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LEAST AND GREATESTSOLUTIONS OF EQUATIONSOVER NHELMUT SEIDLFB IV � InformatikUniversität TrierD�54286 TrierGermanyseidl@ti.uni-trier.deAbstract. We consider the problem of computing least and greatest solutions ofa system of equations xi = fi, i = 1; : : : ; n, over N , i.e., the naturals (extendedby 1), where the right hand sides fi are expressions built up from constants andvariables by various sets of operations.We present e�cient algorithms in case where the following operations occur:(1) minimum and maximum;(2) maximum, addition and multiplication;(3) minimum, addition and multiplication;(4) minimum, maximum, addition and multiplication.We extend the methods to the cases where (one�sided) conditionals are allowed aswell.CR Classi�cation: D.3.4, F.4.1, G.2.1Key words: equations over integers, least or greatest solution, program analysis1. IntroductionAssume D is a complete partial order (cpo) with least element ?. AssumeXn = fx1; : : : ; xng is a set of variables, and let 
 denote a set of continuousbinary operations on D. The set of polynomials D
[Xn] with operationsfrom 
 consists of all expressions built up from constants d 2 D, variablesx 2 Xn by application of operations from 
. If 
 is understood, we will alsoomit it in the index. Every polynomial f 2 D
[Xn] denotes a continuousfunction [f ] : Dn ! D. If the meaning is clear from the context, we do notdistinguish (notationally) between f and [f ]. However, we write f � g ifwe mean syntactic equality and f = g if they denote the same functions,i.e., [f ] = [g]. Let S be a system of equations xi = fi; i = 1; : : : ; n; withfi 2 D
[Xn]. The following fact is well�known from the theory of cpo's andcontinuous functions.Received December 13, 1994; revised October 25, 1995. Communicated by Neil Jones.



LEAST AND GREATEST SOLUTIONS OF EQUATIONS 41Fact 1. S has a unique least solution X1; : : : ;Xn. Xi is given byXi = tj�0X(j)iwhere for every i, X(0)i = ? and X(j)i = fi[X(j�1)1 ; : : : ;X(j�1)n ] for j > 0. 2Many compile time analyses of programs rely on computations of leastsolutions of such systems of equations, cf. e.g., [2, 8, 9, 3]. The least solutionof S can be computed e�ectively whenever D satis�es the ascending chaincondition (acc), meaning that every ascending chaind0 � d1 � : : : � dj � : : :of elements dj 2 D, is ultimately constant. Corresponding techniques areconsidered in [13, 7, 11, 12]. However, there are instances of compile timeprogram analysis which make use also of cpo's which do not satisfy theacc. One technique applicable in these unrestricted cases is the widen-ing/narrowing approach of [2, 4]. While this approach is very general inits applicability, it may not compute the least solution itself, but only anupper bound to it. Therefore, we propose alternative methods at least forthe cpo of natural numbers (extended by 1)N = f0 < 1 < : : : < n < : : : <1gClearly, N does not satisfy the acc. However, meaningful analyses make useof systems of equations over N .In [14], an algorithm is proposed which detects whether instances of vari-ables that exist in parallel in the PRAM language FORK are equal. It employssystems of equations over N with operations �u� (minimum) and �t� (max-imum). In the context of register allocation, an approximative complexityanalysis determines bounds to the number of uses of some variable.Example 1. Consider, e.g., the following de�nition of a function possiblyoccurring in a program (written in some strict functional language):h y = letrecg x = if x > 0 then (d y)else 7 � (g (x � 1));d z = z � y � 9in if y < 0 then y + (g (� y))else d(g (y + 1))The goal is to assign registers to those variables which are most oftenused. Calculating (some bounds to) the number of accesses to, say variabley, results in the following equations:xh = 1 + ((2 + xg) t (1 + xg + xd))xg = (1 + xd) t xgxd = 1



42 HELMUT SEIDLwhere xf counts the number of accesses to y during the execution of one callto function f and the conditional is abstracted with �t�. The least solutionof the system provides an upper bound. To obtain a lower bound (at leastw.r.t. error�free program executions), one may compute the least solutionof the system of equations obtained by replacing �t� with �u�. 2Thus, we need to compute least solutions of systems of equations over Nwith sets of operations fu;+g or ft;+g. Multiplications occur if programsmay contain for�loops (or tail recursion where the recursion depth is de-termined by some variable's value). For interval analysis, one may consideran abstract domain �N consisting of all intervals [n;+1], n 2 N , orderedby inclusion (cf. [4]). This domain is isomorphic to N where the order isreversed . Observe that �N indeed satis�es the ascending chain condition(since N satis�es the descending chain condition). Therefore, all monotonicfunctions are also continuous. Thus, least solutions over �N correspond togreatest solutions over N .Therefore, in this paper we investigate the computation of least and great-est solutions for systems of equations over N using various sets of continuousoperations and give e�cient algorithms for all of these. The operations weare interested in are �t� (maximum), �u� (minimum), �+� (addition, ex-tended by 1 + x = x + 1 = 1) and ��� (multiplication, extended by0 � 1 = 1 � 0 = 0 and 1 � x = x � 1 = 1 whenever x 6= 0). Note thatall these operations are commutative and associative. 0 is the neutral ele-ment for �t� and �+�, 1 is the neutral element for ��� whereas 1 is theneutral element for �u�. Additionally to these we also consider (one�sided)conditionals �>c;� (c 2 N ) de�ned byx >c; y � � y if x > c0 otherwiseThe (theoretical) target architecture we have in mind to implement ouralgorithms on is a random access machine (RAM). For simplicity, we usethe unit cost model to measure runtime complexities. Especially, we assumethat every element of N can be stored in one cell of our memory, thattests d � d0 and operations from 
 always can be executed in unit time.Therefore, it makes sense to de�ne the size jSj of system S of equationsxi = fi; i = 1; : : : ; n; by jSj =Pni=1(1+ jfij) where the size jf j of polynomialf is given by jf j = 1 if p is a constant or a variable, and jf j = 1+ jf1j+ jf2jif f = (f12f2) for some 2 2 
.The unit cost assumption for every basic operation is realistic as longas the numbers involved are not too large. Consider, e.g., the system ofequations x1 = 2xj+1 = xj � xj for j = 1; : : : ; n� 1The least solution Xi; i = 1; : : : ; n; can be trivially obtained by n� 1 mul-tiplications which however involve possibly exponentially large numbers. In



