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Summary. The degree of ambiguity of a finite tree automaton A, da(A), 
is the maximal number of different accepting computations of A for any 
possible input tree. We show: it can be decided in polynomial time whether 
or not d a ( A ) < ~ .  We give two criteria characterizing an infinite degree 
of ambiguity and derive the following fundamental properties of an finite 
tree automaton A with n states and rank L >  i having a finite degree of 
ambiguity: for every input tree t there is a input tree tl  of depth less than 
22".n! having the same number of accepting computations; the degree of 
ambiguity of A is bounded by 22 .... geL+ ,)., 

O. Introduction 

Generalizing a result of [-5, 8, 9] from finite word automata to finite tree automa- 
ta we showed in [7] that, for any fixed constant m it can be decided in polynomial 
time whether or not two m-ambiguous finite tree automata are equivalent. Since 
the equivalence problem of finite tree automata is logspace complete in determin- 
istic exponential time in general, this result justifies our special interest in the 
class of finitely ambiguous finite tree automata. In this paper we continue the 
investigations of [7]. 

In [11] it is shown that it can be decided in polynomial time whether or 
not the degree of ambiguity of a finite word automaton is finite. For  this a 
criterion (IDA) is given characterizing an infinite degree of ambiguity. Moreover, 
this paper proves an upper bound 5 "/2. n" for the maximal degree of ambiguity 
of a finitely ambiguous finite word automaton A having n states. Using an 
estimation of Baron [-2] Kuich slightly improves this upper bound [5]. In [12] 
the analysis of finitely ambiguous finite word automata is completed by proving 
a non-ramification lemma which allows for every word w to construct a word 
w' of length less than 2 2". n! having the same number of accepting computation 
paths. 

In this paper we extend the methods of [-11, 12] to finite tree automata. 
For  a finite tree automaton A we employ the branch automaton Aw An is 



528 H. Seidl 

a finite word automaton canonically constructed from A which accepts the 
set of all branches of trees in L(A). AB allows to formulate two reasons (T 1) 
and (T2) for A to be infinitely ambiguous. The second one originates in an 
appropriate extension of the criterion (IDA) of [11] whereas the first one has 
no analogon in the word case. We prove a non-ramification lemma for finite 
tree automata. We apply this lemma to prove: if the branch automaton A B 
of a finite tree automaton A with n states neither complies with (T 1) nor with 
(T2) then for every input tree t there is a input tree t~ of depth less than 22"-n! 
having the same number of accepting computations as t. Since the number 
of computations for a tree of bounded depth is bounded, this proves: da(A)< 
iff A n doesn't comply with (T1) or (T2). Since the criteria (T 1) and (T2) are 
testable in polynomial time, it follows that it can be decided in polynomial 
time whether or not the degree of ambiguity of a finite tree automaton is finite. 

Finally, we investigate the maximal number of accepting computations of 
a finitely ambiguous finite tree automaton A for a given tree t. Now,  it no 
longer suffices to analyse the set of traces of the set of accepting computations 
for t on a single branch. We estimate the number of nodes in t where an accepting 
computation of A for t "leaves" the first strong connectivity component  of 
the state set of A. This allows to perform an induction on the number of strong 
connectivity components yielding da(A)< ~ iff da(A)< 2221~ where n is 
the number of states and L is the rank of A. (As usual, log denotes the logarithm 
with base 2). A simple example shows that this upper bound is tight up to 
a constant factor in the highest exponent. 

1. General Notations and Concepts 

In this section we give basic definitions and state some fundamental properties. 
A ranked alphabet 2; is the disjoint union of alphabets 2; 0 . . . . .  2; L. The rank 
of ar rk(a), equals m iff aE2;~. T~ denotes the free 2;-algebra of (finite ordered 
2;-labeled) trees, i.e. Tr is the smallest set T satisfying (i) 2;0___ T, and (ii) if a z X  m 
and to . . . . .  tm-1~ T, then a(to . . . . .  t,,_ 1)e T. Note: (i) can be viewed as the subcase 
of (ii) where m = 0. 

The depth of a tree t~T~, depth(t), is defined by dep th( t )=0  if te2;o, and 
depth(t) = 1 + max {depth(to), ..., depth(tm_ 1)} if t = a(to . . . . .  tin- 1) for some 
aEZrn , m > 0 .  

m-1  

The set of nodes of t, S(t) is the subset of N* defined by S(t) = {e} u U J" s(t~) 
j=0  

where t=a(to,  ..., t,,_~) for some aeZ,,,, m>O. t defines maps 2 , ( ) :  S(t)--*2; 
and as(-): S ( t ) ~  Tz mapping the nodes r of t to their labels or the subtrees 
of t with root  r, respectively. We have 

and 

2r(r) = { a  if r = r  
2,j(r') if r=j . r '  

at(r)={t  if r=~  
atj(r') if r=j.r ' .  
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We need the notion of substitution of subtrees. Let t, t l ~ T  z and r~S(t). 
Then t[t~/r] denotes the tree obtained from t by replacing the subtree with 
root r with tl. 

Fig. 1 

A finite tree automaton (abbreviated: FTA) is a quadrupole A = (Q, S, Q~, 6) 
where: 

Q is a finite set of states, 
Q~ _ Q is the set of initial states, 
2; = Z o w ... w Z L is a ranked alphabet, and 

L 
6 _ U Q x Z,, x Q" is the set of transitions of A. 

m=0 

rk (A)= max {rk (a)la~ S} is called the rank of A. 

