
Cryptographic Protocol Verification Using Tractable
Classes of Horn Clauses

Helmut Seidl and Kumar Neeraj Verma

Institut für Informatik, TU München, Germany
{seidl,verma}@in.tum.de

Abstract. We consider secrecy problems for cryptographic protocols modeled
using Horn clauses and present general classes of Horn clauses which can be
efficiently decided. Besides simplifying the methods for the class of flat and one-
variable clauses introduced for modeling of protocols with single blind copying
[7,25], we also generalize this class by considering k-variable clauses instead of
one-variable clauses with suitable restrictions similar to those for the class S+.
This class allows to conveniently model protocols with joint blind copying. We
show that for a fixed k, our new class can be decided in DEXPTIME, as in the
case of one variable.

1 Introduction

Cryptographic protocols are today widely deployed for securing communication in vari-
ous applications notably electronic commerce. These protocols are rules for exchanging
messages, and rely on certain cryptographic algorithms like encryption and decryption
of messages using keys. Experience has shown that even very simple protocols can have
subtle flaws which are hard to detect by manual analysis. The classic example is that
of the Needham-Schroeder public key protocol [19], which was considered to be cor-
rect until a bug was found 15 years after its publication [17]. Such experiences have
recently led to considerable work on techniques for automatic verification of crypto-
graphic protocols.

An important point in the example cited above is that the attack does not consist in
breaking any underlying cryptographic algorithm like encryption or decryption. These
algorithms are assumed to be perfect, and the attack only involves simple techniques
like replaying intercepted messages, encrypting and decrypting messages with known
keys, etc. Such considerations have led to the use of the so-called Dolev-Yao model [10]
which essentially consists in treating cryptographic algorithms as black boxes, and as-
suming agents to be communicating over a completely hostile network, in the sense
that any message passing through it can be intercepted or deleted by an all-powerful
adversary. Further, new messages known to the adversary could be sent to agents, for
example with the aim of impersonating as another honest agent. These assumptions al-
low us to treat messages as terms and allow us to design symbolic techniques, e.g. those
based on automata and logic, for analyzing these protocols.

The complexity of verifying such protocols is due to several factors, like potentially
infinite number of sessions of the same protocol between different agents, possibly in

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 97–119, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

98 H. Seidl and K.N. Verma

parallel with complex interactions between them, possibly infinite number of agents, in-
finite possibilities for messages etc. Several kinds of restrictions are considered in order
to have efficient algorithms for the verification problem. For example if the number of
sessions is bounded, then checking for the presence of an attack is NP-complete [24].
This may be helpful for detecting some simple attacks during the design phase, con-
sidering that most known attacks involve very small number of sessions. However we
are often interested in certifying protocols, i.e. guaranteeing that there are no attacks
involving any number of sessions. This is a difficult problem, and remains undecidable
even with serious restrictions [5]. This class of problem is often modeled using Horn
clauses of first order logic [2,7,25,26] and related formalisms like automata and set
constraints [5,16,18]. In order to obtain tractable problems, one often uses safe abstrac-
tions, i.e. those that detect all attacks, but can possibly introduce false attacks. Further,
algorithms are also designed for specific classes of protocols which can be efficiently
treated.

In this paper we present several interesting classes of Horn clauses which can be ef-
ficiently treated. We consider secrecy questions about cryptographic protocols modeled
as satisfiability problems about Horn clauses. Our goal is to have as general classes
of clauses as possible, which can be decided in single exponential time. We consider
single exponential time to be the feasibility limit for this class of protocol verification
problems, as in [25]. For our modeling, we typically use a unary predicate known that
represents the set of messages that the adversary can know after arbitrary many ses-
sions of the protocol. The secrecy question is then whether known(t) does not hold
for a certain message t. In particular we adopt the approach of normalization of Horn
clauses, i.e. given a set of clauses we transform it to a set of simpler clauses on which
various kinds of queries, e.g. whether some ground P (t) holds, can be easily evaluated
(in polynomial time). The classes we deal with are interesting in the sense that they
are all general classes which still allow exponential time normalization, and further, no
decidable generalizations of these classes seem to be evident.

Compared to related work on verification of cryptographic protocols, note that our
interest is in certifying protocols, whereas approaches dealing with a bounded number
of sessions [24] only help to find some attacks involving small number of sessions. Ap-
proaches involving general classes of Horn clauses [2] seem to work well in practice, but
no termination guarantees are offered for the algorithm. Most similar to our approach
are works like [5,26,7] which try to find decidable classes of automata or clauses which
however may not model all protocols. In these approaches, the infinitely many nonces
(random numbers), generated in different protocol sessions, are typically abstracted to
finitely many nonces. This is a safe abstraction. A more precise modeling may repre-
sent these nonces not as constants but as functions of the history (all previous sessions).
But this leads to clauses which are difficult to treat efficiently. Another possibility is to
use linear logic instead of classical logic [3]. Finally, certain decidability results have
been obtained for general classes of protocols with infinitely many sessions, by putting
certain tagging constraints on the protocols [4,21,22].

In the rest of the section we describe the classes dealt with in the paper. We start with
the class H1 [20] which generalizes uniform Horn clauses [12] and further allows us to
express operations on relations like Cartesian products of relations, transitive closures

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 99

and permutations of components, still allowing exponential time normalization. This
also shows that despite their generality, H1 describes only (Cartesian products of) reg-
ular tree languages. We then consider the related class of flat clauses which models
various extensions of tree automata like two-wayness and alternation, permutations and
duplications of components, but also equality constraints between brothers which is
disallowed by H1. Compared to the various classes of flat clauses considered in the
literature, we allow maximal generality. In particular different functional terms may
contain different sets of variables. We show that this class can still be normalized in
exponential time.

While these two classes have very general features, they do not easily model specific
kinds of actions occurring in cryptographic protocols. In particular, we consider crypto-
graphic protocols in which each step involves copying of at most one piece of unknown
message. This class was considered in [7,9] and was modeled using flat clauses and
clauses involving at most one variable. The original upper bound provided in [7,9] for
this class of clauses and protocols was triply exponential. We introduced new tech-
niques like on-the-fly decomposition of one-variable terms to show that this class can
in fact be decided in single exponential time, giving us the optimal complexity for the
class of protocols as well as of clauses [25]. The proof in [25] used resolution and dealt
only with the satisfiability problem (in the Horn as well as non-Horn cases).

The main contribution of the present paper therefore is to simplify the algorithm for
the Horn case as well as to obtain a normalized set of clauses. Furthermore, we con-
sider protocols where, instead of just one piece of unknown message, several pieces of
unknown messages can be copied in a protocol step. Multiple blind copying, however,
easily leads to undecidability. We show here, though, that multiple blind copying can
be dealt with given that copying is always joint, i.e., all copied parts always occur in
every non-ground functional subexpression of the protocol. For that, we introduce a
generalization of the class of flat and one-variable Horn clauses. The new class allows
k-variable instead of one-variable clauses, but with some restriction, similar to those
for the class S+ [11]. We show that our ideas for the one-variable case can be suitably
generalized to give an exponential normalization procedure also for the k-variable case.

Several proofs have been ommitted in order to keep the paper readable. They can be
found in a longer version available from the authors and at http://www2.in.tum
de/ verma.

2 Horn Clauses and Cryptographic Protocols

A Horn clause is of the form A ⇐ A1 ∧ . . . ∧ An where n ≥ 0 and A, Ai are atoms
of the form P (t1, . . . , tk) where P is a k-ary predicate for k ≥ 0 and ti are terms built
up from variables and function symbols of fixed arities. A is called the head, and the
remaining part the body of the clause. Substitutions map variables to terms. Applica-
tion of a substitution σ to a term, atom, clause or substitution M is denoted Mσ and is
defined as usual. Composition of substitutions is defined as usual: M(σ1 . . . σk) should
be read as (. . . (Mσ1) . . .)σk . The least Herbrand model H of a set S of clauses is a set
of ground atoms (i.e. those without variables) inductively defined as: if σ is a ground
substitution (mapping variables to ground terms), if clause A ⇐ A1 ∧ . . . ∧ An ∈ S

http://www2.in.tum.de/~verma
http://www2.in.tum.de/~verma

100 H. Seidl and K.N. Verma

and if each Aiσ ∈ H then Aσ ∈ H . Further we are interested in considering clauses
as representing generalizations of tree automata. Accordingly if P (t1, . . . , tn) is in the
least Herbrand model of a set of clauses then we also say that the state P accepts the
tuple (t1, . . . , tn). We also say that P (t1, . . . , tn) holds. Hence given a set of Horn
clauses, we can talk of questions like membership (is a given tuple accepted at a given
state), non-emptiness (does a given state accept at least one tuple) or intersection-non-
emptiness (do two given states of the same arity accept at least one common tuple?).
Another approach is to treat these questions as questions about satisfiability of a set of
clauses. For example a term P (t1, . . . , tn) holds iff the set of clauses, together with the
clause ⊥ ⇐ P (t1, . . . , tn) is unsatisfiable, i.e. ⊥ is present in the least Herbrand model,
where ⊥ is a special zero-ary predicate representing a contradiction. Our approach to
dealing with these questions is to convert the set of clauses into another equivalent set of
simple clauses, which we call normal clauses, on which such queries can be easily eval-
uated (in polynomial time). Hence our emphasis in this paper is to give normalization
algorithms for the clause sets that we consider.