LEAST AND GREATEST SOLUTIONS OF EQUATIONS 43order to produce least solutions by a polynomial number of operations, wetherefore cannot avoid to use multiplications in this case. However, we willbe as restrictive with the use of multiplications as possible. So, wheneverthe considered systems of equations do not contain occurrences of ���, ouralgorithms will not use multiplications either. Also we show that, providedthe �nite Xi are smaller than some h, operations on numbers of lengthO(log(h)) su�ce. Finallly, we derive e�cient algorithms to determine theset of all i where Xi <1 without using multiplications.The rest of the paper is organized as follows. The next section providesbasic algorithmic facts, especially on the computation of least and great-est solutions of equations over certain �nite cpo's. Sections 3, 4 and 6present special algorithms to construct least solutions for various subsets ofoperations, whereas Section 7 deals with operations minimum, maximum,addition and multiplication alltogether. Section 5 proves a lower bound the-orem which turns out to be crucial for the construction of least solutions ofsystems of equations which contain �u�. Section 8 shows how our basic al-gorithms can be applied to speed up the computation of least solutions overrestricted ranges of integers, and derives polynomial �niteness tests withoutmultiplications even if the system contains ���. Section 9 extends the resultsby additionally allowing occurrences of conditionals �> c;�. The results ofthe previous sections can be applied to decide in polynomial time whetheror not the costs of tree automata with cost functions of a very general formare bounded � a problem which has been left open in [16]. Finally, Section10 considers the same questions for greatest solutions.An extended abstract of the present paper appeared in [15]. The sectionson one�sided conditionals and greatest �xpoints are new.2. Basic FactsLet S denote a system of equations xi = fi over N with operations from 
.It turns out that it is convenient to assume that the right hand sides fi of Sare of one of the forms � or �12�2 where �; �1; �2 are variables or elementsof N and 2 2 
. Furthermore,� Whenever fi 2 N then xi does not occur in any right hand side fj;� Whenever fi � c12c2 with c1; c2 2 N , then 2 2 f�;+g;� Whenever fi � �1 >c; �2 then �1 62 N ;� 1 does not occur as an operand of ���;� 0 does not occur as an operand at all, and 1 may only occur as anoperand of ��� or as the second operand of some conditional.Systems with these properties are called normalized . A normalized systemis called reduced i� 1 does not occur as an operand, and for no j and nooperation 2, fj � c12c2 with both c1 2 N and c2 2 N .



44 HELMUT SEIDLExample 2. In order to normalize the system of equations from Example 1,we break large expressions into smaller ones by the introduction of auxiliaryvariables yk: xh = 1 + y1 y4 = xg + 1y1 = y2 t y3 xg = y5 t xgy2 = 2 + xg y5 = 1 + 1y3 = 1 + y4 xd = 1To obtain a reduced system, we additionally evaluate the right hand side fory5 and replace all occurrences of y5 in right hand sides with 2. 2Using this idea we �nd:Fact 2. For every system S of equations with variables x1; : : : ; xn a normal-ized system S0 with variables x1; : : : ; xm for some m � n can be constructed(without multiplications) in time O(jSj) with least solution (resp. greatestsolution) X1; : : : ;Xm such that X1; : : : ;Xn is also the least solution (resp.greatest solution) of S. 2For k � 2, let k denote the total order f0 < 1 < : : : < (k � 1)g, andconsider the set 
 = fu;t;�;�g of operations on k where �t� and �u� aremaximum and minimum as usual, and ��� and ��� are truncated additionand multiplication, i.e., x�y = (x+y)u (k�1) and x�y = (x �y)u (k�1).For simplicity, we will denote ��� and ��� by �+� and ��� as well. Domaink together with mapping H : N ! k de�ned byH(y) = y u (k � 1)can be used to determine the behavior of system S �up to k � 2�. Thereasons are the following:� H is faithful on f0; : : : ; k � 2g, i.e., fyg = H�1(H(y)) for all y 2f0; : : : ; k � 2g;� H maps least element to least element and greatest element to greatestelement;� H commutes with operations �u�, �t�, �+�, ��� as well as with con-ditionals �>c;� whenever 0 � c < k � 1; moreover,� H is continuous.These properties allow to prove Fact 3. Let 
 = fu;t;+; �g and � denotethe set f> c; j 0 � c < k � 1g. Consider a system S of equations xi =fi; i = 1; : : : ; n; over N with operations from 
 [ �. For f 2 N
[�[X]let (Hf) 2 k
[�[X] denote the polynomial obtained from f by replacingevery coe�cient d with H(d) and the operations on N by the correspondingoperations on k. Let SH denote the systemxi = (Hfi); i = 1; : : : ; nover k with operations from 
 [ �. Then we have:



LEAST AND GREATEST SOLUTIONS OF EQUATIONS 45Fact 3. Let Xi; i = 1; : : : ; n; and �Xi; i = 1; : : : ; n; be the least and greatestsolutions of S, respectively. Accordingly, let XH;i; i = 1; : : : ; n; and �XH;i; i =1; : : : ; n; be the least and greatest solutions of SH , respectively. Then1. XH;i = H(Xi) for every i;2. �XH;i = H( �Xi) for every i. 2Since the �nite domains k satisfy the acc least solutions of systems over kas well as greatest solutions can be computed e�ectively. Using the worklistalgorithm known from data�ow analysis instead of naive �xpoint iteration,we �nd that these solutions can even be computed e�ciently.Fact 4. Assume k � 2. Then the least (resp. greatest) solution of a nor-malized system S of equations over k with operations from
[� can be com-puted in time O(k � jSj). Provided S contains multiplications, the algorithmmay use multiplications as well but only of integers of length O(log(k)). 2Corollary 1. Assume S is a system of equations over N with operationsfrom 
[� and least solution Xi; i = 1; : : : ; n, (resp. greatest solution �Xi; i =1; : : : ; n). For every k � 0, we can compute the sets fi j Xi = yg, y =0; : : : ; k, (resp. fi j �Xi = yg, y = 0; : : : ; k) in time O((k +1) � jSj). ProvidedS contains multiplications, the algorithm may use multiplications as well butonly of integers of length O(log(k + 1)). 2By Cor. 1, we can determine in linear time the set of all i such that valueXi of the least solution for xi equals 0 (resp. the set of all i such that value�Xi of the greatest solution for xi equals 0). Using this information, we canremove both all operands 0 and all operands 1 (of ���). We conclude:Corollary 2. For every normalized system S of equations reduced systemsS1 and S2 of equations can be constructed in time O(jSj) where S1 has thesame least and S2 has the same greatest solution as S. Multiplications areonly needed if S itself contains occurrences of ���. 2In the following, we �rst consider the fast computation of least solutionsfor various subsets of operations. Finally in Section 10, we deal with thecomputation of greatest solutions as well.3. Minimum and MaximumTheorem 1. If S is a system of equations over N with operations fromfu;tg then the least solution of S can be computed (without multiplications)in time O(jSj � log(jSj)).Let S be the system xi = fi; i = 1; : : : ; n, with least solution Xi; i =1; : : : ; n. Observe that Xi � h for all i where h � 0 is the least upper bound



46 HELMUT SEIDLon the constants from N occurring in S. Therefore, Cor. 1 is applicable.However, this would result in an O((h+ 1) � jSj)�algorithm.Proof. Because of Fact 2 we w.l.o.g. can assume that S is reduced. Let Jdenote the set of all i where fi does not equal some constant. Furthermore,let C denote the set of constant operands occurring in S. We observe:Claim. If C = ; then Xi = 0 for all i 2 J . 2Therefore, assume C 6= ;, and c = t C. Clearly, Xi � c for all i 2 J . Wewill now show that all occurrences of c in S as an operand can be safelyremoved. Let S0 be the system of equations xi = f 0i ; i = 1; : : : ; n, where thef 0i are obtained as follows.� If fi � xj u c or fi � c u xj then f 0i � xj .� If fi � xj t c or fi � c t xj then f 0i � c.� Otherwise, f 0i � fi.S0 has the same least solution as S. Thus, our algorithm constructing theleast solution of S works as follows.(1) Construct the equivalent reduced system.(2) Compute sets C and J .(3) While C 6= ; execute Steps (3.1) through (3.4):(3.1) Set c := t C.(3.2) Remove all occurrences of c in S as an operand.(3.3) Construct again the equivalent reduced system.(3.4) Remove c from C, and recompute J .(4) Finally, set fi = 0 for all remaining i 2 J .By a suitable data structure for S, all the removals in Step (3.2) togetherwith the reduction in Step (3.3) can be executed in time O(jSj). In orderto e�ciently implement the selection in Step (3.1) we can, e.g., keep Cin a sorted list. Then, all maximum computations of Step (3.1) togetherconsume time O(jSj). It follows that, once this representation for C hasbeen computed, the remaining steps of the algorithm take time O(jSj). 2Note that if constants d 2 N occurring in right hand sides are from a smallrange we may use bucket sort instead of some general sorting algorithmwhich brings complexity down to O(jSj) for this case.4. Maximum, Addition and MultiplicationTheorem 2. If S is a system of equations over N with operations fromft;+; �g, then the least solution of S can be computed in time O(jSj). Mul-tiplications are only needed provided S itself contains multiplications.Proof. Let S be the system xi = fi; i = 1; : : : ; n, with least solutionXi; i = 1; : : : ; n. To compute this least solution of S, we proceed in threesteps:(1) We determine values Xi for all i where Xi 2 f0; 1g;



