
Least Solutions of

Equations over N

Helmut Seidl

Fachbereich Informatik
Universität des Saarlandes

Postfach 151150
D–66041 Saarbrücken

Germany
seidl@cs.uni-sb.de

Abstract. We consider the problem of computing the least solution
Xi, i = 1, . . . , n, of a system of equations xi = fi, i = 1, . . . , n, over N ,
i.e., the naturals (extended by ∞), where the right hand sides fi are
expressions built up from constants and variables by operations taken
from some set Ω. We present efficient algorithms for various subsets Ω

of the operations minimum, maximum, addition and multiplication.

1 Introduction

Assume D is a complete partial order (cpo) with least element ⊥. Assume Xn =
{x1, . . . , xn} is a set of variables, and let Ω denote a set of continuous binary
operations on D. The set of polynomials DΩ[Xn] with operations from Ω consists
of all expressions built up from constants d ∈ D, variables x ∈ Xn by application
of operations from Ω. If Ω is understood, we will also omit it in the index. Every
polynomial f ∈ DΩ[Xn] denotes a continuous function [f ] : Dn → D. If the
meaning is clear from the context, we do not distinguish (notationally) between
f and [f ]. However, we write f ≡ g if we mean syntactic equality and f = g if
f and g denote the same functions, i.e., [f ] = [g].

Let S be a system of equations xi = fi, i = 1, . . . , n, with fi ∈ DΩ[Xn]. The
following fact is well–known from the theory of cpo’s and continuous functions.

Fact 1. S has a unique least solution X1, . . . , Xn. Xi is given by

Xi =
⊔

j≥0

X
(j)
i

where for every i, X
(0)
i = ⊥ and

X
(j)
i = fi[X

(j−1)
1 , . . . , X(j−1)

n ]

for j > 0. 2



Many compile time analyses of programs rely on computations of least solu-
tions of such systems of equations, cf. e.g., [CC77, Ke81, MR90, CC92b]. The
least solution of S can be computed effectively whenever D satisfies the ascending
chain condition (acc), meaning that every ascending chain

d0 ≤ d1 ≤ . . . ≤ dj ≤ . . .

of elements dj ∈ D, is ultimately constant. Corresponding techniques are consid-
ered in [PC87, HH91, NN92a, NN92b]. However, there are instances of compile
time program analysis which make use also of cpo’s which do not satisfy the acc.
One technique applicable in these unrestricted cases is the widening/narrowing
approach of [CC77, CC92a]. While this approach is very general in its appli-
cability, it may not compute the least solution itself, but only an upper bound
to it. Therefore, we propose alternative methods at least for the cpo of natural
numbers (extended by ∞)

N = {0 < 1 < . . . < n < . . . < ∞}

Clearly, N does not satisfy the acc. However, meaningful analyses make use of
systems of equations over N .

In [Se93], an algorithm is proposed which detects whether parallely existing
instances of variables in the PRAM language FORK are equal. It employs systems of
equations over N with operations “⊓” (minimum) and “⊔” (maximum). In the
context of register allocation, an approximative complexity analysis determines
bounds to the number of uses of some variable. Here, systems of equations over
N are needed with sets of operations {⊓, +} or {⊔, +}. Multiplications occur if
programs may contain for–loops (or tail recursion where the recursion depth is
determined by some variable’s value). Also, solving such systems of equations
can used to implement interval analysis (cf. [CC92a]).

Therefore, in this paper we investigate the computation of least solutions for
systems of equations over N using various sets of continuous operations and give
efficient solutions for all of these. The operations we are interested in are “⊔”
(maximum), “⊓” (minimum), “+” (addition, extended by ∞+x = x+∞ = ∞)
and “·” (multiplication, extended by 0 · ∞ = ∞ · 0 = 0 and ∞ · x = x · ∞ = ∞
whenever x 6= 0). Note that all these operations are commutative and associative.
0 is the neutral element for “⊔” and “+”, 1 is the neutral element for “·” whereas
∞ is the neutral element for “⊓”.