For modeling of cryptographic protocols, we assume at least the binary functions
{ } and 〈 , 〉 denoting encryption and pairing. Here is the Needham-Schroeder proto-
col, mentioned in the introduction, in standard notation. Message {〈x, y〉}k is abbrevi-
ated as {x, y}k.

A → B : {A, NA}KB

B → A : {NA, NB}KA

A → B : {NB}KB

The meaning of the protocol is as follows. The notation A → B : M denotes agent
A sending message M to agent B. Inside messages, A and B represent the identities
of respective agents, KA and KB their public keys. Public keys are known to everyone
and messages encrypted with the public key are decrypted with the corresponding pri-
vate keys (which are known only to the respective agents), and vice-versa. In the first
step, A starts a session with B by sending his identity and a nonce (a random number)
NA that he generates, both encrypted with the public key of B. B decrypts the mes-
sage and sends back the received nonce with a nonce that he generates, both encrypted
again appropriately. This can be considered as a proof that B got the original message
and sent this message as a reply. A sends back the received nonce, again encrypted,
as a confirmation. Such a protocol is usually executed to establish authenticity of the
communicating parties before going ahead with some further transaction. For exam-
ple B could be a bank which is contacted by client A for some monetary transaction.
Hence they may execute this protocol at the beginning to agree on secret values NA and
NB which is expected to remain unknown to third parties. Further encrypted messages
dealing with some financial transactions would then include these secret values as proof
that these messages have really been generated by A and B and not by some adversary
pretending to be A or B. While it may not be apparent at first glance, we have men-
tioned that the protocol has a flaw discovered 15 years after its publication. The attack
involves two parallel sessions, one in which the adversary plays the role of B and an-
other in which he plays the role of A but impersonating as the agent playing A’s role in
the first session. This kind of attack is also known as a man-in-the-middle attack.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 101

We present here a modeling of this protocol using Horn clauses. Our modeling will
only deal with the secrecy problem, i.e. whether some message is known to the adver-
sary or not. Note however that other security questions are also interesting. For example
authenticity talks about questions like whether some message received by a given agent
was actually sent by another given agent. When we restrict ourself to the secrecy prob-
lem then we only need to consider three agents in our model for finding whether the
above protocol is secure. This is a consequence of a result [8,7]) stating that under
some mild assumptions on the protocol and for many security properties including se-
crecy, we need to consider a very small number (which is calculable from the protocol
and the security property) of agents in our modeling in order to find whether there exists
an attack. For the example protocol we need to consider two honest and one dishonest
agent. We now need to consider all possible sessions between these bounded number of
agents. For every two agents u and v in our model, we have infinitely many sessions in
which u is the initiator (i.e. plays the role of A) and v is the responder (i.e. plays the role
of B). In each of these sessions we have a fresh nonce. We choose two nonces n1

uv and
n2

uv to represent these infinitely many nonces. This modeling using only finitely many
nonces is a safe abstraction. Corresponding to the three steps in the protocol we have
the following clauses for all agents u and v. Our intention is that known(m) should hold
exactly for messages m which the adversary can know.

known({〈u, n1
uv〉}kv)

known({〈x, n2
uv〉}ku) ⇐ known({〈u, x〉}kv)

known({x}kv) ⇐ known({〈n1
uv, x〉}ku)

Note that we write such clauses for all (finitely many) pairs of agents in our system,
whether they are honest or dishonest agents. The above clauses correspond to our as-
sumption that all messages received by agents are sent by the adversary, and hence
should be known to the adversary, and that all messages sent by agents become known
to the adversary. For example the second clause represents the fact that v, on receiving
a message of the form {〈u, x〉}kv , sends a message of the form {〈x, n2

uv〉}ku . We use
a variable x in place of the nonce sent by u, since this is an unknown for the recipient
v, and the adversary could send to him any message of this form, provided he knows
such a message. Implicit in this modeling is the fact that we may have arbitrary many
sessions between u and v. Note that we can apply the clauses as many times as we like
for different values of concerned variables. The essential abstraction is in our modeling
here is that infinitely many nonces from different sessions are represented by finitely
many nonces. This is a safe abstraction and insecure protocols remain insecure in our
modeling. It is possible to make less severe abstractions at the cost of introducing more
complex clauses, and we will see some examples in Sections 5 and 7.

We need further clauses to express adversary capabilities. The clauses

known({x}y) ⇐ known(x) ∧ known(y)
known(x) ⇐ known({x}k) ∧ known(k′)
known(〈x, y〉) ⇐ known(x) ∧ known(y)
known(x) ⇐ known(〈x, y〉)
known(y) ⇐ known(〈x, y〉)

102 H. Seidl and K.N. Verma

express the ability of the adversary to perform encryption, decryption, pairing and un-
pairing, where k′ is the private key corresponding to public key k. We have considered
k and k′ to be constants, although there exist other methods of modeling public and
private keys, e.g. letting the term sk(x) represent the private key corresponding to the
public key x.

The adversary’s knowledge of other data m like agents’ names, public keys, etc.
are expressed by clauses known(m). For example if w is some dishonest agent then
we have the clause known(k′

w) to say that private key of w is known to the adversary.
Further we have clauses known(n1

wu) and known(n2
uw) for every other agent u, to say

that nonces generated by dishonest agents are known to the adversary. Then the secrecy
question, whether some message m is known to the adversary is translated to the mem-
bership question, whether known(m) holds. More precisely, our modeling involves safe
abstraction, so that if m is known to the adversary then known(m) holds. Further check-
ing whether known(m) holds is equivalent to checking whether the clause set together
with the clause ⊥ ⇐ known(m) is unsatisfiable.

In the above particular example, our modeling requires two honest agents a and b
and a dishonest agent c. Each of these can be the initiator of a session or the responder
of a session. We don’t consider the cases where the same agent can be the initiator as
well as the responder, though some models and tools allow this possibility, and this can
easily be allowed in our Horn clause modeling. After writing the necessary clauses and
running a suitable solver, e.g. a solver for the class H1, we find that known(n1

ab) does
not hold. As our modeling involves safe abstraction, we are then sure that the nonce
generated by an honest initiator for an honest responder is never leaked to the adver-
sary. On the other hand, known(n2

ab) holds. This suggests the possibility that the nonce
created by an honest responder for an honest initiator can be leaked to the adversary.
Indeed such a leak happens in the man-in-the-middle attack mentioned above. More
precisely, in this attack, the nonce n2

ab is generated by the agent b because he is fooled
into believing that the agent a has started a session with him.

3 H1 and Strongly Recognizable Relations

A relation on ground terms is called strongly recognizable if it can be described as finite
union of Cartesian products of recognizable languages (i.e. languages accepted by tree
automata). In case of unary relations, strongly recognizable relations are just the recog-
nizable languages. The class H1 presented in this section allows general forms of clauses
which still describe only strongly recognizable relations. Although H1 is not specifically
meant formodeling someparticular classofprotocols, theadvantageof thisclass is thatwe
have a systematic way of safely abstracting arbitrary clauses to clauses in this class [14].