LEAST AND GREATEST SOLUTIONS OF EQUATIONS 47(2) We determine the set of all i where Xi =1;(3) We determine the remaining values Xi.By Cor. 1, Step (1) can be executed in linear time. Therefore w.l.o.g. assumeS is reduced where Xi > 1 for every i. For S de�ne graph GS = (VS ; ES)by VS = f1; : : : ; ng where (i; j) 2 ES i� xi occurs in fj. GS is also calleddependence graph of S.A fast implementation of Step (2) is based on the following two claims.Claim 1. If Xi = 1 for some i then Xj = 1 for every j reachable fromi. Claim 1 states that1 wherever it turns up is propagated along every edge.The reason for this is that by our assumptions, the result of an operatorapplication cannot be less than any of its operands. 2Claim 2. Let Q be a strong component of GS. If Q contains an edge (i; j)where fj contains an occurrence of �+� or ���, then Xj =1.Claim 2 locates a source for in�nity: namely, a strong component contain-ing an edge e = (i; j) corresponding to an occurrence of �+� or ��� in theright hand side fj for xj. Thus, a cyclic path � exits which contains edgee. � represents a cyclic dependency between variables xj and xi. Since �+�or ��� applied to �nite values d1, d2 returns a value which is strictly greaterthan both d1 and d2, �xpoint iteration results in an unbounded sequence ofapproximations X(t)j for Xj . 2Assuming that Claims 1 and 2 together characterize all i with Xi =1, wecan construct a linear algorithm that implements Step (2) of our algorithm.Su�ciency of the claims however follows from Claim 3 which provides amethod to compute the values Xi for the remaining i.Assume that we determined all i where according to Claims 1 and 2,Xi =1, replaced the corresponding right hand sides fi with1, and reducedthe resulting system.Therefore, now assume S is a reduced system where fj does not contain�+� or ��� for any edge (i; j) in a strong component of GS.Let Q be a strong component of GS containing at least one edge such thateach i in Q is reachable only from nodes in Q itself. Let CQ denote the setof all constant operands of �t� occurring in fi; i 2 Q. We observe:Claim 3. Xj = t CQ for every j in Q. 2Example 3. Considering the reduced system of equations from Example 2,we �nd that fxgg is a strong component as demanded for Claim 3. Sincethe right hand side for xg equals 2 t xg, Claim 3 implies that Xg = 2. 2Based on Claim 3, Step (3) can be implemented by a suitable depth��rstscan over GS in linear time. This completes the proof of the theorem. 25. Lower BoundsIn Sections 6 and 7 we will, in addition to arithmetical operations �+� and��� also consider the minimum operation. Moreover in Section 7, we will



48 HELMUT SEIDLexploit that, starting �xpoint iteration at some h > 0, may allow to simplifysystem S without changing the solution. Therefore, Theorem 3 does notdeal with least solutions but with h�least solutions for h � 0. The h�leastsolution of S is de�ned as the least solution Xi; i = 1; : : : ; n, of S withXi � h for all i.The starting point for our derivation is Theorem 2 whose generalizationto h�least solutions proves the lower bound at least for systems S withoutoccurrences of �u�.Proposition 1. Let h � 0, and S denote a reduced system of equationsxi = fi; i = 1; : : : ; n; over N with operations from ft;+; �g where fi 62 N ,and let C denote the set of constant operands of �t� occurring in of S.Assume Xi; i = 1; : : : ; n is the h�least solution of S where Xi > h for all i.Then u C � Xi for all i. Especially, C = ; implies that Xi =1 for all i.Proof. In case h � 1, the given lower bound on the Xi easily followsfrom a generalization of the characterization in Claims 1, 2 and 3 within theproof of Theorem 2. to h�least solutions. In case, h = 0 and Xj = 1 forsome j, it turns out that in fact, 1 must occur as an operand of �t� in S. 2Now consider a system S of equations xi = fi; i = 1; : : : ; n, over N withoperations from 
 = fu;t;+; �g and h�least solution Xi; i = 1; : : : ; n. LetJ denote the set of all i such that fi contains �u�. The J�tuple � is calledlegal choice i� � = hyjij2J where for every j 2 J with fj � �j1 u �j2 ,yj 2 f�j1 ; �j2g. Let M denote the set of all legal choices.For legal choice � = hyjij2J , let S� denote the system of equations xi =gi; i = 1; : : : ; n, where gi � yi whenever i 2 J and gi � fi otherwise.Proposition 2. Let X�;i; i = 1; : : : ; n, denote the h�least solution of S�.Then1. 8� 2M : 8i 2 [1; n] : Xi � X�;i;2. 9�0 2M : 8i 2 [1; n] : Xi = X�0;i.Proof. Assertion 1 follows by usual �xed point induction. Therefore,consider Assertion 2. For every fi � �1 u �2, we have Xi = �1[X1; : : : ;Xn]u�2[X1; : : : ;Xn]. Consequently, Xi = ��i [X1; : : : ;Xn] for some �i 2 f1; 2g.Hence, we de�ne �0 = h��j ij2J . By construction, Xi; i = 1; � � � ; n, is asolution of S�0 with Xi � h for all i. Therefore, X�0;i � Xi for all i. Sinceby Assertion 1, also Xi � X�0;i for all i, Assertion 2 follows. 2Prop. 2 can be used to derive the desired generalization of Prop. 1.Theorem 3. Let h � 0, and consider a reduced system S of equations overN with operations from 
 where fi 62 N for all i, and let C denote the setof constant operands of �u� or �t� occurring in S. Assume Xi; i = 1; : : : ; nis the h�least solution of S. where Xi > h for all i. Then u C � Xi for alli. Especially, C = ; implies that Xi =1 for all i.