Let t=a(to, ..., tm_l)~T~ and q~Q. A q-computation of A for t consists of a 
transition (q, a, qo . .-q,,-1)~6 for the root and q:computat ions of A for the 
subtrees tj, j~{O, ..., m-1} .  Especially, for m=0 ,  there is a q-computation of 
A for t iff (q, a, e)E6. Formally, a q-computation q~ of A for t can be viewed 
as a map q~: S(t)-~Q satisfying (i) ~b(e)=q and (ii) if 2t(r)=a~,Y,m, then 
(~b(r), a, ~b(r,0)... ~b(r.(m-1)))e6. ~b is called accepting computation of A for 
t, if ~b is a q-computation of A for t with q~Ql. For t~T~ and q~Q 4~a.q(t ) 
denotes the set of all q-computations of A for t, ~A.Q,(t) denotes the set of 
all accepting computations of A for t. If A is known from the context, we 
will omit A in the index of 4. 

For any reS(t) and any q-computation d?eOq(t) let ~b, denote the subcompu- 
tation of A for the subtree at(r ) of t induced by ~b, i.e. ~b r is defined by ~pr(r') 
= ~b(r r'). Furthermore, we need the notion of a partial q-computation. Assume 
t~T~, r~S(t) and q, ql~Q. A map ~b: (S(t)\r.S(at(r))u {r} ~ Q  is called partial 
q-computation of A for t relative to q~ at node r, if 

- ~b(e)=q; ~b(r)=ql; and 
- ).t(r')=a~Sm implies (q~(r'), a, q~(r' 0)...  ~p(r'(m-1))e6 for all r'r S(at(r)). 

If q~Qt, then ~b is called accepting partial computation of A for t relative to 
ql at r. The set of all partial q-computations of A for t relative to q~ at r 
is denoted by ~].q.q,(t, r). The set of all accepting partial computations of A 
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for t relative to ql at r is denoted by ~,Q~.q~(t, r). Again, if A is known from 
the context we omit A in the index. 

Finally, we define the ambiguity of A for a tree t, daA(t), as the number 
of different accepting computations of A for t. 
Note: daa(t) is finite for every t~ T z. 

The (tree) language accepted by A, L(A) is defined by 

L(A) = {t~ Yz I daA (t) + 0}. 

The degree of ambiguity of A, da(A) is defined by 

da(A) = sup {daa(t) [ t~ Tr}. 

A is called 

- unambiguous, if da(A) __< 1 ; 
- ambiguous, if da(A) > 1; 
- finitely ambiguous, if da (A) < 0o; and 
- infinitely ambiguous, if da(A) = ~ .  

For  describing our algorithms we use Random Access Machines (RAM's) with 
the uniform cost criterion, see [1] or [-6] for precise definitions and basic proper- 
ties. For measuring the computational costs of our algorithms relative to the 
size of an input automaton, we define the size of A, [A I, by 

IAI= ~ (m+2). 
(q,a,qo...qm- 1)~6 

An FTA A = (Q, ~, QI, 6) is called reduced, if 

- Q x {a} x Q " ~ 6 ~ 0  for all m > 0  and a~S,,, and 
- ]teT~, q~e~Q~(t): q~im(~b) for all qeQ. 1 

The following fact is wellknown: 

Proposition l.1. For every FTA A=(Q,S ,Q~,6)  there is an FTA Ar 
= (Q,, s,,, Qr,t, fir) with the following properties: 

(1) Q,~_Q, Qr, t~QI,  6,~6; 

(2) Ar is reduced; 

(3) L(A,)=L(A); and 

(4) da(Ar) = da(A). 

A, can be constructed from A by a R A M  in time 0 (I A I). []  

Actually, the construction of A r is analogous to the reduction of a contextfree 
grammar. 

t im(th) denotes the image of the map 4~ 
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Proposition 1.1 can be used to decide in polynomial time whether or not 
L(A)  is empty. The next proposition shows that it also can be decided in polyno- 
mial time whether or not A is unambiguous. 

P r o p o s i t i o n  1.2. Given FTA A, one can decide in time O(IA[ 2) whether or not 
da(A)> 1. 

Proo f  Assume A = (Q, S, QI, 6). Define an FTA A t2) ----(Q(2), _y, Qt/2), ~(2)) by 

Q t 2 ) = Q 2 u Q  x { ~ }, 

Q~2)= {(p, q)~Q2lp~=q} u {(q, 4~ ) lq~Ql} ,  

~2)= {((p, q), a, (po, qo) ... ( p , -  a, qm-1))l(P, a, Po ... Pm-1), (q, a, qo ."  qm- ~)~6} 

W {((q, #),  a, (qo, qo)... (qj- 1, qj-a)(q~, # ) (q j+ l ,  qj+l) . . .  (q , -  1, q , -  1))1 

(q, a, qo ... q , - 1 )  ~6, O < j < m - - 1 }  

u {((q, ~), a, (Po, qo)... (P,,-~, q,-1))l 

(q, a, Po ... Pro- 1), (q, a, qo.. .  q , -  1)~6, Po ... P , -  1 4 = qo ... q , -  1}. 

An accepting computation ~b of A (2) for some t~ T~ behaves as follows: 

- ~b simulates two accepting computations of A for t; meanwhile 
- # is "pushed down" along a branch of t; # disappears at the first node 
where a difference between the two simulated computations of A occurs. 

Therefore, 

(.) L(A~2))={t~T~ldaA(t)> 1}. 