With a clause we associate a variable dependence graph whose vertices are the atoms
in the body of the clause, and two atoms are neighbors if they have a common variable.
Two variables are called connected if they occur within connected atoms. In particular
two variables in the same atom are connected. A clause has property H1 if

1. the head is linear (i.e. no variables occur twice in it).
2. if variables x and y occur in the head and are connected in the body then they are

siblings in the head.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 103

Here we call two variables as siblings if they occur as arguments of a common father.
Hence x, y are connected in P (x, y) and in Q(f(x, a, y)). The class H1 consists of
finite sets of H1 clauses. H1 allows clauses which can express various operations on
relations, like arbitrary projections through constructors, permutations of components,
and compositions of relation [20]:

P (x, y) ⇐ Q(f(x, y, z))
Q(x, y, z) ⇐ Q(y, z, x)
P (x, z) ⇐ Q(x, y) ∧ R(y, z)

However they still describe only strongly recognizable relations. To show this we
give a procedure that converts the set of clauses into a new set of simple clauses, that
we call normal clauses. Normal H1 clauses are H1 clauses of the form

1. P (f(x1, . . . , xn)) ⇐ P1(x1) ∧ . . . ∧ Pn(xn).
2. P (x1, . . . , xn) ⇐ P1(x1) ∧ . . . ∧ Pn(xn) where n
= 1.

where x1, . . . , xn are pairwise distinct variables. Here we allow n = 0 to take care of
nullary symbols and predicates. Clearly a set of normal H1 clauses can describe only
strongly recognizable relations, and conversely every strongly recognizable relation can
be described by a set of normal H1 clauses. We now show that any set of H1 clauses
can be normalized, i.e. converted to an equivalent set of normal H1 clauses, implying
that H1 describes exactly strongly recognizable relations.

Theorem 1 ([20,14]). A set of clauses in H1 can be normalized in DEXPTIME.

Proof: First we ensure that all variables in the head occur also in the body, by adding
atoms P (x) in the body where P is a fresh predicate defined to accept all terms. Then
we ensure that every head is of the form P (f(x1, . . . , xn)) or P (x1, . . . , xn). For exam-
ple the clause P (f(x, y), z) ⇐ P1(x, x′) ∧ P2(x′, y) ∧ P3(z, z′) is replaced by clauses
P (x, z) ⇐ P ′(x), P3(z, z′) and P ′(f(x, y)) ⇐ P1(x, x′) ∧ P2(x′, y) where P ′ is a
fresh predicate. Now it remains to simplify the bodies of clauses.

We use sets {P1, . . . , Pn} of unary predicates to represent intersections of the unary
predicates. P1 is identified with the set {P1}. The normalization procedure essentially
consists of using a non-normal clause and a normal clause to produce a new simpler
clause and continuing this process until the non-normal clauses are redundant. The fol-
lowing kinds of steps are involved.

– Clauses Ti(f(x1, . . . , xn)) ⇐ S1
i (x1) ∧ . . . ∧ Sn

i (xn) produce clause T (f(x1,

. . . , xn)) ⇐ S1(x1) ∧ . . . ∧ Sn(xn) where T =
⋃

i Ti and Sj =
⋃

i Sj
i .

– Clauses h ⇐ B∧S(f(t1, . . . , tn)) and S(f(x1, . . . , xn)) ⇐ S1(x1)∧. . .∧Sn(xn)
produce the clause h ⇐ B ∧ S1(t1) ∧ . . . ∧ Sn(tn), where B is used here and
elsewhere to denote a conjunction of atoms.

– Clauses h ⇐ B ∧ S(t1, . . . , tn) and S(x1, . . . , xn) ⇐ S1(x1) ∧ . . . ∧ Sn(xn)
produce the clause h ⇐ B ∧ S1(t1) ∧ . . . ∧ Sn(tn) where n ≥ 1.

– Clause h ⇐ B ∧ S1(x) ∧ S2(x) produces the clause h ⇐ B ∧ (S1 ∪ S2)(x).

104 H. Seidl and K.N. Verma

– Clause S(x) ⇐ S′(x) and S′(f(x1, . . . , xn)) ⇐ S1(x1) ∧ . . . ∧ Sn(xn) produce
S(f(x1, . . . , xn)) ⇐ S1(x1) ∧ . . . ∧ Sn(xn).

– Clause h ⇐ B ∧ S(x) produces the clause h ⇐ B if x does not occur in h ⇐ B,
and if S accepts at least one term using only the normal predicates.

The essential idea in the above and other normalization algorithms is that if at all
the clause set contains a non-normal clause which is not redundant, then we con-
sider a minimal derivation which uses some non-normal clause C of the form A ⇐
A1 ∧ . . . ∧ An. This clause allows us to derive the atom Aσ by applying some ground
substitution σ. Now we consider the reason why C is not normal. If some Ai is of the
form P (f(t1, . . . , tn)), then we know that the atom Aiσ is derivable using only nor-
mal clauses, because of the minimality assumption. The last clause D used in the latter
derivation is of the form P (f(x1, . . . , xn)) ⇐ S1(x1) ∧ . . . ∧ Sn(xn). But then a nor-
malization step involving C and D can produce a ”simpler” clause which could instead
be used for deriving Aσ. A similar argument holds for the case where the body of C
contains a non-unary predicate. On the other hand, if C is not normal because two of
the atoms in the body are of the form S1(x) and S2(x) then we can replace these two
atoms by the atom (S1 ∪ S2)(x). The first rule above intuitively defines the meaning of
the fresh predicates {P1, . . . , Pn}. The intuition behind the last two rules is simple, and
they remove some other clauses which are not normal. �

Note that H1 allows for example the modeling of the Needham-Schroeder protocol de-
scribed above, and more [13]. As our approach always involves safe abstractions, all
attacks, in particular the man-in-the-middle attack on the Needham-Schroeder proto-
col, are found. The normalization procedure further means that for example the secrecy
question, whether some term is not accepted at some predicate, can be evaluated in time
polynomial on the resulting clause size. Further, subclasses of H1, for example the class
H3 [20] can be normalized in polynomial time and suffice for the above example proto-
col. H1 has also been successfully used to verify real implementations of cryptographic
protocols in the C language [15].

4 General Flat Clauses

The class H1 allows us to represent tree automata, as well as their extensions like alter-
nating tree automata and two-way tree automata [6]. Alternation is described by clauses
of the form

P (x) ⇐ P1(x) ∧ . . . ∧ Pn(x)

whereas two-way tree automata contain clauses like

P (x) ⇐ Q(f(x, y, z)), Q1(y), Q2(z)

The clauses in Section 2 describing abilities of the adversary to perform encryption,
decryption, pairing and unpairing are clauses of two-way tree automata, upto some
details. Despite its generality, H1 does not allow for example the clause

P (f(x, y, x)) ⇐ Q(x) ∧ R(y)

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 105

Such clauses describe tree automata with equality constraints between brothers [6]. In
fact, it may be verified that allowing such clauses will make the class H1 undecidable.

We now consider a class which is specially suited for describing such features, e.g.
tree automata with alternation, two-wayness and equality constraints between brothers.
A general flat clause is one that contains only atoms of the form P (x) and P (f(x1,
. . . , xn)). We put no restrictions on the occurrences and repetitions of variables. An
example clause is

P (f(x, y, x)) ⇐ Q(g(y, y, z)) ∧ R(y)

Note that we consider only unary predicates. This class of clauses is more general (in
the Horn case) than the flat clauses considered in [25]. The complexity for this class is
however still DEXPTIME, as for the class in [25]. Among other things, these clauses
can model the ability of the adversary to perform operations like encryption, decryp-
tion, pairing, unpairing, hashing etc. But we have tried throughout this paper to obtain
maximal classes which can be efficiently decided. A general flat clause is called normal
if it is of the form

P (f(x1, . . . , xn)) ⇐ P1(xi1) ∧ . . . ∧ Pk(xik
)

where {x1, . . . , xn} = {xi1 , . . . , xik
} and xi1 , . . . , xik

are pairwise distinct. Define
trivial terms, atoms or clauses to be those in which no function symbols appear.

Theorem 2. A set of general flat clauses can be normalized in DEXPTIME.

Proof: We proceed exactly as in the case of H1 clauses, by trying to simplify the body.
However since the heads can be non-linear, the variables in the non-trivial atoms in
clauses can get unified. E.g. clauses P1(f(x, y)) ⇐ P2(g(x, y, z)) ∧ P3(h(x, x)) and
P2(g(x, x, z)) ⇐ P4(x)∧P5(z) produce P1(f(x, x)) ⇐ P3(h(x, x))∧P4(x)∧P5(z).
Similarly clauses P (f(x, y, y)) ⇐ P1(x)∧P2(y) and Q(f(x, x, y)) ⇐ Q1(x)∧Q2(y)
produce the {P, Q}(f(x, x, x)) ⇐ {P1, P2, Q1, Q2}(x). Hence in general arbitrary se-
quences of variables can occur in the non-trivial atoms in a clause. However the number
of such atoms is always linearly bounded and the number of variables in clauses is also
linearly bounded. Hence only exponential number of clauses are possible. �

5 One Variable Clauses

One-variable clauses are defined to be clauses in which at most one variable occurs.
Note that we put no restriction on the number of occurrences of this variable. The
following is an example of a one-variable clause.