LEAST AND GREATEST SOLUTIONS OF EQUATIONS 49Proof. Consider the system of equations S�0 as constructed in the proofof Prop. 2. S�0 has the same h�least solution as S but does not containoccurrences of �u�. Let S0 denote the reduced system xi = f 0i ; i = 1; : : : ; n,corresponding to S�0 . Let C0 denote the set of constant operands of �u� or�t� occurring in S0.Moreover, let R denote the set of i where f 0i 2 N . We observe:1. u C � Xi for all i 2 R;2. u C � u C0.Since by Prop. 1, u C0 � Xi for all i 62 R, the assertion follows. 26. Minimum, Addition and MultiplicationTheorem 4. If S is a system of equations over N with operations fromfu;+; �g, then the least solution of S can be computed in time O(jSj�log(jSj)).Multiplications are only needed provided S itself contains multiplications.Proof. Let S denote the system xi = fi; i = 1; : : : ; n, with least solutionXi; i = 1; : : : ; n. We start by determining the values of the Xi for all iwhere Xi = 0. By Cor. 1, this can be done in linear time. Therefore, letus again assume w.l.o.g. that S is reduced with fi 62 N and Xi > 0 for alli. (Xi 6= 1 is not required by our algorithm). Let C denote the set of allconstant operands of �u� occurring in S. The following claim immediatelyfollows from Theorem 3:Claim.1. If C = ; then Xi =1 for all i.2. Assume C 6= ; and c = u C. If fi � xj u c or fi � c u xj then Xi = c.2Example 4. Consider the following system of equations:x1 = x3 + 1 x5 = 7 u x7x2 = x3 u x6 x6 = 4 + x1x3 = 3 u x1 x7 = x1 � x2x4 = x5 u x6Then, Xi > 0 for all i. The set C of constant operands of �u� equals f3; 7gwhere 3 occurs in the third equation. Hence, X3 = 3. 2Based on our claim, we construct the algorithm as follows.(1) Compute the sets of all i where Xi = 0, and replace the correspondingright hand sides with 0.(2) Construct the equivalent reduced system.(3) Compute the set C.(4) While C 6= ;, execute steps (4.1) to (4.4).



50 HELMUT SEIDL(4.1) Compute c := u C.(4.2) Replace every right hand side c u xj and every right hand sidexj u c with c.(4.3) Construct the corresponding reduced system.(4.4) Recompute C.(5) For all remaining i, replace fi with 1.By appropriate data structures for S, all the updates in (4.2) and (4.3)together can be executed in time O(jSj). The set C is kept in a priorityqueue. Using an e�cient implementation for a priority queue (see, e.g., [5])we �nd, that all minimum extractions of (4.1) together with all insertionsand deletions of (4.4) can be executed in time O(jSj � log(jSj)). Thus, theoverall complexity of the algorithm is O(jSj � log(jSj)). 27. All Operations TogetherTheorem 5. Assume S is a system of equations over N with operationsfrom fu;t;+; �g, and Xi; i = 1; : : : ; n; is the least solution of S. Then thefollowing holds:1. Let h > 1 and d � h for every constant d occurring in any of the fi.ThenXi <1 i� Xi � ( h � 2jSj if fi 2 Nft;u;+g[Xn] for all ih2jSj otherwise2. The least solution of S can be computed in deterministic time O(jSj2).Multiplications are only needed provided S itself contains multiplica-tions.Note that by Assertion (1) of the Theorem and Cor. 1, the least solutionof S can be e�ectively determined. However, the resulting algorithm mayhave double exponential running time. Alternatively, Prop. 2 could be usedto determine whether for given Y and i, Xi < Y . However, this algorithmwould only run in nondeterministic polynomial time.Proof of Statement (1). First observe that we w.l.o.g. may assumethat1. S is normalized, and2. 1 < Xi <1 for all i.Secondly, we observe that the given bounds easily can be seen to hold pro-vided S only contains operations from f+; �g. Therefore, our proof is basedon the following claim:Claim 1. A system S0 of equations xi = f 0i ; i = 1; : : : ; n, can be constructedhaving the same least solution as S but which uses operations from f+; �galone.