A formal proof of (*) is omitted. Proposition 1.1 can be used to decide whether 
or not L(A ~2)) is empty. We have: 1A~2)1<3 [hi 2, and A ~2) can be constructed 
in time O([AI2). Thus, the result follows. [] 

Note:  The construction in the proof of Proposition 1.2 is a simplified version 
(of a special case) from the construction in [7, Theorem 5.1]. Especially, we 
don't need any assumption about the rank of A. 

As usual, a finite word automaton is defined as a 5-tuple M = (Q, F,, 6, QI, Qe) 
where 

Q is a finite set of states; 
F is a finite alphabet; 
Q~ ___ Q is the set of initial states; 
Q r -  Q is the set of final states; and 
6 _~ Q x F x Q is the transition relation of M. 

A word rc = qo x 1 ql ... qm- 1 x ,  q ,  ~ Q (F Q)* with xj~ F and qj~ Q is called compu- 
tation path of M for w = x l  ... Xm from qo to q ,  if (qj-1, xj, qi)e6 for all 
j~{1 . . . . .  m}. 7c is said to start in qo and end in q, .  The set of all computation 
paths of M for w from qo to q ,  is denoted by Hn,qo.q.,(w). A computation 
path n of M for w is called accepting, if rc starts in an initial state and ends 
in a final state. The set of all accepting paths of M for w is denoted by 
IIn,  Q~,QF(W ). If M is known from the context, we omit M in the index o f / / .  
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Two computation paths nl ,  7~2 of M for w 1 and w 2 respectively can be 
composed to a computation path ~=~1.7~2 of M for wxw2 if 7~ 2 starts in the 
same state in which nl ends. Accordingly, if weF*  and w = w l  w2 is a factoriza- 
tion of w, then every computation path rc of M for w can (uniquely) be broken 
up into computation paths n~ for w~ and ~2 for w 2 where n=n~ .n 2. 

The language L(M) accepted by M is defined by 

L(M) = {weF* I there is an accepting computation path of M for w}. 

For  the ranked alphabet Z let ZB be the (ordinary) alphabet 

SB = {(a,j)lm>O, aeS, , , je{O,  ..., m-- 1}}. 

The set B(t) of branches of a tree t is defined by B(t)={e} if t = a e S o  and 
m--1 

B (t) = U (a, j). B (t j) if t = a (t o . . . . .  t,, _ 1) for some a e Z,,, m > O. 
j=O 

Note: The sequence of the second components of the symbols of a branch 
forms a leaf, whereas the sequence of the first components gives the labels on 
the path in t from the root of t to this leaf (omitting the label of the leaf 
itself). A prefix w =(aa , j l )  ... (ak,Jk) of a branch of t is called path in t. A subtree 
a~(rj) of t is called associated to the path w if r=j~ ...j~ for some x < k  and 

J*JK+l" 
For  a given reduced FTA A = (Q, S, Qx, 6) we define the branch automaton 

AB. AB is the finite word automaton defined by An = (Q, ZB, fiB, Qt, QF) where 
QF = {q e Q 13 a e Zo: (q, a, e) e tS}, and the transition relation 6B is obtained from 
6 by: (q, a, qo . . .  q k - l )  et~ implies (q, (a,j), qh~bB for all je{0,  ..., k-- 1}. 

Since A is assumed to be reduced, it follows that every q eQ also lies on 
an accepting computation path of A B. By [3, Prop. 4.9] we have 

L(A~) = {veS*13 teL(A):  v branch of t}. 

Assume teT~, ~9 is a q-computation of A for t, and w = ( a l , j O  ... (ak, Jk) is a 
path in t. The trace of ~b on w is the computation path q~w of AB for w with 
~b,~=qo(al,jl)ql ... (ak,Jk)qk where q~= ~b(jl . . . j , )  for all xe{0 . . . . .  k}. 

2. Characterizing an Infinite Degree of Ambiguity 

In this section we give a complete characterization of those FTA's having an 
infinite degree of ambiguity. In terms of the branch automaton corresponding 
to a FTA A we state two reasons (T 1) and (T 2) for an infinite degree of ambiguity 
of A. Both (T1) and (T2) are decidable in polynomial time. We formulate a 
non-ramification lemma for FTA's. This lemma enables us to prove: if the branch 
automaton of a FTA neither satisfies (T 1) nor (T2), then for every tree t there 
is a tree of depth less than 2 2n. n! having the same number of accepting computa- 
tions. Since the number of different accepting computations for a tree of depth 
at most 22".n! is bounded by some constant, we conclude that (T1) and (T2) 
precisely characterize an infinite degree of ambiguity. 
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For the following, A =(Q, Z, QI, J) is a fixed reduced FTA with n states. 
For an arbitrary state qeQ,  Aq denotes the FTA A~=(Q, Z, {q}, 3). 

Proposition 2.1. I f  An satisfies (T 1), then da(A) = ~ : 

(T 1) q p, q, q jeQ 3 wl ,  w2eX*, (a , j )eZB 3 ~1 eHp,q(Wl), rc2ellqj,p(W2): 
(T 1.1) or (T1.2) is true: 
(T 1.1) There exist two different transitions 

,.,(i) {i) (q, a, q~) ... q}~ 1 qj ~j+ , ... qk-1)e6, 
i = 1, 2, with L(Aq};,) c~ L(Aqs~,,) 4:0 for a l l f  4 j .  

(T1.2) There exists a transition (q, a, qo ... qj ... qk- ~)~6 with da(Aqj.)> 1 
for some j' ~:j. 

Whether or not A B satisfies (T 1) can be decided in polynomial time. 