P (f(x, g(h(x), i(x, x)))) ⇐ Q(g(x, x)) ∧ R(x)

Having dealt with general flat clauses, our next goal is to allow general flat clauses in
the presence of one-variable clauses. However we will restrict the form of general flat
clauses that we consider. This is done in the next section. In this section we show how
to deal with just one-variable clauses. The main motivation is that this allows us to nat-
urally encode a very interesting class of cryptographic protocols, namely cryptographic

106 H. Seidl and K.N. Verma

protocols with single blind copying, introduced in [7]. As we saw in Section 2, each
protocol step involves copying certain unknown parts of the received message into the
sent message. In the example we discussed, an agent always copies only one unknown
(the nonce created by the other participant) into the sent message. This is precisely the
restriction imposed by the restriction of single blind copying. Although in our example,
this unknown occurs exactly once in the received and sent messages, we may allow
more than one occurrences thereof. As a consequence of this restriction, the clauses
required for modeling the protocol steps are one-variable clauses, as we can see for
our example protocol. The other clauses which are independent of the protocol steps,
e.g. encryption and decryption abilities of the adversary, are modeled using general flat
clauses of Section 4 or their restrictions introduced in the next section.

The modeling described in Section 2 of the Needham-Schroeder protocol is based on
abstraction of an infinite set of nonces by a single constant. This is secure in the sense
that no attacks are missed. However this may sometimes lead to too many false attacks.
Hence we could adopt a less severe abstraction in which a nonce is not necessarily a
constant, but a function of some previous messages exchanged in the protocol. Hence
nonces in two distinct sessions may still be the same. This kind of abstraction leads to
the following clauses for the steps of the Needham-Schroeder protocol. Note that the
second nonce n2

uv is now a function of the first nonce n1
uv which is a constant. These

clauses are still one-variable clauses, although they do not belong to the class H1.

known({〈u, n1
uv〉}kv)

known({〈x, n2
uv(x)〉}ku) ⇐ known({〈a, x〉}kv)

known({x}kv) ⇐ known({〈n1
uv, x〉}ku)

We restrict ourselves to only unary predicates. For one-variable clauses, this causes no
loss of generality as we can encode atoms P (t1, . . . , tn) as P (c(t1, . . . , tn)) by choos-
ing a fresh symbol c. Normal one-variable clauses are one-variable clauses of the forms

1. P (t) ⇐ Q(x) where t is non-ground and non-trivial.
2. P (t) where t is ground.
3. P (x).

To restrict the form of unifiers of one-variable terms required during normalization,
we decompose these terms, similar to decomposing a string into symbols. If t is a one-
variable term (i.e. one containing at most one variable) which is non-ground and s is any
other term, then t[s] denotes the effect of replacing the variable in t by s. This notation is
extended to sets of terms in the expected manner. A non-ground one-variable term t[x] is
called reduced if it is not of the form u[v[x]] for any non-ground non-trivial one-variable
terms u[x] and v[x]. The term f(g(x), h(g(x))) for example is not reduced because it
can be written as f(x, h(x))[g(x)]. The term f ′(x, g(x), a) is reduced. Unifying it with
the reduced term f ′(h(y), g(h(a)), y) produces ground unifier {x �→ h(y)[a], y �→ a}
and both h(y) and a are strict subterms of the given terms. Indeed we find:

Lemma 1. Let s[x] and t[y] be reduced, non-ground and non-trivial terms where x
= y
and s[x]
= t[x]. If s and t have a unifier σ, then xσ, yσ ∈ U [V] where U is the set of
non-ground (possibly trivial) strict subterms of s and t, and V is the set of ground strict
subterms of s and t.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 107

In case both terms (even if not reduced) have the same variable:

Lemma 2. Let σ be a unifier of two non-trivial, non-ground and distinct one-variable
terms s[x] and t[x]. Then xσ is a ground strict subterm of s or of t.

The intuition behind Lemma 2 is that the variable x could not be mapped to a non-
ground non-trivial term because that term itself would contain x. Similarly the intuition
behind Lemma 1 is that if x (resp. y) is not immediately mapped to a ground term, then
x (resp. y) is mapped to a non-ground subterm of t[y] (resp. s[x]) and then y (resp. x)
could only be mapped to a ground term.

Hence in the following one-variable clauses are simplified to involve only reduced
terms.

Lemma 3. Any non-ground one-variable term t[x] can be uniquely written as t[x] =
t1[t2[. . . [tn[x]] . . .]] where n ≥ 0 and each ti[x] is non-trivial, non-ground and re-
duced. This decomposition can be computed in time polynomial in the size of t.

Proof: We represent t[x] as a DAG by doing maximal sharing of subterms. If t[x] = x
then the result is trivial. Otherwise let N be the position in this graph, other than the
root node, closest to the root such that N lies on every path from the root to the node
corresponding to the subterm x. Let t′ be the strict subterm of t at position N and let t1
be the term obtained from t by replacing the sub-DAG at N by x. Then t = t1[t′] and
t1 is reduced. We then recursively decompose t′.

Uniqueness of decomposition follows from Lemma 1. �

Above and elsewhere, if n = 0 then t1[t2[. . . [tn[x]] . . .]] denotes x. Now if there is
an atom P (t[x]) occurring in some clause, with t[x] being non-ground, and if t[x] =
t1[. . . [tn[x]] . . .] where each ti is non-trivial and reduced, then we create fresh predi-
cates Pt1 . . . ti for 1 ≤ i ≤ n−1 and replace this atom by the atom Pt1 . . . tn−1(tn[x]).
Also we add clauses Pt1 . . . ti(ti+1[x]) ⇐ Pt1 . . . ti+1(x) and Pt1 . . . ti+1(x) ⇐
Pt1 . . . ti(ti+1[x]) for 0 ≤ i ≤ n − 2 to our clause set.

Hence now we assume that non-ground atoms in clauses involve only reduced terms
or trivial terms as arguments of predicates. Let Ng be the set of these terms, w.l.o.g.
containing also the trivial term. Let Ngs be the set of non-ground subterms of terms in
Ng. Let G be the ground terms occurring in the clauses. During normalization we are
only going to produce atoms P (t) with t ∈ Ng ∪ Ng[Ngs[G]]. As before we consider
sets of predicates to represent intersections of individual predicates. If a clause has a
non-ground head and a ground body then we add the atom P (x) in the body, where
P (x) is a fresh predicate. We add the clause P (x) to the set to say that P accepts all
terms. Here are the possible normalization steps.

– We have clause h ⇐ B ∧ S(t[x]) and normal clause S(s[y]) ⇐ S′(y) where s, t ∈
Ng are non-trivial. The normalization step produces hσ ⇐ Bσ ∧ S′(yσ) where σ
unifies s and t. If s[x] = t[x] then σ is a renaming. Otherwise xσ, yσ ∈ Ngs[G] by
Lemma 1. Further Ngs[G] ⊆ Ng[Ngs[G]]. Ground atoms S′′(g) are removed from
the body by checking that g is accepted at S′′ using the normal clauses only.

– We have clauses h ⇐ B ∧ S(t[y]) and S(s) where t ∈ Ng is non-trivial and s ∈
Ng[Ngs[G]]. The normalization step produces hσ ⇐ Bσ where σ unifies t and s.

108 H. Seidl and K.N. Verma

The ground atoms from the body are removed as before. If s ∈ Ngs[G] then the
clause is clearly of the right form. Otherwise s = u[g] where u ∈ Ng is non-trivial,
and g ∈ Ngs[G]. Hence σ is also a unifier of non-trivial reduced terms t and u. If
s[x] = t[x] then the result is easy. Otherwise by Lemma 1, xσ ∈ Ngs[G], and the
result is again easy. The last argument is crucial: the unifier is independent of g
hence the ground terms in clauses don’t grow arbitrarily.

– Clause S(x) ⇐ S′(x) and normal clause S′(t) ⇐ B produce S(t) ⇐ B where B
may be possibly empty.