The (theoretical) target architecture we have in mind to implement our al-
gorithms on is a random access machine (RAM). For simplicity, we use the unit
cost model to measure runtime complexities. Especially, we assume that every
element of N can be stored in one cell of our memory, that tests d ≤ d′ and
operations from Ω always can be executed in unit time. Therefore, the size |S|
of system S of equations xi = fi, i = 1, . . . , n, is defined by |S| =

∑n

i=1(1 + |fi|)
where the size |f | of polynomial f is given by |f | = 1 if p is a constant or a
variable, and |f | = 1 + |f1| + |f2| if f = (f12f2) for some 2 ∈ Ω.

The unit cost assumption for every basic operation is realistic as long as the
numbers involved are not too large. Consider, e.g., the system of equations



x1 = 2

xj+1 = xj · xj for j = 1, . . . , n − 1

The least solution Xi, i = 1, . . . , n, can be trivially obtained by n − 1 multipli-
cations which however involve possibly exponentially large numbers. In order to
produce least solutions by a polynomial number of operations, we therefore can-
not avoid to use multiplications in this case. However, we will be as restrictive
with the use of multiplications as possible. So, whenever the considered systems
of equations do not contain occurrences of “·”, our algorithms will not use mul-
tiplications either. We derive efficient algorithms to determine the set of all i

where Xi < ∞ without using multiplications at all. It follows that, provided
the finite Xi are smaller than some h, operations on numbers of length at most
log(h) suffice.

The rest of the paper is organized as follows. The next section provides basic
algorithmic facts, especially on the computation of least solutions of equations
over certain finite cpo’s. Sections 3 through 5 present special solutions for vari-
ous subsets of operations, whereas Section 6 deals with all operations together.
Section 7 shows how our basic algorithms can be applied to speed up the compu-
tation of least solutions over restricted ranges of numbers, and derive polynomial
finiteness tests without multiplications. This result is used to decide in polyno-
mial time whether or not the costs of tree automata with cost functions of a
very general form are bounded – a problem which has been left open in [Se92].
Section 8 concludes.

2 Basic Facts

Let S denote a system of equations xi = fi over N . It turns out that it is
sometimes convenient to assume that the right hand sides fi of S are of one of
the forms ρ or ρ12ρ2 where ρ, ρ1, ρ2 are variables or elements of N and 2 ∈ Ω.
Furthermore,

– Whenever fi ∈ N then xi does not occur in any right hand side fj ;
– Whenever fi ≡ c12c2 with c1, c2 ∈ N , then 2 ∈ {·, +};
– 0 and ∞ do not occur as opperands; and
– 1 does not occur as an operand of “·”.

Systems with these properties are called normalized . The set of constants of the
normalized system S is the set of all c ∈ N that occur in S as operands of “⊔”
or “⊓”. Observe that 0 or ∞ never can be constants of a normalized system.

A normalized system is called reduced iff for no j, fj ≡ c12c2 for c1, c2 ∈ N .
We have:

Fact 2. 1. For every system S of equations with variables x1, . . . , xn a normal-
ized system S′ with variables x1, . . . , xm for some m ≥ n can be constructed
(without multiplicatons) in time O(|S|) with least solution X1, . . . , Xm such
that X1, . . . , Xn is also the least solution of S.



2. For every normalized system S a reduced system S′ with the same variables
can be constructed in time O(|S|) with the same least solution as S. Multi-
plications are only needed provided S itself contains multiplications. 2

For k ≥ 2, let k denote the total order {0 < 1 < . . . < (k − 1)}, and
consider the set Ω = {⊓,⊔,⊕,⊙} of operations on k where “⊔” and “⊓” are
maximum and minimum as usual, and “⊕” and “⊙” are truncated addition and
multiplication, i.e., x ⊕ y = (x + y) ⊓ (k − 1) and x ⊙ y = (x · y) ⊓ (k − 1). For
simplicity, we will denote “⊕” and “⊙” by “+” and “·” as well. The following
fact is well–known:

Fact 3. The least solution of a system of equations over 2 with operations from
Ω can be computed in linear time. 2

Let H : N → k denote the mapping defined by

H(y) = y ⊓ (k − 1)

H is continuous and commutes with corresponding operations. Moreover, H is
faithful on {0, . . . , k − 2}, i.e., {y} = H−1(H(y)) for all y ∈ {0, . . . , k − 2}.

