent to the old deleted clause. However deletion of clauses arbitrarily can violate
completeness of the resolution procedure. The key factor which preserves completeness
is that we replace literals by smaller literals wrt the givenordering<.

Formally areplacement ruleis of the formA1 → A2 whereA1 andA2 are (not
necessarily ground) atoms. The clause setassociatedwith this rule is{A1∨−A2,−A1∨
A2}. Intuitively such a replacement rule says thatA1 andA2 are equivalent. The clause
setcl(R) associated with a setR of replacement rules is the union of the clause sets
associated with the individual replacement rules inR. Given a stable ordering< on
atoms, a replacement ruleA1 → A2 is orderediff A2 < A1. We define the relation
→R as:S →R (S \ {±A1σ ∨ C}) ∪ {±A2σ ∨ C} wheneverS is a set of clauses,
±A1σ ∨ C ∈ S, A1 → A2 ∈ R andσ is some substitution. Hence we replace literals
in a clause by smaller literals. The relation is extended to tableaux as usual. This is
reminiscent of the well-studied case of resolution with some equational theory on terms.
There, however, the ordering< used for resolution is compatible with the equational
theory and one essentially works with the equivalence classes of terms and atoms. This
is not the case here.

Next note that in the above resolution example, even iff(s1[x], . . . , sn[x]) is non-
ground, somesi may be ground. Hence the resolvent may have ground as well as non-
ground literals. We avoided this in Section 4 by initial preprocessing. Now we may
think of splitting these resolvents during the resolution procedure. This however will
be difficult to simulate using the alternative resolution procedure on succinct represen-
tations of tableaux because we will generate doubly exponentially many one-variable
clauses. To avoid this we use a variant of splitting calledsplitting-with-naming[13].
Instead of creating two branches after splitting, this ruleputs both components into the
same set, but with tags to simulate branches produced by ordinary splitting. Fix a finite
setP of predicate symbols.P-clauses are clauses whose predicates are all fromP. In-
troduce fresh zero-ary predicatesC for P-clausesC modulo renaming, i.e.C1 = C2 iff
C1σ = C2 for some renamingσ. Literals±C for P-clausesC aresplitting literals. The
splitting-with-namingrule is defined as:S →nspl (S\{C1⊔C2})∪{C1∨−C2, C2∨C2}
whereC1 ⊔ C2 ∈ S, C2 is non-empty and has only non-splitting literals, andC1 has at
least one non-splitting literal. IntuitivelyC2 represents the negation ofC2. We will use
both splitting and splitting-with-naming according to some predefined strategy. Hence
for a finite setQ of splitting atoms, defineQ-splittingas the restriction of the splitting-
with-naming rule where the splitting atom produced is restricted to be fromQ. Call
this restricted relation as→Q−nspl. This is extended to tableaux as usual. Now once we
have generated the clausesC1 ∨−C2 andC2 ∨ C2 we would like to keep resolving on
the second part of the second clause till we are left with the clauseC2 (possibly with
other positive splitting literals) which would then be resolved with the first clause to
produceC1 (possibly with other positive splitting literals) and onlythen the literals in
C1 would be resolved upon. Such a strategy cannot be ensured by ordered resolution,
hence we introduce a new rule. An ordering< over non-splitting atoms is extended
to the ordering<s by letting q <s A wheneverq is a splitting atom andA is a non-
splitting atom, andA <s B wheneverA, B are non-splitting atoms andA < B. We

definemodified ordered binary resolutionby the following rule:
C1 ∨ A − B ∨ C2

C1σ ∨ C2σ
whereσ = mgu(A, B) and the following conditions are satisfied:
(1) C1 has no negative splitting literal, andA is maximal inC1.
(2) (a) eitherB ∈ Q, or

(b) C2 has no negative splitting literal, andB is maximal inC2.
As usual we rename the premises before resolution so that they don’t share variables.
This rule says that we must select a negative splitting literal to resolve upon in any
clause, provided the clause has at least one such literal. Ifno such literal is present in the
clause, then the ordering<s enforces that a positive splitting literal will not be selected
as long as the clause has some non-splitting literal. We write S ⇛<s