LEAST AND GREATEST SOLUTIONS OF EQUATIONS 51Because of Prop. 2 we w.l.o.g. may now assume that S is a system ofequations with operations from ft;+; �g.Let Q denote some strong component of the dependence graph GS of Sand some node i from Q.Claim 2. If fi contains �t�, then some j in Q exists such that fj con-tains an operand �Q which is not some variable from Q such that Xi =�Q[X1; : : : ;Xn]. 2With the help of Claim 2, S0 is obtained from S as follows.If fi does not contain �t�, then f 0i � fi. Otherwise, we put f 0i � �Q whereQ is the strong component in which i is contained.In order to prove the correctness of the construction, we simply executethe algorithm from the proof of Theorem 2 on both systems. It turns outthat it indeed computes the same least solution on input S as on input S0.2The proof of statement (2) is based on Theorem 3. Additionally, we needthe following observations on h�least solutions of system S.Fact 5. If h � h0 � 0 and Xi � h for all i then the h�least solution of Sequals the h0�least solution of S. 2For h � 0, system S is called h�reduced if S is reduced and h < c for everyconstant operand of �u� or �t� occurring in S.Fact 6. Assume h � 0, and S is reduced where Xi; i = 1; : : : ; n, is theh-least solution of S. Assume furthermore, that Xi > h for every i. Then ah�reduced system S0 can be constructed in time O(jSj) such that the h�leastsolution of S0 equals Xi; i = 1; : : : ; n.Proof. For a proof observe that S cannot contain any equation xi = fiwhere fi � �1 u �2 with �1 � c � h or �2 � c � h. Therefore, considersystem S0 of equations xi = f 0i which is obtained from S as follows.� If fi � ctxj or fi � xj tc where c 2 N and c � h then de�ne f 0i � xj;� Otherwise, de�ne f 0i � fi.Clearly, S0 is h�reduced, and the h�least solution of S0 equals the h�leastsolution of S. 2Observe that the h�reduced system S0 constructed in the proof of Fact 6has not necessarily the same least solution as S. This can be seen from thefollowing simple system S of equations:x1 = x1 + x2 x2 = x3 t 1 x3 = x1 u 2S has least solution X1 =1, X2 = X3 = 2. Especially, Xi > 1 for all i. ByFact 5, this is also the 1�least solution of S. Therefore, we can constructthe corresponding 1�reduced system S0. It is given by:x1 = x1 + x2 x2 = x3 x3 = x1 u 2The 1�least solution of S0 is indeed equal to the 1�least solution of S. Theleast solution of S0, however, is di�erent. It is given by X 01 = X 02 = X 03 = 0.



52 HELMUT SEIDLFact 7. Assume 0 < h < m, and S is a reduced system of equations xi = fi,i = 1; : : : ; n, over m (or N if m = 1) with operations from 
 and h�leastsolution Xi; i = 1; : : : ; n where for all i, Xi � h. Then the set of all i withXi = h can be computed in time O(jSj).Proof. W.l.o.g. we only consider the case where m = 1, i.e., S is asystem of equations over N . By Facts 5 and 6 we can also assume that S is(h� 1)�reduced. Let [h;1] denote the partial orderingh < (h+ 1) < (h+ 2) < : : : <1We introduce the map Hh : [h;1] ! 2 de�ned byHh(x) = � 0 if x = h1 if x > hWe have for all x1; x2 2 [h;1]:1. Hh(x1 + d) = 1 for all d > 0.2. If h = 1 then Hh(x1 � x2) = Hh(x1) tHh(x2).If h > 1 then Hh(x1 � d) = 1 for all d > 1.3. Hh(x1 t x2) = Hh(x1) tHh(x2); and �nally,4. Hh(x1 u x2) = Hh(x1) uHh(x2).Let J denote the set of all i such that not fi � c < h, and Sh denote thesystem of equations xi = Hhfi; i 2 J , where Hhfi is de�ned as follows.� If fi � c � h then Hhfi � Hhc.� If fi contains �+� then Hhfi � 1.� If fi � �1 � �2 we have to distinguish between the cases h = 1 andh > 1. If h = 1 then Hhfi � Hh(�1)tHh(�2) (where Hh(xj) � xj). Ifh > 1 then Hhfi � 1.� Otherwise, Hhfi � fi.Let Xh;i; i = 1; : : : ; n, denote the least solution of Sh. We �nd:Claim. For all i 2 J , Xh;i = HhXi. 2This Claim together with Fact 4 implies the assertion. 2Example 5. Consider system S of equationsx1 = x2 u x3 x4 = x1 t x5x2 = x1 + x4 x5 = x3 u 9x3 = x4 t 7 x6 = x2 + 4Then S is 6�reduced with Xi � 7 for all i. To determine the set of all i withXi = 7, we construct the following system of equations:x1 = x2 u x3 x4 = x1 t x5x2 = 1 x5 = x3 u 1x3 = x4 x6 = 1