For f ∈ N [X ] let (Hf) ∈ k[X ] denote the polynomial obtained from f

by replacing every coefficient d with H(d) and the operations on N by the
corresponding operations on k. Let SH denote the system

xi = (Hfi), i = 1, . . . , n

over k with operations from Ω. We find:

Fact 4. Let XH = XH,1, . . . , XH,n denote the least solution of SH . Then XH,i =
H(Xi) for every i. 2

Call system S of equations over N k–reduced iff S is reduced and k ≤ c for
every constant c of S.

Fact 5. Assume S is reduced with least solution Xi, i = 1, . . . , n, and Xi ≥ k for
every i. Then a k–reduced system with the same least solution can be constructed
in time O(|S|).

Proof. For a proof observe that S cannot contain any equation xi = fi where
fi ≡ ρ1 ⊓ ρ2 with ρ1 ≡ c < k or ρ2 ≡ c < k. Therefore, consider system S′ of
equations xi = f ′

i which is obtained from S as follows.

– If fi ≡ c ⊔ xj or fi ≡ xj ⊔ c where c ∈ N and c < k then define f ′
i ≡ xj ;

– Otherwise, define f ′
i ≡ fi.

Clearly, S′ is k–reduced, and S′ and S have the same least solutions. 2

Proposition6. Assume 0 < k < m, and S is a reduced system of equations
xi = fi, i = 1, . . . , n, over m (or N if m = ∞) with least solution Xi, i = 1, . . . , n

where for all i, Xi ≥ k. Then the set of all i with Xi = k can be computed in
time O(|S|).



Proof. W.l.o.g. we only consider the case where m = ∞, i.e., S is a system of
equations over N . By Fact 5 we can also assume that S is k–reduced. Let [k,∞]
denote the partial ordering

k < (k + 1) < (k + 2) < . . . < ∞

We introduce the map Hk : [k,∞] → 2 defined by

Hk(x) =

{

0 if x = k

1 if x > k

We have for all x1, x2 ∈ [k,∞]:

1. Hk(x1 + d) = 1 for all d > 0.
2. If k = 1 then Hk(x1 · x2) = Hk(x1) ⊔ Hk(x2).

If k > 1 then Hk(x1 · d) = 1 for all d > 1.
3. Hk(x1 ⊔ x2) = Hk(x1) ⊔ Hk(x2); and finally,
4. Hk(x1 ⊓ x2) = Hk(x1) ⊓ Hk(x2).

Let Sk denote the system of equations xi = Hkfi, i = 1, . . . , n, where Hkfi is
defined as follows.

– If fi ≡ c ≥ k then Hkfi ≡ Hkc.
– If fi contains “+” then Hkfi ≡ 1.
– If fi ≡ ρ1 · ρ2 we have to distinguish between the cases k = 1 and k > 1.

If k = 1 then Hkfi ≡ Hk(ρ1) ⊔ Hk(ρ2) (where Hk(xj) = xj). If k > 1 then
Hkfi ≡ 1.

– Otherwise, Hkfi ≡ fi.

Let Xk,i, i = 1, . . . , n, denote the least solution of Sk. We find:

Claim. For all i, Xk,i = HkXi. 2

This Claim together with Fact 3 implies the assertion. 2

Proposition 6 can be used to speed up ordinary fixed point iteration for the
finite cpo’s k.