– The case of normalization steps involving clause P (x) is easy.
– Clause h ⇐ B ∧ S1(x) ∧ S2(x) produces h ⇐ B ∧ (S1 ∪ S2)(x).
– Normal clauses S1(s) ⇐ T1(x) and S2(t) ⇐ T2(x) produce (S1 ∪ S2)(tσ) ⇐

(T1∪T2)(xσ) where σ unifies s and t. Similarly a normal non-ground and a normal
ground clause can produce a new clause. The unifications involved are as consid-
ered above.

Hence we produce only polynomially many terms during normalization and hence only
exponentially many clauses. While [25] uses resolution techniques to decide satisfiabil-
ity for these clauses, we further show here that the clauses can even be put into normal
form.

Theorem 3 ([25]). A set of one-variable clauses can be normalized in DEXPTIME.

6 One Variable Clauses and Flat Clauses

We now return to our goal of having both general flat clauses and one-variable clauses,
in order to be able to model cryptographic protocols with single blind copying. However
instead of the general flat clauses considered before, we consider flat clauses which are
those general flat clauses in which every non-trivial atom contains all variables of the
clause. The clause

P (f(x, y)) ⇐ Q(g(y, z))

is a general flat clause but not a flat clause. The set of variables in one atom is {x, y}
and in the other is {y, z}. The following clause is a flat clause.

P1(f(x, y, x, z)) ⇐ P2(g(y, z, x)) ∧ P3(h(y, y, x, z, z)) ∧ P4(x)

This class of flat clauses is what is considered in [25] and also suffices for modeling
cryptographic protocols with single blind copying. Recall that the one-variable clauses
model the protocol steps involving single blind copying, as explained in Section 5 and
the flat clauses model the additional capabilities of the adversary to perform encryption,
decryption etc. This restriction simplifies the interaction between flat and one-variable
clauses. Normal clauses are now defined to be clauses which are either normal one-
variable clauses or normal flat clauses. Note that the definition of normal flat clauses
is same as in the case of general flat clauses. Our goal in this case is to obtain a set of
normal flat clauses and normal one-variable clauses.

We will now have three kinds of normalization steps. Normalization steps between
two flat clauses or between two one-variable clauses are as in Sections 4 and 5. The

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 109

third kind of normalization step is between a one-variable clause and a flat clause, and
this always produces a one-variable clause. As a typical example a normalization step
between the following two clauses

C1 = P1(f(x, y)) ⇐ P2(g(y, x)) ∧ P3(x)
C2 = P2(g(x, h(h(x)))) ⇐ P4(x) ∧ P5(x)

produces the clause

P1(f(h(h(x)), x)) ⇐ P3(h(h(x))) ∧ P4(x) ∧ P5(x)

Further the term f(h(h(x)), x) is reduced. However h(h(x)) is not reduced and hence
this term needs to be further decomposed. We replace this clause by the following
clauses where P3h(x) is a fresh predicate. In general we require new predicates cor-
responding to original predicates and a sequence of one-variable terms. The variables
occurring in the terms in these sequences are not important, and these new predicates
are identified upto replacements of these variables by other variables.

P1(f(h(h(x)), x)) ⇐ P3h(x)(h(x)) ∧ P4(x) ∧ P5(x)
P3h(x)(x) ⇐ P3(h(x))
P3(h(x)) ⇐ P3h(x)(x)

Let Ngs be the set of non-ground (subterms of) terms in the one-variable clauses,
Ngr = {{s[xr+1] | s is non-ground and reduced,and for some t, s[t] ∈ Ngs}. Define
Ngrr = {s1[. . . [sm] . . .] | s1[. . . [sn] . . .] ∈ Ngs, m ≤ n, and each si is non-trivial
and reduced}. The reason we need these new sets is that during resolution we cre-

ate subterms of reduced terms which need to be then further decomposed, as in the
above example. We further define the set Ngr1 = {f(s1, . . . , sn) | g(t1, . . . , tm) ∈
Ngr, {s1, . . . , sn} = {t1, . . . , tn}}. These terms are reduced but are exponentially
many. These are produced as instances of the non-trivial terms in the flat clauses as
in the above example. However, the number of such terms in a clause is linear in the
initial clause size. Further a normalization step of this clause with a normal flat clause
can only produce strict subterms of these terms (in Ngrr) which can then be further
decomposed. Readers may consult [25] for precise details about the form of clauses
produced during normalization.

The other important observation is that we need only polynomially many fresh pred-
icates for performing decompositions, because the trivial atoms in the flat clause C2
above can never involve the auxiliary predicates. This is because when we introduce
auxiliary predicate as above, the clause becomes a one-variable clause. No further steps
can transform this atom into a trivial atom in a non-trivial flat clause.

Theorem 4 ([25]). A set of flat and one-variable clauses can be normalized in DEXP-
TIME.

While only the satisfiability problem is considered in [25] (for Horn and non-Horn
clauses), we have here presented a simpler procedure which further produces a set of
normal clauses in the Horn case.

110 H. Seidl and K.N. Verma

Example 1. Consider the set S = {C1, . . . , C5} of clauses where

C1 = P (a)
C2 = Q(a)
C3 = P (f(g(x1, a), g(a,x1), a)) ⇐ P (x1)
C4 = P (f(g(x1, a), g(a,x1), b)) ⇐ P (x1)
C5 = R(x1) ⇐ P (f(x1,x1,x2)) ∧ Q(x2)

We first get the following normal clauses.

C′
1 = {P}(a)

C′
2 = {Q}(a)

C′
3 = {P}(f(g(x1, a), g(a,x1), a)) ⇐ {P}(x1)

C′
4 = {P}(f(g(x1, a), g(a,x1), b)) ⇐ {P}(x1)

The clause
C′

5 = {R}(x1) ⇐ {P}(f(x1,x1,x2)) ∧ {Q}(x2)

is not normal. A normalization step with C′
3 gives the clause

{R}(g(a, a)) ⇐ {P}(a) ∧ {Q}(a)

As a is accepted at {P} and {Q} using the normal clauses C′
1 and C′

2, hence we get a
new normal clause

C6 = {R}(g(a, a))

Resolving C′
5 with C′

4 gives

{R}(g(a, a)) ⇐ {P}(a) ∧ {Q}(b)

But b is not accepted at {Q} using the normal clauses hence this clause is rejected.
Finally C′

1 and C′
2 also give the normal clause

C7 = {P, Q}(a)

The resulting set of normal clauses is {C′
1, . . . , C

′
4, C6, C7}.

For protocols this gives us the following complexity of the verification problem,
which is also optimal [25].

Theorem 5 ([25]). Secrecy for cryptographic protocols with single blind copying can
be decided in DEXPTIME.

7 k-Variable Clauses and Flat Clauses

Now we consider a further generalization by allowing not just one-variable clauses
but also k-variable clauses, i.e. clauses having at most k variables. Our goal is to be
able to model protocols in which more than one unknown data may be blindly copied.
We are interested in the case where k is small, hence we assume it is bounded by

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 111

some constant. Further, to obtain decidability, we impose restrictions on the occurrences
of variables. A term or literal is called covering if every non-ground functional term
occurring in it contains all variables of the term or literal. A clause is called covering
if every literal in it is covering and every non-ground literal involving a n-ary predicate
for n ≥ 2 contains all variables of the clause. We are interested in covering k-variable
clauses together with flat clauses. Note that every flat clause can also be considered as
covering k-variable clauses for a suitable k, however we allow the flat clauses to have
arbitrary many variables. Further as in the one-variable case, we could restrict covering
k-variable clauses to have only unary-predicates. However during normalization, we are
going to introduce new predicates of arity at most k. Hence w.l.o.g. we assume that our
k-variable clauses always involve predicates of arity at most k. Flat clauses of course
involve only unary predicates. Our definitions are inspired by that of the class S+ [11].
Flat clauses belong to the class S+. Our definition of covering k-variable clauses is
essentially the same as that of S+ clauses, except for the fact that we have restricted the
number of variables, and we allow arbitrary ground subterms unlike in the case of S+.

As example for protocols modeled by such clauses, consider the Yahalom proto-
col [1] below. Participants A and B use a trusted server S to compute a common key
KAB. NA and NB are nonces chosen by A and B respectively. KAS and KBS are long
term shared keys between A and S and between B and S respectively.