LEAST AND GREATEST SOLUTIONS OF EQUATIONS 53The occurrences of 7 and 9 are replaced with 0 and 1 respectively; moreover,the right hand sides for x2 and x6 have been replaced with 1. Solving thissystem we �nd that fi jXi = 7g = f1; 3; 4; 5g. 2Proof of Statement (2). Assume system S is reduced where fi 62 Nand Xi > 0 for all i. Let C the set of all constant operands of �u� or �t�occurring in S.If C = ; then by Theorem 3, Xi = 1 for all i. Therefore, assume C 6= ;and let c > 0 denote the smallest element in C. By Fact 7 we know that theset of all i where Xi = c can be computed in linear time.Assume we have replaced all fi with the minimum c of C whenever Xi � cand afterwards constructed the corresponding reduced system. Then byFact 6, we can remove all occurrences of c as operands of �u� or �t�. Thisprocedure can be iterated until all constant operands of �u� or �t� in thesystem are removed. Thus, we obtain the following algorithm to computethe least solution of a system of equations S:(1) Compute the set of all i where Xi = 0, and replace the correspondingright hand sides with 0.(2) Construct the equivalent reduced system.(3) Compute the set C of all constant operands of �u� or �t� occurringin S.(4) While C 6= ; execute steps (4.1) to (4.4):(4.1) Compute c := u C.(4.2) Determine the set J of all i where Xi = c.(4.3) For every j 2 J replace every right hand side fj with c.(4.4) Construct the corresponding c�reduced system and recompute C.(5) Replace every remaining fi 62 N with 1.To determine the complexity of the algorithm, �rst observe that the size ofthe system of equations under consideration after every iteration of the loopis strictly decreasing. Since every iteration can be executed in time O(jSj)the result follows. 28. ConsequencesDepending on 
, let t
 denote the function witht
(x) = 8<: x if 
 = ft;+; �gx � log(x) if 
 = ft;ug or 
 = fu;+; �gx2 if 
 = ft;u;+; �gBy Fact 3, Theorems 1, 2, 4 and 5 can be used to speed up Cor. 1.Corollary 3. For k � 2 let S be a system of equations over k with op-erations from 
 � ft;u;+; �g. Using multiplications of integers of lengthO(log(k)), the least solution of S can be computed in time O(t
(jSj)). 2



54 HELMUT SEIDLNote that the given complexity bounds are independent of k.Instead of determining the precise values of the least solution only up tosome given bound k, we are sometimes also interested in computing the setof all i where Xi = 1. It turns out that in this case, we can eliminate allmultiplications from our algorithm. The key tool for this is provided by thefollowing proposition.Proposition 3. Assume S is a normalized system of equations over Nwith operations from 
 � ft;u;+; �g and least solution Xi; i = 1; : : : ; n.Assume Xi > 1 for all i. Then a system �S can be constructed (withoutmultiplications) in time O(jSj) with least solution �Xi; i = 1; : : : ; n; such that1. �S contains operations only from 
nf�g;2. For every i, Xi =1 i� �Xi =1.Proof. De�ne �S as the system of equations obtained from S by replacingevery occurrence of every c 2 N with 1 and every occurrence of ��� with�+�.Claim 1. Some h > 1 exists such that for all i, �Xi � Xi � h �Xi .The assertion of the proposition obviously follows from Claim 1. To proveClaim 1, we successively consider Claims 2, 3, 4 and 5.Let S1 be the system of equations obtained from S where every occurrenceof ��� is replaced by �+�, and let X1;i; i = 1; : : : ; n, denote the least solutionof S1.Claim 2. For all i = 1; : : : ; n,(1) X1;i � Xi;(2) 2 � X1;i.Since 2 � Xi for every i, some j0 exists such that for every i, 2 � X(j0)i .Since y1 + y2 � y1 � y2 whenever 2 � y1 and 2 � y2, we conclude that for alli and j, X(j)1;i � X(j+j0)i . Thus, Assertion (1) of Claim 2 follows.To prove Assertion (2) of Claim 2 just observe that y1 � y2 � y1 + y2whenever y1 � 2 and y2 � 2. 2Choose some h > 1 such that c � h for every c 2 N occurring in S.Claim 3. For all i,(1) �Xi � X1;i � h � �Xi;(2) 1 � �Xi.Assertion (1) follows by usual �xed point induction, whereas Assertion (2)is implied by Assertion (1). 2The �rst Assertions of Claims 2 and 3 imply the left inequality of Claim 1.Also for later use, observe that by Assertion (2) of Claim 3, �Xi; i = 1; : : : ; n,is also the 1�least solution of �S.Next, we approximate S from above. De�ne S2 as the system of equationsobtained from S by replacing every occurrence of every c 2 N with h. LetX2;i; i = 1; : : : ; n, denote the least solution of S2.Claim 4. For all i,(1) Xi � X2;i;