Theorem 7. Let k ≥ 2. Then the least solution of a system S of n equations
over k with operations from Ω can be computed in time O(k · |S|). Provided S

contains multiplications, the algorithm may use multiplications as well but only
of integers of length at most log(k).

Proof. Let Xi, i = 1, . . . , n denote the least solution of S. The algorithm proceeds
as follows:

(1) Construct the corresponding reduced system.
(2) For j := 0 to j := k − 1 execute steps (2.1), (2.2) and (2.3).

(2.1) Compute the set Jj of i where Xi = j.



(2.2) For every i ∈ Jj replace fi with j, and remove all occurrences of xi in
right hand sides.

(2.3) Construct the corresponding reduced system without occurrences of con-
stants c ≤ j.

For j = 0, the algorithm of Fact 3 can be used to implement Step (2.2) whereas
for j > 0 the implementation is given by Prop. 6. Since the j–th iteration of the
for–loop is executed in time O(|S|) (independently of j), the result follows. 2

By Fact 4 and Theorem 7 we find:

Corollary 8. Assume S is a system of equations over N with least solution
Xi, i = 1, . . . , n, and k ≥ 0. Then we can compute the sets {i | Xi = y},
y = 0, . . . , k, in time O((k + 1) · |S|). Provided S contains multiplications, the
algorithm may use multiplications as well but only of integers of length at most
log(k). 2

3 Minimum and Maximum

Theorem9. The least solution of a system S of equations over N with oper-
ations from {⊓,⊔} can be computed (without multiplications) in time O(|S| ·
log(|S|)).

Proof. Let S be the system xi = fi, i = 1, . . . , n, with least solution Xi, i =
1, . . . , n. W.l.o.g. S is reduced. Let J denote the set of all i where fi 6∈ N , and
let C denote the set of constants of S. We observe:

Claim. If C = ∅ then Xi = 0 for all i ∈ J . 2

Therefore, assume C 6= ∅, and c = ⊔C. Clearly, Xi ≤ c for all i ∈ J . We
show that all occurrences of c in S as an operand can be safely removed. the
method is dual to the algorithm of Prop. 6 where we removed occurrences of
variables corresponding to least constants. Let S′ be the system of equations
xi = f ′

i , i = 1, . . . , n, where the f ′
i are obtained as follows.

– If fi ≡ xj ⊓ c or fi ≡ c ⊓ xj then f ′
i ≡ xj .

– If fi ≡ xj ⊔ c or fi ≡ c ⊔ xj then f ′
i ≡ c.

– Otherwise, f ′
i ≡ fi.

S′ has the same least solution as S but a smaller set of constants. Thus, our
algorithm constructing the least solution of S works as follows.

(1) Construct the equivalent reduced system.
(2) Compute sets C and J .
(3) While C 6= ∅ execute Steps (3.1) through (3.4):

(3.1) Set c := ⊔C.
(3.2) Remove all occurrences of c as an operand.



(3.3) Construct again the equivalent reduced system.
(3.4) Remove c from C, and recompute J .

(4) Finally, set fi ≡ 0 for all remaining i ∈ J .

By a suitable data structure for S, all the removals in Step (3.2) together with
the reduction in Step (3.3) can be executed in time O(|S|). In order to efficiently
implement the selection in Step (3.1) we can, e.g., keep C in a sorted list. Then,
the maximum computations in Step (3.1) altogether consume only time O(|S|).
Therefore, once this representation for C has been computed, the remaining steps
of the algorithm together take time O(|S|). Therefore, if the constants d ∈ N
occurring in the fi are from a small range we may employ bucket sort instead of
some general sorting algorithm. This brings the complexity down to O(|S|) for
this case. 2

4 Maximum, Addition and Multiplication

Theorem 10. The least solution of of a system S of equations over N with
operations from {⊔, +, ·} can be computed in time O(|S|). Multiplications are
only needed provided S itself contains multiplications.