A −→ B : A, NA

B −→ S : B, {A, NA, NB}KBS

S −→ A : {B, KAB, NA, NB}KAS , {A, KAB}KBS

A −→ B : {A, KAB}KBS , {NB}KAB

To model the protocol, as before we use constants n1
uv and n2

uv to represent the two
respective nonces chosen by u and v for sessions among themselves. For every pair
(u, v) of agents, the clauses corresponding to the protocol steps as as follows. For the
first step we have the clause

known(〈u, n1
uv〉)

For the second step we have clauses, using the fact that the adversary knows a pair of
message iff he knows the individual messages.

known(v) ⇐ known(〈u, x〉)
known({〈u, x, n2

uv〉}kbS
) ⇐ known(〈u, x〉)

By similar reasoning we obtain the following clauses for the third step.

known({〈v, kuv, x, y〉}kuS) ⇐ known(v), known({〈u, x, y〉}kvS)
known({〈u, kuv〉}kvS) ⇐ known(v), known({〈u, x, y〉}kvS)

For the fourth step we have the following clause, where the body has only the first
component of the message received by u, because the second component is copied
without any checks, hence has no impact on the adversary’s knowledge.

known({x}y) ⇐ known({〈v, y, n1
uv, x)〉}kuS)

112 H. Seidl and K.N. Verma

Here we consider 〈 , , 〉 and 〈 , , , 〉 to be 3-ary and 4-ary functions respectively,
instead of considering them to be built up by compositions of the binary function 〈 , 〉.
With this choice, the clauses we obtain are covering 2-variable clauses. Further, if we
adopt a milder abstraction, as in Section 5 for the Needham-Schroeder protocol, then
we have the following covering k-variable clauses. n2

uv is now a function of n1
uv and

kuv is a function of both of them.

known(〈u, n1
uv〉)

known(v) ⇐ known(〈u, x〉)
known({〈u, x, n2

uv(x)〉}kvS) ⇐ known(〈u, x〉)
known({〈v, kuv(x, y), x, y〉}kuS) ⇐ known(v), known({〈u, x, y〉}kvS)
known({〈u, kuv(x, y)〉}kvS) ⇐ known(v), known({〈u, x, y〉}kvS)
known({x}y) ⇐ known({〈v, y, n1

uv, x)〉}kuS)

In case of k-variable clauses, we define normal clauses to be those of the form

1. P (t1, . . . , tn) ⇐ Q(x1, . . . , xm) where x1, . . . , xm are exactly the (pairwise dis-
tinct) variables in the head, and (t1, . . . , tn) is not a permutation of (x1, . . . , xm).

2. P (t1, . . . , tn).

It is easy to check that given a set of normal clauses of the above form, we can ver-
ify in polynomial time whether some ground atom P (t1, . . . , tn) holds (membership
test). First we show how to normalize a set of k-variable covering clauses. As in the
case of one-variable clauses, we need to rely on decompositions of terms. But as we
have more than one variable, it is more convenient to talk of decompositions of substi-
tutions. In this section, we consider substitutions σ to be always over a finite domain
dom(σ) of variables and fv(σ) denotes the set of free variables of the terms in the range
range(σ) of σ, also called the variables occurring in σ. If X is the domain of σ and
Y ⊂ X then σ|X denotes as usual the restriction of σ to the domain Y . We define a
k-variable term, literal, or substitution to be one in which at most k variables occur.
A substitution is called covering if every non-ground functional term occurring in the
range contains all variables in the range. A term or literal is called simple if it contains
only variables or ground terms. A substitution is simple if it maps variables to variables
and ground terms. A covering k-variable substitution σ is called fat if it maps every
variable to a non-ground term and xσ = yσ only when x = y. The only substitutions
which are both fat and simple are renamings. The substitution {x �→ a, y �→ f(x, y)}
is neither fat nor simple. Composition of two fat covering k-variable substitutions is a
fat covering k-variable substitution. A non-renaming fat covering k-variable substitu-
tion σ is called reduced if it cannot be written as composition of two non-renaming fat
covering k-variable substitutions. A term t is called reduced if the substitution {x �→
t} is reduced. We will consider tuples (t1, . . . , tn) interchangeably as substitutions
{x1 �→ t1, . . . , xn �→ tn} for convenience. Hence if substitution σ has a domain of
size n and P is a n-ary predicate then P (σ) denotes an atom as expected.

The extra problem in the k-variable case is that reduced terms may become non-
reduced after application of some simple substitutions which unify two subterms. E.g.
the substitution {x �→ f(x1, g(x1, x2, a), g(x1, a, x2))} is reduced. However the in-
stance {x �→ f(x1, g(x1, a, a), g(x1, a, a))} is not reduced and can be written as

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 113

{x �→ f(x1, x2, x2)}{x1 �→ x1, x2 �→ g(x1, a, a)}. Indeed the only way to unify
two distinct k-variable covering terms, which have the same set of free variables, is by
mapping variables to variables and to ground subterms of the two terms.

Lemmas 4 and 5 below are generalizations of Lemmas 1 and 2 to the k-variable case.
Given two substitutions σ1 and σ2 over disjoint domains σ1 ⊕ σ2 denotes as expected
the substitution over the union of the two domains.

Lemma 4. Consider two non-renaming reduced fat covering k-variable substitutions
σ1 and σ2, over the same domain, and which are not renamings of each other. Let G be
the set of ground subterms of terms in the range of σ1 and σ2 and fv(σ1) ∩ fv(σ2) = ∅.
Let σ be the mgu of σ1 and σ2. Then one of the following cases occur.

– σ = σ3 ⊕ σ4 where dom(σ3) = fv(σ1), dom(σ4) = fv(σ2). σ3 maps variables in
dom(σ1) to variables in dom(σ1) and to terms in G. σ4 is of the form θρσ3 where
θ maps variables in dom(σ2) to variables in dom(σ2) and to terms in G, ρ and is
a fat substitution. Further, either θ or σ3 is non-renaming.

– The symmetric case, with roles of σ1 and σ2 exchanged.

Essentially non-renaming unification involves a fat substitution preceded and succeeded
by simple substitutions. One of these two simple substitutions has to be non-renaming
because of the reducedness condition. For example consider

σ1 = {x �→ f(h(x1, a, y1), h(x1, y1, a), g(x1, y1)), y �→ g(x1, y1)}
σ2 = {x �→ f(x2, x2, y2), y �→ y2}

We have σ3 ⊕ σ4 as the mgu of σ1 and σ2 where

σ3 = {x1 �→ x1, y1 �→ a}
θ = {x2 �→ x2, y2 �→ y2}
ρ = {x2 �→ h(x1, a, y1), y2 �→ g(x1, y1)}
σ4 = θρσ3

Here the first two arguments of σ1(x) had to be unified which led to y1 being mapped
to a. In case the sets of free variables in the ranges are the same, then we have the
following generalization of Lemma 2.

Lemma 5. Consider two covering k-variable substitutions σ1 and σ2 over the same
domain. Let G be the set of ground subterms of terms in the range of σ1 and σ2 and
fv(σ1) = fv(σ2). Let σ be the mgu of σ1 and σ2. If σ1 and σ2 are not renamings then σ
maps variables to variables and to terms in G.

For example the mgu of the substitutions {x �→ f(x, g(x, y, z), h(a))} and {x �→
f(y, g(x, y, z), z)} is {x �→ x, y �→ x, z �→ h(a)}. The point is that a variable x
cannot be mapped to a non-ground functional term since that term itself must contain the
variable x. Lemma 3 is generalized as follows. We decompose covering substitutions
as σ = θρ1 . . . ρn where θ is simple and ρi are fat and reduced. Intuitively θ tells us
exactly which variables should be made equal to each other, and which variables should
be made ground. The uniqueness of the choice of the ρi follows from Lemma 4.

114 H. Seidl and K.N. Verma

Lemma 6. 1. Every non-ground covering k-variable substitution can be uniquely
written as θσ where θ is simple and σ is a fat covering k-variable substitution.

2. Every fat covering k-variable substitution σ can be uniquely written as σ =
ρ1 . . . ρn where n ≥ 0 and each ρi is a reduced fat covering k-variable substi-
tution.