Proof  Assume An satisfies (T1). Since A is reduced, we can construct a tree 
te  T~, r o =r l  r2eS(t), r2 4~ and CW), Cme~Q~(t ) such that: 

(1) Ct~ = Ct~ 1 r 2 ) :  ~br = r  1 r2) and 
(2) 3 r'j prefix of r2 3j '  :~j: Arc) . .  Ate) . 

"r'rl r ' j "  ~ "vr l  r ' J ' "  

Fig. 2 

Define u l = a t ( r 0  and Uk=Ul[Uk_l/r2] for k > l .  Let tk=t[uk/rl] .  We show: 
da(tk)>2 k. Intuitively, tk is obtained from t by iterating "ul  minus au,(r2)" k 
times. By (2), Cto) and Cm differ at the iterated part. Furthermore, we can 
mend the corresponding subcomputations of Cto) and Ctl) together to obtain 
accepting computations for tk. Since for different occurrences of the iterated 
part we can independently choose subcomputations either according to Cto) 
or according to ~tl), we get at least 2 k accepting computations for tk. 

Formally, the 2 k different accepting computations for tk are constructed as 
follows. For  every ~te{0 . . . . .  2 k -  1} with binary representation #k-~ --./~0 define 
~Pr S(tk)--* Q by 

r if r=r l~2r '  and j < k  

~tU)(r)=' r176 r2r') if r = r l  rk2r ' 

Ct~ else 
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where j in the exponent of line 1 is the maximal number j' such that r 1 ~ is 
a prefix of r. 

By the assumptions under (1), tfitu)~Q,(t) for all #. If #4=#', then there 
is some xe{0 . . . . .  k - l }  such that # and #' differ at the digits /~ and /~'~ of 
their binary representations. For every prefix r'j of r 2 and j'4:j we have: 
~rlu)~ . =,6(u~). ~ ,gl~'!~ = ,6~,;,). Therefore by (1), qS (u) 4= qS ("'). lr2r'J' ~ ' r l r ' J '  ~ " t ~ r l r 2 r ' j  ' " r r l r ' j ' *  

Our algorithm testing (T 1) works as follows: 
(1) Mark all pairs (q l, q2)r Q2 with L(A~I ) c~ L(Aq2 ) 4= 0; time: O (I A 12). 
(2) For all pairs of different transitions (q, a, q~).., qtki)_OZ6, i=1 ,  2, mark 

�9 t 4 =  �9 all (q, (a,j), qj-")lefB, such that nj"ta)-"t2)--~j and L(Aq~,OnL(Aq~,O#O for all j j ;  
time: O (I A 12). 

(3) Mark every q6 Q where Aq is ambiguous; time: O (I A 12). 
(4) For all (q,a, qo. . .qk_x)e6 mark all transitions (q, (a, j), qj)~6B where 

3j' 4=j: Aq, is ambiguous; time: O (I A I). 
(5) Test whether there is a cyclic computation path of AB which contains 

a marked transition; time: 0 (I A I). 
Together we get an 0 (I A 12)-algorithm. Therefore, the result follows. []  

A set of transitions {(q"),(a,j), q~i))~gBlieI } for some index set I, is said 
to match if there are transitions (q"), a, q~).., q~O ... q~)_~)~6, i~I, such that 
(~ L(Aq~;,) 4= 0 for all j '  4=j. 
i e l  

A set of computation paths {q~)(a~, JO q~)... (ak, Jk)q~kOI ieI} is said to match 
if the sets of transitions {(qtdk ~, (a~, j~), q~))lie I} match for all x e { 1 . . . . .  k}. 

Proposition 2.2. I f  An satisfies (T2), then da(A)= oo: 

(T2) 3p, q~Q, p4=q, weZ~ : qrq~17p,p(w), 7~2Ei-]p,q(W), 7~3EIIq,q(W): 7Z, 1, 7Z2, 7Z 3 
match. 

Whether or not A~ satisfies (T2) can be decided in polynomial time. 

Proof If (T2) is fullfiUed we can construct teT~, r o = r  1 r2~S(t ) with rE=~e and 
u~ =at ( r  0 such that there are: 

~bo~e~(t  ) with ~bo(r0= p and ~bo(r ~ rE)----q; 

~bl~Pp(u~,  rE), and 
P dP2~q,q(Ul, r2). 

Fig. 3 
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Define t k = t [Uk/rl] where, for k > I, uk = u 1 [Uk- a/rz]. We show: daa (tk) > k. Intui- 
tively, one can construct accepting computations r xe{1 . . . .  , k}, for tk which 
accept the first x - 1  occurrences of "u~ minus a,,(r2)" according to r the 
next occurrence according to r and the remaining k - K  occurrences according 
to Cz. Formally, for xe{1, ..., k} we define r by 

I r  (r') , 
Ir r)  

r r , 
[ r  r z r) 

[ r (r) 

if r = r  1 rJ2 r' and j < t c  
if r = r 1 r~ r' 

if r=-rl f12 r' and x < j < k  
if r = r l  r~ r' 
else 

where the exponents j and x in the first three lines are the maximal numbers 
j '  such that rl r~' is a prefix of r. 
Note: ~btr)~qbQr(tk) for all x, and if ~c>x' then r l r~z-1)=p:4:q=r r~-l), 
and hence r + r 

The algorithm: 
(1) Construct the labeled graph 63 with Q3 as set of vertices and 