Proof. Let S be the system of equations xi = fi, i = 1, . . . , n. To compute the
least solution Xi, i = 1, . . . , n, of S, we proceed in three steps:

(1) We determine the values of Xi for all i where Xi ∈ {0, 1};
(2) We determine the set of all i where Xi = ∞;
(3) We determine the remaining values Xi.

By Cor. 8, Step (1) can be executed in linear time. Therefore w.l.o.g. assume S is
reduced where Xi > 1 for every i. For S define the graph GS = (VS , ES) where
VS = {1, . . . , n}, and (i, j) ∈ ES iff xi occurs in fj. GS is also called dependence
graph for S.

A fast implementation of Step (2) is based on the following two claims.

Claim 1. If Xi = ∞ for some i then Xj = ∞ for every j reachable from i. 2

Claim 2. Let Q be a strong component of GS . If Q contains an edge (i, j) where
fj contains an occurrence of “+” or “·”, then Xj = ∞. 2

Assuming that Claims 1 and 2 together characterize all i with Xi = ∞, it is
easy to construct a linear algorithm that implements Step (2) of our algorithm.
Sufficiency of the claims however follows from Claim 3 which provides a method
to compute the values Xi for the remaining i.

Assume that we determined all i where according to Claims 1 and 2, Xi = ∞,
replaced the corresponding right hand sides fi with ∞, and constructed the
equivalent reduced system. Therefore, now assume S is a reduced system where
fj does not contain “+” or “·” for every edge (i, j) in a strong component of GS .

Let Q be a strong component of GS containing at least one edge such that
each i in Q is reachable only from j ∈ Q. Let CQ denote the set of all constants
c occurring in fi, i ∈ Q. We observe:



Claim 3. Xj = ⊔CQ for every j in Q. 2

Claim 3 implies that Step (3) can be implemented by a suitable depth–first
scan over GS in linear time. This completes the proof of the theorem. 2

The ideas in the proof of Theorem 10 allow to derive an important lower
bound on the non–zero components Xi of the least solution.

Proposition11. Consider a reduced system S of equations xi = fi, i = 1, . . . , n,

over N with operations from {⊔, +, ·} where fi 6∈ N , and let C denote the set of
constants of S. Assume Xi, i = 1, . . . , n is the least solution of S where Xi > 0
for all i. Then ⊓C ≤ Xi for all i. Especially, C = ∅ implies that Xi = ∞ for all
i. 2

Now consider a normalized system S of equations xi = fi, i = 1, . . . , n, over
N with operations from Ω = {⊓,⊔, +, ·} and least solution Xi, i = 1, . . . , n. Let
J denote the set of all i such that fi contains “⊓”. The J–tuple µ is called legal
choice iff µ = 〈yj〉j∈J where for every j ∈ J with fj ≡ ρj1 ⊓ ρj2 , yj ∈ {ρj1 , ρj2}.
Let M denote the set of all legal choices.

For legal choice µ = 〈yj〉j∈J , let Sµ denote the system of equations xi =
gi, i = 1, . . . , n, where gi ≡ yi whenever i ∈ J and gi ≡ fi otherwise.

Proposition12. Let Xµ,i, i = 1, . . . , n, the least solution of Sµ. Then

1. ∀µ ∈ M : ∀i ∈ [1, n] : Xi ≤ Xµ,i;
2. ∃µ0 ∈ M : ∀i ∈ [1, n] : Xi = Xµ0,i.

Proof. Assertion 1 follows by usual fixed point induction. Therefore, consider As-
sertion 2. For every fi ≡ ρ1 ⊓ ρ2, we have Xi = ρ1[X1, . . . , Xn]⊓ ρ2[X1, . . . , Xn].
Consequently, Xi = ρνi

[X1, . . . , Xn] for some νi ∈ {1, 2}. Hence, we define
µ0 = 〈ρνj

〉j∈J . By construction, Xi, i = 1, · · · , n, is a solution of Sµ0
. Therefore,

Xµ0,i ≤ Xi for all i. Since by Assertion 1, also Xi ≤ Xµ0,i for all i, Assertion 2
follows. 2

Prop. 12 can be used to generalize the observation of Prop. 11 to systems of
equations that also contain occurrences of “⊓”.