For example the substitution {x1 �→ f(x, y), x2 �→ f(x, y), x3 �→ f(y, x), x4 �→
x, x5 �→ h(a)} can be written as θσ where θ = {x1 �→ y1, x2 �→ y1, x3 �→ y2, x4 �→
x, x5 �→ h(a)} is simple and σ = {y1 �→ f(x, y), y2 �→ f(y, x), x �→ x} is fat cov-
ering. The fat covering substitution {x1 �→ f(h(x), g(y)), x2 �→ f(g(y), h(x)), x3 �→
h(x)} can be written as ρ1ρ2 where ρ1 = {x1 �→ f(y1, y2), x2 �→ f(y2, y1), x3 �→ y1}
and ρ2 = {y1 �→ h(x), y2 �→ g(y)} are reduced fat covering. If k = 1 then the sub-
stitution {x1 �→ f(g(x), h(x))} is reduced. But if k ≥ 2 then we can decompose it as
{x1 �→ f(y1, y2)} and {y1 �→ g(x), y2 �→ h(x)}.

Hence given a set S of k-variable covering clauses, let G be the set of all ground terms
occurring in S. We add to S all possible instances of clauses by mapping variables to
variables and terms from G. This means that now we never need to consider instances
of these clauses which unify two distinct subterms occurring in a term or which unify
some non-ground term in a clause with a term in G.

Next we decompose the terms occurring in the clauses, as in the one-variable case.
An atom of the form P (θρ1 . . . ρn), with n ≥ 1, in a clause is replaced by the atom
Pθ,ρ1,...,ρn(x) and we add clauses

Pθ(x) ⇐ P (θ)
P (θ) ⇐ Pθ(x)

Pθ,ρ1(x) ⇐ Pθ(ρ1)
Pθ(ρ1) ⇐ Pθ,ρ1(x)

. . .
Pθ,ρ1,...,ρn(x) ⇐ Pθ,ρ1,...,ρn−1(ρn)

Pθ,ρ1,...,ρn−1(ρn) ⇐ Pθ,ρ1,...,ρn(x)

where in each clause, x represents a sequence of mutually distinct variables of appropri-
ate length, Pθ,ρ1,...,ρi are fresh predicates, θ is a simple covering k-variable substitution
and ρi are non-renaming reduced fat covering k-variable substitutions. In case θ is a re-
naming then Pθ is the same as P and the first two clauses are omitted. If n = 0 then the
atom is replaced by Pθ(x). This means that now predicates are only applied to simple
or reduced fat substitutions. As an example the literal P (f(h(x), g(y)), f(g(y), h(x)),
h(x)) is written as P (σ) where σ = {x1 �→ f(h(x), g(y)), x2 �→ f(g(y), h(x)), x3 �→
g(x)}. σ can be written as ρ1ρ2 where ρ1 = {x1 �→ f(y1, y2), x2 �→ f(y2, y1), x3 �→
y1} and ρ2 = {y1 �→ h(x), y2 �→ g(y)}. Hence this literal can be replaced by the literal
Pρ1ρ2(x, y) and additionally we have the following clauses. Further if in the original
clause x and y never needed to be unified then in the new clauses also x and y never
need to be unified, and y1 and y2 never need to be unified.

Pρ1(y1, y2) ⇐ P (f(y1, y2), f(y2, y1), y1)
P (f(y1, y2), f(y2, y1), y1) ⇐ Pρ1(y1, y2)
Pρ1ρ2(x, y) ⇐ Pρ1(h(x), g(y))
Pρ1(h(x), g(y)) ⇐ Pρ1ρ2(x, y)

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 115

Let S1 be the new set of clauses. Even after these transformations, we never need
to consider instances of our clauses which unify two distinct subterms occurring in a
term or which unify some non-ground term in a clause with a term in G. This property
is going to be preserved during all stages of our normalization procedure. Further we
preserve the property that at most one atom in a clause has a predicate applied to a
non-renaming substitution. Let Ng be the set of non-ground terms occurring in S1, and
Ngs the set of their subterms, as well as non-ground subterms of terms occurring in S

(not S1). Let F be the set of fat covering k-variable substitutions with domain of size at
most k and range containing (renamings of) terms from Ngs. Let S be the set of simple
k-variable substitutions with domain of size at most k and the ground terms in the
range being only from G. Compositions of sets of substitutions are defined as expected.
During normalization, we are only going to produce atoms in which the predicate has
an argument of one of the following forms.

– θ ∈ S.
– some non-renaming reduced ρ ∈ F.
– θ1ρ1ρ2θ2, where θ1, θ2 ∈ S, θ2 is ground, ρ1, ρ2 ∈ F and ρ1 is non-renaming and

reduced.

The normalization procedure now consists of the following kinds of steps, quite
similar to the one-variable case. Because of our assumptions about the kinds of in-
stantiations that need to be made of clauses, we are going to avoid unnecessary uni-
fications between the atoms involved. Further the assumptions will continue to hold
after each normalization step. We further maintain the invariant that every clause has
at most two literals, one of which is a renaming. This is true of the auxiliary clauses
produced above. The clauses produced by replacing original clauses have only renam-
ings as arguments in literals. To them we apply the following transformation. For ev-
ery n-ary predicate and permutation π over n variables, we introduce predicate Pπ
which is supposed to accept tuples σ such that σπ is accepted at P . We further in-
troduce n-ary predicates {P1, . . . , Pi}, where Pi are n-ary predicates, with the usual
meaning. Given n-ary predicate S and unary predicates S1, . . . , Sn we introduce pred-
icate S[S1, . . . , Sn] which accepts tuples (x1, . . . , xn) accepted at S such that xi is
accepted at Si. Given a permutation π, S[S1, . . . , Sn]π is defined to be a state of the
same form as expected. S[S1, . . . , Sn] ∪ T [T1, . . . , Tn] is defined to be (S ∪ T)[S1 ∪
T1, . . . , Sn∪Tn]. S[∅, . . . , ∅] is same as S. ∅[∅, . . . , ∅, Si, ∅, . . . , ∅](x1, . . . , xn) is same
as Si(xi). Then a conjunction S(x1, . . . , xn) ∧ T (x1, . . . , xn) in the body is replaced
by (S ∪ T)(x1, . . . , xn).

– We have a non-normal clause C1 = h ⇐ S(σ1) and a normal clause C2 =
S(σ2) ⇐ B and the normalization step produces C = hσ ⇐ Bσ where σ is
mgu of σ1 and σ2. B has at most one atom. The following cases are possible. In our
case analysis below, we frequently need to forbid steps where two variables need to
be made equal or where a variable needs to be instantiated to a term in G. We will
do this without stating the reason explicitly.

• σ1 is a renaming. We consider this step only if the substitution occurring as
argument in the head is also a renaming since we have assumed C1 to be

116 H. Seidl and K.N. Verma

non-normal. Then C is trivially of the required form. In the remaining subcases
below, we assume that σ1 is not a renaming. Hence the head of C1 must have
a renaming as argument.

• σ1 ∈ S is not a renaming. If σ2 ∈ F then this step is not performed. If σ2 ∈ S
then this step is performed only if σ2 is a renaming of σ1, and then C is of the
required form. If σ2 is of the third form above then C is a ground clause with
literals of the required form. Any ground atom from the body is removed by a
membership test on the normal clauses.

• σ1 ∈ F is not a renaming and σ2 is a renaming. Then B2 is empty and C is
trivially of the required form.

• σ1 ∈ F is not a renaming and σ2 ∈ S is not a renaming. Then then this step is
not possible.

• σ1 ∈ F is not a renaming and σ2 ∈ F is not a renaming. If σ2 is a renaming
of σ1 then C is of the right form. Otherwise this normalization step is not
considered because of the substitutions involved according to Lemma 4.

• σ1 ∈ F is not a renaming and σ2 is of the form θ1ρ1ρ2θ2 where θ1, θ2 ∈ S,
θ2 is ground, ρ1, ρ2 ∈ F and ρ1 is non-renaming and reduced. θ1 must be a
renaming for this normalization step to be allowed. Hence σ is also a unifier
of σ1 and ρ1. By Lemma 4, σ is of the form ρ3θ3 where θ3 ∈ S is ground and
ρ3 ∈ F. Hence the resulting clause is a ground clause of the right form.

– Two normal clauses S1(σ1) ⇐ B1 and S2(σ2) ⇐ B2, where S1 and S2 have the
same arity, produces a clause (S1 ∪ S2)(σ1σ) ⇐ B1σ ∧ B2σ where σ unifies σ1
and σ2. The unifications involved are as above. A possible ground literal from the
body is removed as before. A possible conjunction of two literals (with renamings
as arguments) in the body is replaced by a single literal as before.