{(Pl P2 P3, X, ql qz q3) l(Pi, X, qi)ern for i=  1, 2, 3} 

as set of edges; time: O(IA[3). 
(2) Mark all ql q2 qaEQ 3 where L(Aq,)c~L(Aq2)nL(Aq3)+O; time: O(IAI3). 
(3) Mark the edges ((q~)q~2)q~3), (a,j), -,jar.i)-,JAZZ) q~3)) in 63 where the transitions 

(q"), (a,j), q}i)), i=  1, 2, 3, match; time: O([A 13). 
(4) Construct the subgraph of 63 which contains only edges corresponding 

to matching triples of transitions; time: O (I A 13). 
(5) For every pair (p, q) of different states decide whether (p, q, q) is accessible 

from (p, p, q) w.r.t, to the resulting subgraph of 63; a straight foreward implemen- 
tation yields a time bound O(nZ.[AI3); however by using the same algorithmic 
idea as in [10] for deciding the criterion (IDA) for finite word automata one 
gets a time bound of 0 (1A [3). 

Together we have an O([A [3)-time algorithm. [] 

Thus, (T 1) and (T2) give two polynomially decidable reasons for the infinite 
degree of ambiguity of A. 
(T2) is the extension of the criterion (IDA) in [11] characterizing the infinite 
degree of ambiguity of finite word automata (additionally we demand the three 
computation paths of A n from q to q, q to p and p to p to match), whereas 
(T 1) solely arises from the tree structure. We now formulate the non-ramification 
lemma for FTA's. 

Assume te T~, and w = ( a l , j O  ... (atc, jK) is a branch of t. By Gt(w ) we denote 
the acyclic digraph which describes all traces of accepting computations of A 
for t on w. Gt(w)=(V, E) is defined as follows. 
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Vertices: 
V_ Q x {0, ..., K} is the set of all (q, k) such that 

3 ( ~ Q , ( t ) :  (~(Jl . "Jk)=q �9 

Edges: 
E _m Vx V is the set of all pairs ((q, k), (q', k + 1)) such that 

3 q~ 4)a,(t): ~b(j, . . . jk)=q & c~(j, ""JkJk+ ,) = q" 

If ((qo, k), (q,, k + 1))((ql, k + 1), (q2, k + 2))... ((qd- 1, k + d -  1)), (qn, k + d)) is a 
path in Gt(w) where k~{0, ..., K--1}  and d>0 ,  then the following holds: 

(1) qo(ak+ 1,Jk* 1) ql(ak+ 2,Jk+ 2) ... qd- l(ak+d, jk+a) qd is a computation path 
of A 8 for (ak+ 1,Jk+ 1) --. (ak+a, Jk+a); 

(2) there is a partial qo-computation ~b of A for at(j1 ...Jk) relative to qd 
at nodejk+ 1 ""Jk+d such that ~b(jk+ 1 ...jk+~)=q~, X~{0, ..., d}. 

Proposition 2.3 (Non-Ramification Lemma for FTA's). Assume A B does not comp- 
ly with (T2). Let t~ T~, let w be a branch of t ,  and Gt(w) = (V, E). For k~{0 . . . . .  [wl} 
define Dk = {q ~ Q [(q, k) ~ V}. I f  D k = D k + d for some d >= 1, then 

(1) for every vertex (q, k) in V there is exactly one path in Gr(w) starting 
in (q, k), and 

(2) for every vertex (q', k +d) in V there is exactly one path in Gt(w) ending 
in (q', k + d). 

Proof. Assertion (2) is an immediate consequence of (1). Therefore, it suffices 
to prove (1). Let D=Dk=Dk+a, w = ( a l , j l )  ... (at , jr) ,  and y 

=(ak+ 1,Jk+ 1) ... (ak+a, jk+a). 
For  every k and d > 0  all paths in G,(w) from D x {k} to D x {k+d} describe 
matching computation paths of An for y. L e t / / d e n o t e  the set of these computa- 
tion paths. For  a contradiction assume there are two different paths r71 and 
~2 from (q, k) to the vertices (ql, k+d)  and (q2, k+d)  respectively. We will use 
the computation paths for y in H to construct the forbidden situation of (T 2). 

Since for every state q' in D there is a computation path in / /  ending in 
q' we can "follow the way back" from q, i.e. we can find a sequence (rtt/))j~r~ 
of computation paths rc (j) in H such that n (~) ends in q, and for all jEN ,  n (j+ 1) 
ends in the same state in which n o) starts. Since # Q < o% there are s < s' such 
that n (~) and n (~') start in the same state. Call this state p. Define no 
= 7~(s') 717(s' - 1) . . .  X(s  + 2) n ( s  + 1) and Jo = s' - s. 

Accordingly, since for every state q' in D there is a computation path in 
/7 starting in q' we can "pro long"  the paths r~ 1 and z~ 2 beyond ql and q2 
respectively, i.e. we can find sequences tTr(m ~ Jjaq, i=  1, 2, of computation paths 
rcl j) in /7 such that ~r! ~) start in ~,  and for all j e N  7r! j) end in the same state 
in which zr! j+l) start. Since ~ Q < o %  there are s~<s~ such that 7r~',) and r~ ('~) 
end in the same state. Call this state q~. Define j~=s+s~+ 1 and ju=s'~-s~, 7r~ 
=/~(s) . . .  ~(1)7~i/17~1 ) . . .  / g ! s0  and rcli= rc~ ''+1) ... zt~ ";). We have: 
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- ~0 is a computa t ion  path  f o r / o  from p to p; 
- n~ is a computa t ion  path f o r / '  from p to qi, i =  1, 2; 
- nu is a computa t ion  path  for yh, from q~ to qi, i---- 1, 2. 