Theorem13. Consider a reduced system S of equations over N with operations
from Ω where fi 6∈ N for all i, and let C denote the set of constants of S. Assume
Xi, i = 1, . . . , n is the least solution of S where Xi > 0 for all i. Then ⊓C ≤ Xi

for all i. Especially, C = ∅ implies that Xi = ∞ for all i.

Proof. Consider the system of equations Sµ0
as constructed in the proof of Prop.

12. Sµ0
has the same least solution as S but does not contain occurrences of “⊓”.

Let S′ denote the reduced system xi = f ′
i , i = 1, . . . , n, corresponding to Sµ0

.
Let C′ denote the set of constants occurring in S′. Moreover, let R denote the
set of i where f ′

i ∈ N . We observe:

1. ⊓C ≤ Xi for all i ∈ R;
2. ⊓C ≤ ⊓C′.

Since by Prop. 11, ⊓C′ ≤ Xi for all i 6∈ R, the assertion follows. 2



5 Minimum, Addition and Multiplication

Theorem 14. The least solution of a system S of equations over N with oper-
ations from {⊓, +, ·} can be computed in time O(|S| · log(|S|)). Multiplications
are only needed provided S itself contains multiplications.

Proof. Let S be the system xi = f,i = 1, . . . , n, and X1, . . . , Xn denote the least
solution of S. We start by determining the set of all i where Xi = 0. By Cor. 8,
this can be done in linear time. Therefore, let us again w.l.o.g. assume that S

is reduced with Xi > 0 for all i. (Xi 6= 1 is not required by our algorithm). Let
C denote the set of all constants of S. The following claim immediately follows
from Theorem 13:

Claim. 1. If C = ∅ then Xi = ∞ for all i.
2. Assume C 6= ∅ and c = ⊓C. If fi ≡ xj ⊓ c or fi ≡ c ⊓ xj then Xi = c.

Based on this claim, an algorithm may proceed as follows.

(1) Compute the sets of all i where Xi = 0, and replace the corresponding right
hand sides with 0.

(2) Construct the equivalent reduced system.
(3) Compute the set C.
(4) While C 6= ∅, execute steps (4.1) to (4.4).

(4.1) Compute c := ⊓C.
(4.2) Replace all right hand sides c ⊓ xj or xj ⊓ c with c.
(4.3) Construct the corresponding reduced system.
(4.4) Recompute C.

(5) For all remaining i, replace fi with ∞.

By appropriate data structures for S, all the updates in (4.2) and (4.3) together
can be executed in time O(|S|). The set C is kept in a priority queue. Using an
efficient implementation for a priority queue (see, e.g., [FT87]) we find, that all
minimum extractions of (4.1) together with all insertions and deletions of (4.4)
can be executed in time O(|S| · log(|S|)). Thus, the overall complexity of the
algorithm is O(|S| · log(|S|)). 2

6 All Operations Together

Theorem 15. The least solution of a system S of equations over N with opera-
tions from {⊓,⊔, +, ·} can be computed in deterministic time O(|S|2). Multipli-
cations are only needed provided S itself contains multiplications.

Note that Prop. 12 could be used to determine whether for given Y and i,
Xi < Y . However, this algorithm would only run in nondeterministic polynomial
time.



Proof. Let us w.l.o.g. assume that system S of equations xi = fi, i = 1, . . . , n,
is reduced with fi 6∈ N for all i where Xi, i = 1, . . . , n, is the least solution of S

and Xi > 0 for every i. Let d = ⊓{Xi | i = 1, . . . , n} and C the set of all constants
occurring in S.

If C = ∅ then by Theorem 13, Xi = ∞ for all i. Therefore, assume C 6= ∅ and
let c > 0 denote the smallest element in C. By Prop. 6 we know that the set of
all i where Xi = c can be computed in linear time.