– Normal clause S[S1, . . . , Sn](t1, . . . , tn) ⇐ B produces normal clause S[S1, . . . ,
Si−1, Si ∪ T, Si+1, . . . , Sn](t1, . . . , tn) ⇐ B ∧ T (ti) if ti is a variable. The con-
junction in the body is replaced by a single literal as before.

– Given normal clauses S[S1, . . . , Sn](t1, . . . , tn) ⇐ B1 and T (t) ⇐ B2 (t can-
not be a variable) we consider the mgu σ of ti and t. We generate the clause
S[S1, . . . , Si−1, Si ∪T, Si+1, . . . , Sn](t1, . . . , tn)σ ⇐ B1σ ∧B2σ. Ground literals
from body are again removed by membership tests.

– Normal clause S(σ) ⇐ B produces clause Sπ(σπ−1) ⇐ B where π−1 is the
inverse of the permutation π.

In other words we have polynomially many possible tuples occurring as arguments
of predicates and consequently exponentially many clauses.

Theorem 6. For a fixed k, a set of covering k-variable clauses can be normalized in
DEXPTIME.

For practical implementations, the systematic instantiations and decompositions
could be wasteful. Hence it is better to do them as required. Firstly it is only necessary
to decompose the arguments in heads but not in the body. Secondly the instantiations

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 117

followed by decomposition should be done before a normalization step as needed, and
not in advance. This avoids unnecessary instantiations. Hence given clauses

h ⇐ P (g(h(x)), g(h(x))))
P (g(x), g(y)) ⇐ Q(x, y)

we apply the substitution {x �→ x, y �→ x} on the second clause and the new clause can
then be decomposed to produce the following clauses

P ′(x) ⇐ Q(x, x)
P (x, x) ⇐ P ′′(x)
P ′′(x) ⇐ P (x, x)

P ′′(h(x)) ⇐ P ′(x)
P ′(x) ⇐ P ′′(h(x))

Hence a normalization step then produces the new clause

h ⇐ P ′′(g(h(x)))

When we further allow flat clauses together with k-variable clauses, then the situa-
tion is again analogous to the case of one-variable clauses with flat clauses. Normaliza-
tion steps between a covering k-variable clause and a flat clause produces a covering
k-variable clause, which may again need to be decomposed.

Theorem 7. For a fixed k, a set of covering k-variable clauses and flat clauses can be
normalized in DEXPTIME.

As we have considered k to be a constant, this upper bound does not apply to the class
S+. However letting k be a variable in our algorithm still allows us to show:

Theorem 8. Satisfiability for the class S+ can be decided in double exponential time
in the Horn case.

As far as we know no upper bound was previously known for this class. DEXPTIME
lower bound for this class is obvious, and tightening the complexity bounds further
remains to be done.

8 Conclusion

We have considered several general classes of Horn clauses. For each of them, we pro-
vided a normalization procedure which runs in exponential time but practically may
be much faster. In particular, our methods can be used to decide satisfiability for these
classes. Moreover, these classes provide flexible tools for modeling and certifying se-
crecy of protocols.

Beyond simplifying the methods from [25], we also generalized the class of flat and
one-variable clauses to allow (restricted) k-variable clauses. For fixed small k, normal-
ization and thus satisfiability still is in DEXPTIME. For unbounded k, we have pro-
vided a new double exponential time upper bound, which thus also holds for the full
Horn fragment of the class S+. It remains as a challenging problem whether this upper
bound can be significantly improved.

118 H. Seidl and K.N. Verma

References

1. Spore: Security protocol open repository. Available at
http://www.lsv.ens-cachan.fr/spore/.

2. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In 14th
IEEE Computer Security Foundations Workshop (CSFW’01), pages 82–96. IEEE Computer
Society Press, Cape Breton, Nouvelle-Écosse, Canada, 2001.

3. B. Blanchet. Security protocols: From linear to classical logic by abstract interpretation.
Information Processing Letters, 95(5):473–479, 2005.

4. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces ter-
mination. Theoretical Computer Science, 333(1-2):67–90, 2005.

5. H. Comon and V. Cortier. Tree automata with one memory, set constraints and cryptographic
protocols. Theoretical Computer Science, 331(1):143–214, 2005.

6. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree automata techniques and applications.http://www.grappa.univ-lille3.fr/
tata, 1997.

7. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order logic
and application to cryptographic protocols. In R. Nieuwenhuis, editor, 14th International
Conference on Rewriting Techniques and Applications (RTA’03), volume 2706 of LNCS,
pages 148–164, Valencia, Spain, June 2003. Springer-Verlag.

8. H. Comon-Lundh and V. Cortier. Security properties: Two agents are sufficient. In 12th
European Symposium on Programming (ESOP’03), volume 2618 of LNCS, pages 99–113,
Warsaw, Poland, Apr. 2003. Springer-Verlag.

9. V. Cortier. Vérification Automatique des Protocoles Cryptographiques. PhD thesis, ENS
Cachan, France, 2003.

10. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, IT-29(2):198–208, March 1983.

11. C. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution Decision Procedures, chap-
ter 25, pages 1791–1849. Volume II of Robinson and Voronkov [23], 2001.

12. T. Frühwirth, E. Shapiro, M. Y. Vardi, and E. Yardeni. Logic programs as types for logic
programs. In 6th Annual IEEE Symposium on Logic in Computer Science (LICS’91), Ams-
terdam, The Netherlands, July 1991. IEEE Computer Society Press.

13. J. Goubault-Larrecq. Une fois qu’on n’a pas trouvé de preuve, comment le faire compren-
dre à un assistant de preuve? In V. Ménissier-Morain, editor, Actes des 12èmes Journées
Francophones des Langages Applicatifs (JFLA’04). INRIA, collection didactique, 2004.

14. J. Goubault-Larrecq. Deciding H1 by resolution. Information Processing Letters, 95(3):401–
408, 2005.

15. J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In
R. Cousot, editor, 6th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’05), volume 3385 of LNCS, pages 363–379. Springer-Verlag, 2005.

16. J. Goubault-Larrecq, M. Roger, and K. N. Verma. Abstraction and resolution modulo AC:
How to verify Diffie-Hellman-like protocols automatically. Journal of Logic and Algebraic
Programming, 64(2):219–251, Aug. 2005.

17. G. Lowe. An attack on the Needham-Schroeder public-key protocol. Information Processing
Letters, 56(3):131–133, 1995.

18. D. Monniaux. Abstracting cryptographic protocols with tree automata. In A. Cortesi and
G. Filé, editors, 6th International Static Analysis Symposium (SAS’99), volume 1694 of
LNCS, pages 149–163, Venice, Italy, September 1999. Springer-Verlag.

19. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12):993–999, 1978.

http://www.lsv.ens-cachan.fr/spore/
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 119

20. F. Nielson, H. R. Nielson, and H. Seidl. Normalizable Horn clauses, strongly recognizable
relations and Spi. In 9th Static Analysis Symposium (SAS’02), volume 24477 of LNCS, pages
20–35. Springer-Verlag, 2002.

21. R. Ramanujam and S. P. Suresh. A decidable subclass of unbounded security protocols. In
Workshop on Issues in the Theory of Security (WITS’03), 2003.

22. R. Ramanujam and S. P. Suresh. Tagging makes secrecy decidable with unbounded nonces as
well. In 23rd Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’03), volume 2914 of LNCS, pages 363–374. Springer-Verlag, 2003.

23. J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning. North-
Holland, 2001.

24. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is NP-
complete. In P. Pandya and J. Radhakrishnan, editors, 14th IEEE Computer Security Founda-
tions Workshop (CSFW’01), Cape Breton, Nova-Scotia, Canada, June 2001. IEEE Computer
Society Press.

25. H. Seidl and K. N. Verma. Flat and one-variable clauses: Complexity of verifying cryp-
tographic protocols with single blind copying. In F. B. ad Andrei Voronkov, editor, 11th
International Conference on Logic for Programming Artificial Intelligence and Reasoning
(LPAR’04), volume 3452 of LNCS, pages 79–94. Springer-Verlag, 2005.

26. C. Weidenbach. Towards an automatic analysis of security protocols. In H. Ganzinger, editor,
16th International Conference on Automated Deduction (CADE’99), number 1632 in LNAI,
pages 378–382. Springer-Verlag, 1999.

	Introduction
	Horn Clauses and Cryptographic Protocols
	\H_1 and Strongly Recognizable Relations
	General Flat Clauses
	One Variable Clauses
	One Variable Clauses and Flat Clauses
	\k-Variable Clauses and Flat Clauses
	Conclusion