S ∪ {C} to say
thatC is obtained by one application of the modified binary orderedresolution or the
(unmodified) ordered factorization rule on clauses inS. This is extended to tableaux
as usual. AQ-splitting-replacement strategyis a functionf such thatT (→Q−nspl

∪ →spl ∪ →R)∗f(T) for any tableauxT . Hence we allow both normal splitting
andQ-splitting. Modified ordered resolution withQ-splitting-replacement strategyf
is defined by the relation:S ⇛<s,f,R f(T) wheneverS ⇛<s

T . This is extended to
tableaux as usual. The above modified ordered binary resolution rule can be considered
as an instance ofordered resolution with selection[2], which is known to be sound and
complete even with splitting and its variants. Our manner ofextending< to <s is essen-
tial for completeness. We now show that soundness and completeness hold even under
arbitrary ordered replacement strategies. It is not clear if such rules have been studied
elsewhere. Wlog we forbid the useless case of replacement rules containing splitting
symbols. The relation< is enumerableif the set of all ground atoms can be enumerated
asA1, A2, . . . such that ifAi < Aj theni < j. The subterm ordering is enumerable.

Theorem 4. Modified ordered resolution, wrt a stable and enumerable ordering, with
Q-splitting and ordered literal replacement is sound and complete for any strategy.
I.e. for any setS of P-clauses, for any strict stable and enumerable partial order <
on atoms, for any setR of ordered replacement rules, for any finite setQ of splitting
atoms, and for anyQ-splitting-replacement strategyf , S ∪ cl(R) is unsatisfiable iff
S ⇛∗

<s,f,R T for some closedT .

For the rest of this section fix a setS of one-variableP-clauses and complexP-
clauses whose satisfiability we need to decide. LetNg be the set of non-ground terms
occurring as arguments in literals in the one-variable clauses ofS. We rename all terms
in Ng to contain only the variablexr+1. Wlog assumexr+1 ∈ Ng. LetNgs be the set of
non-groundsubterms of terms inNg, andNgr = {s[xr+1] | s is non-ground and reduced,
and for somet, s[t] ∈ Ngs}. DefineNgrr = {s1[. . . [sm] . . .] | s1[. . . [sn] . . .] ∈ Ngs,
m ≤ n, and eachsi is non-trivial and reduced}. Define the set of predicatesQ =
{Ps | P ∈ P, s ∈ Ngrr}. Note thatP ⊆ Q. Define the set of replacement rules
R = {Ps1 . . . sm−1(sm[xr+1]) → Ps1 . . . sm([xr+1]) | Ps1 . . . sm ∈ Q}. They are
clearly ordered wrt≺. Let G be the set of ground subterms of terms occurring as ar-
guments in literals inS. For the rest of this section the set of splitting atoms that we
are going to use isQ0 = {±P (t) | P ∈ P, t ∈ G}. Their purpose is to remove

ground literals from a non-ground clause. All sets defined above have polynomial size.
We also need the setNgr1 = {xr+1} ∪ {f(s1, . . . , sn) | ∃g(t1, . . . , tm) ∈ Ngr ·
{s1, . . . , sn} = {t1, . . . , tm}} which has exponential size. These terms are produced
by resolution of non-ground one-variable clauses with complex clauses, and are also
reduced. In the ground case we have the setG1 = {f(s1, . . . , sn) | ∃g(t1, . . . , tm) ∈
G | {s1, . . . , sn} = {t1, . . . , tm}} of exponential size. For a setP′ of predicates and
a setU of terms, the setP′[U] of atoms is defined as usual. For a setV of atoms the
set−V and±V of literals is defined as usual. The following types of clauses will be
required during resolution:

C1 clausesC ∨ D, whereC is anǫ-block with predicates fromQ, andD ⊆ ±Q0.
C2 clausesC ∨ D whereC is a one-variable clause with literals from±Q(Ngr1), C

has at least one non-trivial literal, andD ⊆ ±Q0.
C3 clausesC∨D whereC is a non-empty clause with literals from±Q(Ngr1[Ngrr[G1]]),

andD ⊆ ±Q0.
C4 clausesC ∨ D whereC =

∨k

i=1 ±iPi(fi(x
i
1, . . . , x

i
ni

)) ∨
∨l

j=1 ±jQj(xj) is a
complex clause with eachPi ∈ Q, eachQj ∈ P andD ⊆ ±Q0

We have already argued why we need splitting literals in the above clauses, and why
we needNgr1 instead ofNgr in type C2. In type C3 we haveNgrr in place of the setNgs

that we had in Section 4, to take care of interactions betweenone-variable clauses and
complex clauses. In type C4 the trivial literals involve predicates only fromP (and not
Q). This is what ensures that we need only finitely many fresh predicates (those from
Q \ P) because these are the literals that are involved in replacements when this clause
is resolved with a one-variable clause. TheQ0-splitting steps that we use in this section
consist of replacing a tableauT | S by the tableauT | (S\{C∨L})∪{C∨−L, L∨L},
whereC is non-ground,L ∈ ±P(G) andC ∨ L ∈ S. The replacement steps we are
going to use are of the following kind:
(1) replacing clauseC1[x] = C ∨ ±P (t1[. . . [tn[s[x]]] . . .]) by clauseC2[x] = C ∨
±Pt1 . . . tn(s[x])} whereP ∈ P, s[xr+1] ∈ Ngr is non-trivial, andt1[. . . [tn] . . .] ∈
Ngrr. We have{C1[xr+1]} ∪ cl(R)[Ngrr] �p C2[xr+1].
(2) replacing ground clauseC1 = C ∨ ±P (t1[. . . [tn[g]] . . .]) by clauseC2 = C ∨
±Pt1 . . . tn[g]} whereP ∈ P, g ∈ Ngrr[G1] andt1[. . . [tn] . . .] ∈ Ngrr. This replace-
ment is done only whent1[. . . [tn[g]] . . .] ∈ Ngrr[Ngrr[G1]] \ Ngr1[Ngrr[G1]]. We have
{C1} ∪ cl(R)[Ngrr[Ngrr[G1]]] �p C2.
Define theQ0-splitting-replacement strategyf as one which repeatedly applies firstǫ-
splitting, then the aboveQ0-splitting steps, then the above two replacement steps tillno
further change is possible. Then⇛≺s,f,R gives us a sound and complete method for
testing unsatisfiability.

As in Section 5 we now define a succinct representation of tableaux and an alterna-
tive resolution procedure for them. As we said, a literalL ∈ Q0 represents−L. Hence
for a clauseC we defineC as the clause obtained by replacing every±L by the literal
∓L. This is extended to sets of clauses as usual. As beforeU = {f(x1, . . . , xn) | f ∈
Σ, and eachxi ∈ Xr}. The functionseps andcomp of Section 5 are now extended to
returnǫ-blocks and complex clauses respectively, possibly in disjunction with splitting
literals. For a setS of clauses, defineov(S) as the set of clauses of type C2 inS. The
functionπ is as before. We need to define which kinds of instantiations are to be used

to generate propositional implications. For a clauseC, defineI1(C) = {C} ∪ C[U] ∪
C[U[Ngrr∪Ngrr[Ngrr[G1]]]]∪C[Ngr1]∪C[Ngr1[Ngrr[G1]]]. These are the instantiations
necessary forǫ-blocks. DefineI2(C) = {C}∪C[Ngrr[G1]]. These are necessary for one-
variable clauses. DefineI3(C) = {C}. Ground clauses require no instantiation. Define
I4(C) = π(C) ∪C[Ngrr ∪ [Ngrr[Ngrr[G1]]]]. These are necessary for complex clauses.
For a setS of clauses, defineIi(S) =