By appropriate  pumping of n o and pumping and "shift ing" of the cyclic compu- 
tation paths nil we may  assume w.l.o.g, jo=j l  =J2 =Jll--J22=J �9 Thus, we have 
the following situation. 

yJ YJ~ 
P , 

q2 
Fig. 4 

yJ 

Since n o, ha, n2,/~ 11, 7/72 2 are the composit ion of the same number  of matching 
computat ion paths for y, no, hi ,  n2, ~11, n~.2 match as well. 

We distinguish two cases: 

Case I. p = ql = q2. Since ffl 4= ~2 we have nx + n2. Therefore, there is a factoriza- 
_ ~(1),v(2) such that tion YJ=Y, Y2, states p + ~  and decompositions ~ - - ~ - i  

ff]l)e/-/p,p(yl),  ~(12)6IIp,p(y2), ~l)el-lp,~(y~), a n d  ~(22)6/-/~/,p(y2). 

Y2 ~ Yl 

P 

Fig. 5 

Then we have ~(2) ~(1) . 7~(2) n t n I 6Mt , , t , ( y2Y l ) ,  ~(21)61-It,,zt(y2yl); a n d  
~(2)~(1)=rt  (,, 2 ,~2 =--~.~.~2 Yl). Since/~*~,  it follows that AB satisfies (T2). 

Case H. Case I is not true. Then at least one of the states ql,  q2 is different 
from p. Assume this is qi. Then the computa t ion  paths ~o, ni and n u satisfy 
the assumptions of (T2). Therefore, in both cases we arrive at a contradic- 
tion. []  



538 H. Seidl 

Theorem 2.4. Assume that As  neither satisfies (T1) nor (T2). Then, for every 
tree te  T~, there is a tree tl with depth(t0 <22". n! such that daa(t)=daa(t l) .  

As a consequence of Theorem 2.4 we get the main theorem of this section: 

Theorem 2.5. Assume A is a reduced FTA. Then 
(1) da(A)= Go iff As  satisfies (T 1) or (T2). 
(2) It  can be decided in polynomial time whether or not da(A) < oe. 
(3) I f  da(A)<o% then there is a tree teTz  with depth(t)<2Z".n! such that 

da(A)=daa(t).  [] 

Note: One can easily construct FTA's such that the corresponding branch 
automata satisfy any of the criteria (T 1.1), (T 1.2) or (T2) but none of the others. 
Therefore, the characterization given in (1) is irredundant. Note further: (3) 
implies a triple exponential upper bound on the degree of ambiguity of finitely 
ambiguous FTA's. However, we will prove a (tight) double exponential upper 
bound in Sect. 3. 

Proof of 2.4. For every tree t~T~ and position r~S(t), define ACCt(r) as the 
set of all states q for which there is a accepting partial computation of A for 
t relative to q at r, i.e. 

ACC,(r) = {q e Q[ ~f.q (t, r) 4= 0}. 

Define DERt(r) as the set of all q for which there is a q-computation of A 
for a,(r), i.e. 

D ER, (r) = { q �9 Q ] q~, (G, (r)) * 0}. 

Assume AB neither satisfies (T 1) nor (T2). Let t denote an arbitrary tree of 
T~. We show: if there is a branch w = ( a l , j l ) . . .  (ar, jK) o f t  of length K > n!. 2 2", 
then we can find a tree t leT~ with fewer nodes such that daA(t)=daA(tl). This 
implies the assertion of Theorem 2.4. 

W.l.o.g. we assume daa(t)>0,  i.e. ~Q,(t)+r Consider the acyclic graph 
Gt(w) = (V, E) and for ke {0 . . . . .  K} the sets Dk = {qeQl(q, k)e V}. 
Note: Dk = ACCt(jl ... Jk) C~ DER,(jl  ... Jk). 

Assume K>2Z".n! .  Then there exist B1, B2~-Q and a set I~__{0 . . . . .  K} 
with ~ - I > n [ + l  such that B1=ACC,( j t  ...Jk) and B2=DERt(j~ ...Jk) for all 
keI .  It follows that there are k~ < k  2 in I such that 

B~ = ACCt(jl ... Jk,) = ACC,(j, ... Jk~) 
and 

132 = DER,(jx ... JR,) = DERt(Jl ... Jk2) 

and for every qeBlc~Bz  there is a unique path in G,(w) from (q, kl) to (q, k2). 
Define r l=jx  ...Jk,, rz=jkl+l ""Jk2, u=a,(rlr2) ,  and t l=t[u /r l ] .  We prove: 
daA(t)=daa(tO. 

daa( t )<daa( t0 :  For every ~be~e,(t ), we have q~(r0= d~(rl rz). Therefore, q~ 
gives rise to an accepting computation 6 for t~ where ~ is defined by: 

v. = f ( ~  r2 r') if r = r  x r' 
]do (r~ else. 
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We have to show that this map is injective. Assume q~l, ~b2 are two accepting 
computations of A for t with 4h(r0=~b2(r0. By the construction of rl and 
r2, ~bl and ~b2 agree at every node rl r'j where r'j is a prefix of r2. Since An 
does not satisfy (T1), we furthermore have that ~b~ and q~2 also agree at every 
subtree of t with root r~ r'j', j' #j .  It follows: if ~1 = ~z then also ~b~ = ~b z. This 
proves the injectivity. 

daA(t)>daA(tO: Assume q~ is an accepting computation of A for tl and 
~( r l )=  p. Then p~ACCtl (ra)nDERt l (rO.  Observe A C C t , ( r O = A C C t ( r l ) = B  1 
and DERtl(rO=DERt(r~ rz)=B 2 which by the construction of rl and r 2 also 
equals DERt(r 0. Thus, pEDk,, and there is a path in Gt(w ) from (p, k~) to (p, k2). 
Therefore, there is a partial p-computation of A for a,(ra) relative to p at node 
r2. It follows that we can extend ~ to an accepting computation ~b for t. Clearly, 
two different accepting computations ~a, ~2 for t~ give rise to two different 
accepting computations for t. This proves the stated inequality. [] 

3. A Tight Upper Bound for the Finite Degree of Ambiguity 

In this section we prove the following theorem. 