Now assume we have replaced all fi with the minimum c of C whenever Xi ≡ c

and afterwards reduced the resulting system. Then by Fact 5, we can remove
all occurrences of c as operands of “⊓” or “⊔”. This procedure can be iterated
until all constants in the system are removed. Thus, we obtain the following
algorithm:

(1) Compute the set of all i where Xi = 0, and replace the corresponding right
hand sides with 0.

(2) Construct the equivalent reduced system.
(3) Compute the set C of all occurring constants.
(4) While C 6= ∅ execute steps (4.1) to (4.4):

(4.1) Compute c := ⊓C.
(4.2) Determine the set J of all i where Xi = c.
(4.3) For every j ∈ J replace every right hand side fj with c.
(4.4) Construct the equivalent (c + 1)–reduced system and recompute C.

(5) Replace every remaining fi 6∈ N with ∞.

In order to check that the proposed algorithm runs in quadratic time, we observe
that the size of the system of equations under consideration after every iteration
of the loop is strictly decreasing. Since for every i, the i–th iteration can be
executed in time O(|S|) independent of i, the result follows. 2

7 Consequences

By Fact 4, Theorems 9, 10, 14 and 15 can be used to speed up Theorem 7.

Corollary 16. For k ≥ 2 let S be a system of equations over k with operations
from Ω ⊆ {⊔,⊓, +, ·}. Using multiplications of integers only of length log(k), the
least solution of S can be computed in polynomial time independent of k.

Depending on Ω, we can achieve the following complexity bounds:

Ω = {⊔,⊓} : O(|S| · log(|S|))
Ω = {⊔, +, ·} : O(|S|)
Ω = {⊓, +, ·} : O(|S| · log(|S|))
Ω = {⊔,⊓, +, ·} : O(|S|2)

Instead of determining the precise values of the least solution only up to
some given bound k, we are also interested in computing the set of all i where
Xi = ∞. It turns out that in this case, we can eliminate all multiplications from
our algorithm. The key tool for this is provided by the following proposition.



Proposition 17. Assume S is a normalized system of equations over N with
operations from Ω ⊆ {⊔,⊓, +, ·} and least solution Xi, i = 1, . . . , n. Assume
Xi > 1 for all i. Then a system S̄ can be constructed (without multiplications)
in time O(|S|) with least solution X̄i, i = 1, . . . , n, such that

1. S̄ contains operations only from Ω\{·};
2. For every i, Xi = ∞ iff X̄i = ∞.

Proof. Define S̄ as the system of equations obtained from S by replacing every
occurence of every c ∈ N with 1 and every occurrence of “·” with “+”. Then
the assertion is implied by the following observation:

Claim. Some H > 1 exists such that for all i, X̄i ≤ Xi ≤ HX̄i . 2

The next theorem collects our results on finiteness for the subsets Ω ⊆
{⊔,⊓, +, ·} considered so far.

Theorem 18. Assume S is a system of equations over N with operations from
Ω ⊆ {⊔,⊓, +, ·} and least solution Xi, i = 1, . . . , n. Then the set of all i with
Xi = ∞ can be determined in polynomial time without multiplications.

Depending on Ω, we can achieve the following complexity bounds:

Ω = {⊔, +, ·} : O(|S|)
Ω = {⊓, +, ·} : O(|S| · log(|S|))
Ω = {⊔,⊓, +, ·} : O(|S|2)

Proof. By Cor. 8 and Fact 2 we can w.l.o.g. assume that the assumptions of
Prop. 17 are satisfied. Then the results follow from Theorems 10, 14 resp. 15. 2

The strength of Theorem 18 can be examplified by an application in the
field of finite tree automata (see, e.g., [CM93, HVK91, Se92] for motivation and
precise definitions).