⋃
C∈S Ii(C). For a setS of clauses of type C1-C4

defineI(S) = S∪I1(eps(S))∪I2(ov(S))∪I4(comp(S))∪cl(R)[Ngrr∪Ngrr[Ngrr[G1]]].
Note that instantiations of clauses incl(R) are necessary for the replacement rules, as
argued above. For a setT of clauses define the following properties:
(P1T) C satisfies property P1T iff C[xr+1] ∈ T .
(P2T) C satisfies property P2T iff I(T) �p I2(C[xr+1]).
(P3T) C satisfies property P3T iff I(T) �p I3(C).
(P4T) C satisfies property P4T iff I(T) �p I4(C).
For sets of clausesS andT , defineS ⊑ T to mean that everyC ∈ S is of type Ci and
satisfies property PiT for some1 ≤ i ≤ 4. This is extended to tableaux as usual. The
alternative resolution procedure for testing unsatisfiability by using succinct represen-
tations of tableaux is now defined by the rule:T | S ◮ T | S ∪ {C1[xr+1] ⊔ D} |
S ∪{C2[xr+1]} | . . . | S ∪{Ck[xr+1]} wheneverI(S) �p C1[xi1]⊔ . . .⊔Ck[xik

]⊔D,
eachCi is anǫ-block,1 ≤ i1, . . . , ik ≤ r andD ⊆ ±Q0. The simulation property now
states:

Lemma 9. If S ⊑ T andS ⇛≺s,f,R T thenT ◮∗ T ′ for someT ′ such thatT ⊑ T ′.

Hence as for flat clauses we obtain:

Theorem 5. Satisfiability for the classC is NEXPTIME-complete.

7 The Horn Case

We show that in the Horn case, the upper bound can be improved to DEXPTIME.
The essential idea is that propositional satisfiability of Horn clauses is in PTIME in-
stead of NPTIME. But now we need to eliminate the use of tableaux altogether. To
this end, we replace theǫ-splitting rule of Section 6 by splitting-with-naming. Ac-
cordingly we define the set of splitting atoms asQ = Q0 ∪ Q1 whereQ1 = {C |
C is a non-empty negativeǫ−block with predicates fromP}. We know that binary res-
olution and factorization on Horn clauses produces Horn clauses. Replacements on
Horn clauses using the rules fromR produces Horn clauses.Q1-splitting on Horn
clauses produces Horn clauses. E.g. clauseP (x1)∨−Q(x1)∨−R(x2) producesP (x1)∨
−Q(x1) ∨ −−R(x2) and−R(x2) ∨−R(x2). Q0-splitting onP (f(x)) ∨−Q(a) pro-
ducesP (f(x1))∨−−Q(a) and−Q(a)∨−Q(a) which are Horn. HoweverQ0-splitting
on C = −P (f(x1)) ∨ Q(a) producesC1 = −P (f(x1)) ∨ −Q(a) andC2 = Q(a) ∨
Q(a). C2 is not Horn. HoweverC1 = C andC2 = −Q(a) ∨ Q(a) are Horn. Finally,
asQ1 has exponentially many atoms, we must restrict their occurrences in clauses. Ac-
cordingly, for1 ≤ i ≤ 4, define clauses of type Ci’ to be of the formC ∨E whereC is
of type Ci, E ⊆ ±Q1, C ∨ E is Horn andE has at mostr negative literals (C is defined
as before, hence it leaves atoms fromQ1 unchanged). Now theQ-splitting-replacement

strategyf first appliesQ1-splitting as long as possible, then appliesQ0-splitting as
long as possible and then applies the replacement steps of Section 6 as long as possible.
Succinct representations are now defined as:S ⊑ T iff for eachC ∈ S, C is of type Ci’
and satisfies PiT for some1 ≤ i ≤ 4. The abstract resolution procedure is defined as:
T ◮ T ∪{B1[xr+1]∨−q2∨. . .∨−qk⊔D⊔E}∪{qi∨Bi[xr+1] | 2 ≤ i ≤ k} whenever
I(T) �p C, C = B1[xi1] ⊔ . . . ⊔ Bk[xik

] ⊔ D ⊔ E, C is Horn,1 ≤ i1, . . . , ik ≤ r,
B1 is anǫ-block,Bi is a negativeǫ-block andqi = Bi for 2 ≤ i ≤ k, D ⊆ ±Q0 and
E ⊆ ±Q1 such that ifk = 1 thenE has at mostr negative literals, and ifk > 1 then
E has no negative literal.