Theorem 3.1. Assume A is a reduced FTA with n states and rank L >  1. I f  A B 
does not comply with (T 1) or (T2), then da(A)< 2 2z . . . .  ~L+ 1).. 

Theorem 3.1 gives an alternative proof for the correctness of our characterization 
of an infinite degree of ambiguity by the criteria (T 1) and (T2). The following 
example shows that the upper bound for the maximal degree of ambiguity of 
a finitely ambiguous FTA given in Theorem 3.1 is optimal up to a constant 
factor in the highest exponent. 

Theorem 3.2. For every n> 3 and L >  2 there is a finitely ambiguous FTA A,, L 
with n states and rank L such that da(A,,L)= 2 21~ 2). 

Proof Define A,, L by A,.L=({1, ..., n}, 2;, {1}, 6,,L) where S o = { . } ,  ZL={O } 
and 2;m = 0 else, and 

6., t = {(i, o, (i + 1)L)[ 1 < i<  n - 3} ~ {n-- 2} x {o} x {n-- 1, n} L 

u { (n -  1, # ,  e), (n, ~ ,  e)}. 

Then L(A,,L)= {An,L} where A,,L denotes the complete L-ary tree of depth n - 2  
whose inner nodes are labeled with o and whose leafs are labeled with # .  
Since L(A,,L) is finite, the degree of ambiguity of A,,r. is finite, too. There is 
a bijection between 4~I~(A,,L) and the set of all words of length L "-2 over a 
two letter alphabet. Therefore, da(A,,L) = 2L"- 2. [] 

We now prove Theorem 3.1. Let A=(Q,  Z, Q,, 6) be a fixed reduced FTA 
with n > 0 states and rank L >  1 (the case n = 0 is trivial). 

We partition the set Q according to accessibility. For states p, q~Q, we 
say q is accessible from p (short: P-'*aq) iff there is a computation path of 
AR from p to a. The equivalence relation ~--~A on O is defined by p~--~,a iff 
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P~Aq and q---'AP. The equivalence classes of Q w.r.t. ~--~a are denoted by 
Q1, ..., Qk. They are also called the strong connectivity components of Q. W.l.o.g. 
we assume for peQi and qEQj, P ~ a q  impies i<j. 

We first deal with FTA's having just one initial state. Define d(k) to be 
the maximal degree of ambiguity of a reduced FTA A with 1 initial state, rank 
L, at most n states and at most k strong connectivity components such that 
A B does not comply with (T 1) or (T2). Observe: in order to prove Theorem 3.1 
it suffices to compute an upper bound for d(n). 

So, for our FTA A assume QI= {q~}. Since A is reduced, q~ is in Q1. Let 
t be a fixed tree in L(A). We classify the qrcomputat ions  of A for t relative 
to Q1- The following observation is crucial. 

Fact 3.3. Assume AB does not comply with (T 1), and da(A)> 1. Assume ~bECbq~(t) 
and r~S(t). If q~(r)~Q1, then there is at most o n e j  such that 4)(rj)~Q1. 

Proof For  a contradiction assume there are Jl:~J2 such that ql=4)(rjl)~Q1 
and q2 = q~(rJz)~Q1. Since Q1 is strongly connected, we have ql ~aq~- Therefore, 
since A B does not comply with (T1), Aq2 is unambiguous. Since also qz--+Aql, 
Aq, = A must be unambiguous as well: contradiction. []  

Fact 3.3 already implies: 

Fact 3.4. I f L > l , d ( 1 ) = l .  []  

Thus, if AB does not comply with (T 1) and da(A)> 1, then for every accepting 
computation ~b of A for t, there is a unique maximal trace of q5 such that 
every state on it lies in Qx. This trace is denoted by nl (~b). 

The following fact is an easy consequence of Propositions 2.1 and 2,2: 

Fact3.5. Assume A B does not comply with (T1) or (T2). Assume qS, qS' are 
two q~-computations for t where n~(~b) is a computation path for w, n~(qS') 
is a computation path for w' and v=(ax,jO ... (aK,jK) is the maximal common 
prefix of w and w'. If q~(Jl ... Jr)= 4)'01 -.. JK), then the following holds: 

(1) ~b and ~b' agree on v, i.e. ~v = ~b'v; 
(2) ~b and q7 also agree on every subtree of t associated to v, i.e. if at(r) 

is a subtree of t associated to v then q5 r = q7 r. []  

Now assume da (A)> l ,  and Q has k>  1 strong connectivity components. 
We want to perform an induction on k. Therefore, we calculate the cardinality 
of the set {nl (~b) l ~b ~ ~q, (t)}. Let w be a branch of t and Gt(w)= (F,, E) be defined 
as in Sect. 2. Let J(w) denote the set of all i such that i=]wl  or there is an 
edge ((q, i), (q', i +  1)) in Gt(w) with qeQ1 and q'r Applying the non-ramifica- 
tion lemma for FTA's we get: 

Fact 3.6. Assume AB does not comply with (T2). Then for every branch w of 
t, 4~ J(w) < 2". 