A finite tree automaton A is a finite state device operating on (finite ordered
labeled) trees; a cost function c for A over semiring R maps every transition
of A to some polynomial over R which determines how the cost of the whole
computation can be computed from the costs for the subcomputations. In [Se92]
cost functions over N are considered with operations ⊓ and +, and it is proven
that it can be decided whether or not the least upper bound on the costs of
all accepting computations is finite. This was done by proving an explicit upper
bound on the costs of accepting computations provided the least upper bound is
finite. The decision procedure implied by this upper bound could be implemented
in polynomial space.

It turns out that the given problem can be described by a system of equations
over N with operations from {⊓,⊔, +}. Therefore, Theorem 18 allows both an
improvement in the complexity and a generalization to much more complicated
cost functions. We obtain:



Theorem19. For every finite tree automaton A and every cost function for A

over N using operations from Ω = {⊓,⊔, +, ·}, it can be decided in deterministic
polynomial time (on a RAM with uniform cost measure but without multiplica-
tions) whether the least upper bound on the costs of all accepting computations
is finite. 2

8 Conclusion

We presented efficient algorithms which compute the least solution Xi, i =
1, . . . , n, of a system S of equations over N with various sets Ω of operations.
The algorithms used multiplications only provided S itself contained multiplica-
tions. In order to compute the set of all i where Xi = ∞, we derived polynomial
time algorithms without multiplications at all.

References

[CM93] B. Courcelle, M. Mosbah: Monadic Second–Order Evaluations on Tree–Decomposable
Graphs. Theor. Comp. Sci. 109 (1993), 49–82

[CC77] P. Cousot, R. Cousot: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. 4th Symp.
on Principles of Programming Languages, 238–252, Los Angeles, California, 1977

[CC92a] P. Cousot, R. Cousot: Comparing the Galois Connection and Widening/Narrowing
Approaches to Abstract Interpretation. Tech. Report LIENS – 92 – 16, Paris, 1992

[CC92b] P. Cousot, R. Cousot: Abstract Interpretation and Application to Logic Programs.
Tech. Report LIX/RR/92/08, Palaiseau, 1992

[FT87] M.L. Fredman, R.E. Tarjan: Fibonacci Heaps and Their Uses in Improved Network
Optimization Algorithms. JACM (34), 597–615, 1987

[HKV91] A. Habel, H.–J. Kreowski, W. Vogler: Decidable Boundedness Problems for Sets
of Graphs Generated by Hyperedge-Replacement. Theor. Comp. Sci. 89 (1991),
33–62

[HH91] C. Hankin, S. Hunt: Fixed Points and Frontiers: A New Perspective. J. of Func-
tional Programming (1), 91–120, 1991

[Ke81] K. Kennedy: A Survey of Data Flow Analysis Techniques. In: S.S. Muchnick, N.D.
Jones (eds.): Program Flow Analysis. Theory and Applications. Prentice–Hall, 1981

[MR90] T.J. Marlowe, B.G. Ryder: Properties of Data Flow Frameworks. Acta Informatica
(28), 121–163, 1990

[NN92a] F. Nielson, H.R. Nielson: Bounded Fixed Point Iteration. J. Logic Computat. (2),
441–464, 1992

[NN92b] F. Nielson, H.R. Nielson: Finiteness Conditions for Fixed Point Iteration. Prog. of
LISP and Functional Programming 1992, 96–108

[PC87] S. Peyton–Jones, C. Clack: Finding Fixpoints in Abstract Interpretations. In: S.
Abramsky, C. Hankin (Eds.): Abstract Interpretation of Declarative Languages,

246–265 Ellis Horwood Ltd. and John Wiley, 1987
[Se92] H. Seidl: Tree Automata with Cost Functions. Proc. CAAP’92, LNCS 581, 279–

299, 1992; long version to appear in TCS, special issue on CAAP’92
[Se93] H. Seidl: Equality of Instances of Variables in FORK. Tech. Rep. 6/93, SFB 124–C1,

Saarbrücken, 1993

This article was processed using the LATEX macro package with LLNCS style