Lemma 10. If S ⊑ T andS ⇛≺s,f,R S′ thenT ◮∗ T ′ for someT ′ such thatS′ ⊑ T ′.

Now for deciding satisfiability of a set of flat and one-variable clauses we proceed
as in the non-Horn case. But now instead of non-deterministically adding clauses, we
compute a sequenceS = S0 ◮ S1 ◮ S2 . . . starting from the given setS, till no more
clauses can be added, and then check whether2 has been generated. The length of this
sequence is at most exponential. ComputingSi+1 from Si requires at most exponential
time because the number of possibilities forC in the definition of◮ above is exponen-
tial. (Note that this idea ofQ1-splitting would not have helped in the non-Horn case
because we cannot bound the number of positive splitting literals in a clause in the non-
Horn case, whereas Horn clauses by definition have at most onepositive literal). Also
note that APDS can be encoded using flat Horn clauses. Hence:

Theorem 6. Satisfiability for the classesCHorn andFHorn is DEXPTIME-complete.

Together with Theorem 1, this gives us optimal complexity for protocol verification:

Theorem 7. Secrecy of cryptographic protocols with single blind copying, with bounded
number of nonces but unbounded number of sessions is DEXPTIME-complete.

8 Conclusion

We proved DEXPTIME-hardness of secrecy for cryptographic protocols with single
blind copying, and improved the upper bound from 3-DEXPTIMEto DEXPTIME. We
improved the 3-DEXPTIME upper bound for satisfiability for the classC to NEXP-
TIME in the general case and DEXPTIME in the Horn case, which match known lower
bounds. For this we invented new resolution techniques likeordered resolution with
splitting modulo propositional reasoning, ordered literal replacements and decomposi-
tions of one-variable terms. As byproducts we obtained optimum complexity for several
fragments ofC involving flat and one-variable clauses. Security for several other decid-
able classes of protocols with unbounded number of sessionsand bounded number of
nonces is in DEXPTIME, suggesting that DEXPTIME is a reasonable complexity class
for this class of protocols.

References

1. A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complexity of set constraints. In
CSL’93, pages 1–17. Springer-Verlag LNCS 832, 1993.

2. L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook of Automated
Reasoning, volume I, chapter 2, pages 19–99. North-Holland, 2001.

3. B. Blanchet. An efficient cryptographic protocol verifierbased on Prolog rules. InCSFW’01,
pages 82–96. IEEE Computer Society Press, 2001.

4. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28(1),
1981.

5. H. Comon and V. Cortier. Tree automata with one memory, setconstraints and cryptographic
protocols.Theoretical Computer Science, 2004. To appear.

6. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order logic
and application to cryptographic protocols. InRTA’03, pages 148–164. Springer-Verlag
LNCS 2706, 2003.

7. H. Comon-Lundh and V. Cortier. Security properties: Two agents are sufficient. InESOP’03,
pages 99–113. Springer-Verlag LNCS 2618, 2003.

8. V. Cortier. Vérification Automatique des Protocoles Cryptographiques. PhD thesis, ENS
Cachan, France, 2003.

9. N. A. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. InFMSP’99, Trento, Italy, 1999.

10. H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving. In
LICS’01, pages 55–64. IEEE Computer Society Press, 2003.

11. J. Goubault-Larrecq, M. Roger, and K. N. Verma. Abstraction and resolution modulo AC:
How to verify Diffie-Hellman-like protocols automatically. Journal of Logic and Algebraic
Programming, 2004. To Appear. Available as Research Report LSV-04-7, LSV, ENS Cachan.

12. D. Monniaux. Abstracting cryptographic protocols withtree automata. InSAS’99, pages
149–163. Springer-Verlag LNCS 1694, 1999.

13. A. Riazanov and A. Voronkov. Splitting without backtracking. In IJCAI’01, pages 611–617,
2001.

14. M. Rusinowitch and M. Turuani. Protocol insecurity withfinite number of sessions is NP-
complete. InCSFW’01. IEEE Computer Society Press, 2001.

15. C. Weidenbach. Towards an automatic analysis of security protocols. InCADE’99, pages
378–382. Springer-Verlag LNAI 1632, 1999.