Proof For  i~ J (w) define D i = {q ~ Q I (q, i) ~ V}. Assume # J (w) > 2". Then there 
exist i < i' such that D~= D~,. By the non-ramification Lemma 2.3 there is exactly 
one path in Gt(w) starting in (q, i) for every q in D~. Since Qlc~D~=Q~ nD~, 
and every vertex (p', i') of Gt(w) with p'~Q~ only can be reached from a vertex 
(p, i) with p~Qa, we conclude that for every edge ((q, i), (q', i+  1)) in Gt(w), q~Q~ 
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Fact 3.6 is the appropriate extension of a corresponding result in [1 1] for finite 
word automata. However, to apply Fact 3.6 we need the following additional 
observation. 

Fact 3.7. Assume An does not comply with (T1). Assume 49, 49' are different 
qrcomputat ions  of A for t where 7['1(49 ) is a computation path for v, 7E1(49' ) 
is a computation path for v', u is the maximal common prefix of v and v', 
and v is a prefix of the branch w. Then the following holds: 

(1) Ivl~J(w); 
(2) luleJ(w). 

Proof Assertion (1) is immediately clear from the definition of rq (_). 
Ad(2): W . l . o . g . v . u + v ' .  Assume u=(al,jx). . .(a~,jm), v=u(a, j )u l  and v' 

=u(a,j') U'l. By Fact 3.3 there is at most o n e f s u c h  that 49(Jl ...jmf)eQ1. Hence, 

49(Jl...JmJ')~Q1. [] 

Together the Facts 3.4, 3.5, 3.6 and 3.7 allow to estimate the cardinality 
of the set {7 h (49) 149 ~ ~q, (t)}. 

Lemma 3.8. Assume A n does not comply with (T1) or (T2). Assume d a (A )> l .  
7hen 

{~1 (49) 149 ~'~q, (t)} < (L+ l) z". n. 

Proof Define T={ueZ~lq49eq~q,(t): n1(49) is a computation path for u}. By 
Fact 3.5, 4~ {~z1(49)149e~1(t)} < n .  ~: T. Consider the smallest superset T of T 
which for every two elements v, v'e T contains the maximal common prefix 
of v and v'. The set T can be viewed as the set of nodes of a tree s=(T,, E) 
where (vl, v2)eE iff 

(i) vl is a prefix of v2 different from v2; and 
(ii) there is no v in T different from Vl and v2 such that Vl is a prefix of 

v and v is a prefix of rE. 
By the Facts 3.6 and 3.7 depth(s)<2". Moreover, Fact 3.7 implies that every 

node of s has at most L successors. Therefore, s has less than (L+ i) 2" nodes. 
From this, the result follows. []  

Now we are able to prove: 

Lemma 3.9. For every k > 1, 

log d(k) < log(L+ 1). 2". (L+ 1) k- 2 + log n. (L+ 1) k- 1. 

Proof W.l.o.g. assume Ida(A)> 1. Assume teL(A), w=(a l , j l ) . . .  (aK, j r )  is a path 
in t, r=jx ...Jr, at(r)=a(to . . . .  , t , , -O, and qeQ1. Let q~t"q) denote the set of 
all accepting computations 49 of A for t such that 7q (49) is a computation path 
of A n for w from qt to q. By Lemma 3.4 all 49E~ t''q) agree on w and on every 
subtree of t associated to w. They possibly differ in the transition chosen at 
node r and in the subcomputations chosen for the subtrees t j, O < j < m - 1 .  
By the definition of n l ( )  we may view the set of q'-computations 
{49,j1 49 ~ ~r.q), 49 (r j) = q'}, j~  {0 . . . . .  m - 1 }, as the set of all accepting computa- 
tions for t~ of a reduced FTA A'q,=(Q', Z, {q'}, 6') where Q'~-Q\Q1 and 6 '~6  
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and  Q' has  at  mos t  k - 1  s t rong  connec t iv i ty  componen t s .  Since there  are  at  
mos t  n"  different t r ans i t ions  app l i cab le  at  node  r, we conc lude  tha t  q~tr,q) 
< n " . d ( k - 1 ) ' .  By L e m m a  3.8 we get the fol lowing induct ive  inequa t ion  for 
d(k): 

d(k) < (L+ 1) 2". n. n L. d(k - 1) L. 

Since by  F a c t  3.4 d(1) = 1, the asser t ion  follows. [ ]  

Proof of Theorem 3.1. A s s u m e  A =(Q, S, QI, 6) is a r educed  F T A  with  n s tates  
and  r a n k  L >  1. W.l.o.g. n > l .  A s s u m e  As  does  no t  c o m p l y  with (T1) or  (T2). 
Since Q has  at  mos t  n s t rong  connec t iv i ty  c o m p o n e n t s  and  @ Q1 =< n, we have 
da(A)  ~ n.d(n),  and  therefore  by  L e m m a  3.9, 

log da(A)  < l o g ( L +  1). 2". (L+  1)" - 2 + log n. [ ( L +  1)"- 1 + 1] 

1 [ l o g ( L + l )  2 . 1 o g n ]  
< 2 " - ( t + l ) " - . [  L - + i  + ~ - J  

< 2 " . ( L +  1)"- 1.2 

~ 2  2'l~ [ ]  
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