LEAST AND GREATEST SOLUTIONS OF EQUATIONS 55(2) h � X2;i.Assertion (1) of Claim 4 again follows by �xed point induction, whereasAssertion (2) follows fromTheorem 3. Observe that by (2), X2;i; i = 1; : : : ; n;is also the h�least solution of S2. 2Let S3 be the system of equations obtained from S2 by replacing every oc-currence of �+� with ���. Let X3;i; i = 1; : : : ; n, denote the h�least solutionof S3.Claim 5. For all i,(1) X2;i � X3;i ;(2) X3;i = h �XiBoth assertions follow by �xed point induction where for (1), we needthat h > 1. For (2) recall that �Xi = tj�0 �X(j)i where �X(0)i = 1, andX3;i = tj�0X(j)3;i where X(0)3;i = h. Since Eh : [1;1] ! [h;1] de�ned byEh(y) = hy commutes with �t� and �u� and maps �+� to ���, Assertion(2) follows by induction on j. 2Claims 4 and 5 together imply the right inequality of Claim 1. 2The following theorem collects our results on �niteness for subsets 
 �ft;u;+; �g considered so far.Theorem 6. Assume S is a system of equations over N with operationsfrom 
 � ft;u;+; �g and least solution Xi; i = 1; : : : ; n. Then the set of alli with Xi =1 can be determined in time O(t
(jSj)) without multiplications.Proof. The case where 
 = fu;tg is trivially implied by Theorem 1.Otherwise, we can by Cor. 1 and Fact 2 w.l.o.g. assume that the assumptionsof Prop. 3 are satis�ed. Then the results follow from Theorems 2, 4 resp. 5.2 9. ConditionalsIn this section we extend the methods of the last sections to the case ofsystems S which additionally contain conditionals. Observe that in presenceof conditionals, removal of variables xi with, e.g., Xi = 0 or Xi = 1 is moreinvolved, since computing the least solution of (the image of) S over 3 maynot be meaningful if S contains occurrences of conditionals �>c;� with c � 2.For the following assume k � 2, � = f> c; j 0 � c < k � 1g, and
 � ft;u;+; �g.Theorem 7. Assume S is a system of equations over N with operationsfrom 
 [ � containing m occurrences of conditionals. Then the least solu-tion Xi; i = 1; : : : ; n, of S can be computed in time O((m + 1) � t
(jSj)).Multiplications are only needed provided S itself contained occurrences of���.



56 HELMUT SEIDLOne immediate method to construct the least solution of S would be toperform ordinary �xpoint iteration in the �nite domain k+2 to determineall the sets fi j Xi = rg, r = 0; : : : ; k. This information can then be used in asecond step to remove all conditionals which allows to apply our algorithmsfor systems of equations over 
. The �rst step however, consumes timeO((k + 1) � jSj) which depends on the size of the numbers occurring inconditions whereas the complexity of the new algorithm only depends onthe number of occurrences of conditionals. Therefore, the trivial solutionfavorably competes with our algorithm only provided k is su�ciently small.Proof. W.l.o.g. assume S is reduced, and assume that only for i =1; : : : ;m, fi � xji >ci; �i, and fi does not contain a conditional for i > m.Let D = 2m. Then S de�nes a mapping �S : D ! D as follows.For � � (�1; : : : ; �m) 2 D de�ne S� as the system of equations xi = f 0i ; i =1; : : : ; n, where for 1 � i � m,f 0i � � �i if �i = 10 otherwiseand f 0i � fi for the remaining i. Let X�;i; i = 1; : : : ; n, denote the leastsolution of S�. Then de�ne �S(�) = (�1; : : : ; �m) where �i = 1 i� the i�thcondition is satis�ed, i.e.,�i = � 1 if X�;ji > ci0 otherwiseClaim 1. �S is monotonic. 2Since D is �nite, �S is even continuous. De�ne � = tj�0 �(j) where�(0) = (0; : : : ; 0) and �(j) = �S(�(j�1)) for j > 0. Then � is the least�xpoint of �S , and we have:Claim 2. For all i = 1; : : : ; n,(1) X�(j);i � Xi for all j � 0;(2) X�;i = Xi.Assertion (1) of Claim 2 follows by usual induction on j whereas for aproof of assertion (2) it su�ces to show that X�;i; i = 1; : : : ; n, is indeed asolution of S. 2Observe that all the systems of equations S�(j) contain operations onlyfrom 
. Therefore, Claims 1 and 2 give rise to the following algorithm:(1) Initialize � := (0; : : : ; 0);(2) For j := 1 to m execute Steps (2.1), (2.2) and (2.3):(2.1) Compute S�;(2.2) Set X1; : : : ;Xn, to the least solution of S�;(2.3) Set � := �S(�);(3) Return X1; : : : ;Xn.



LEAST AND GREATEST SOLUTIONS OF EQUATIONS 57Since the length of the longest chain in D is m + 1, the least �xpoint of�S equals �(m). Therefore, m iterations su�ce. Since Step (2.2) can beimplemented by appropriate algorithms of the preceding sections the resultfollows. 2Using Fact 3, the idea for the algorithm of Theorem 7 can also be appliedto compute least solutions over some �nite domain k.Corollary 4. S be a system of equations over k with operations from 
[�containing m occurrences of conditionals. Using multiplications of integersof length O(log(k)), the least solution of S can be computed in time O((m+1) � t
(jSj)). 2Similar to the last section, we would like to determine the set fi j Xi =1g e�ciently without using unrestricted multiplications. This is indeedpossible. W.l.o.g. let us assume that our system S of equations is alreadynormalized. Let k � 2 be the least upper bound on the values occurring inconditions, and consider the map H : N ! k de�ned by H(x) = xu (k�1).Applying the algorithm of Cor. 4 to SH we determine the sets fi j Xi = rg,r = 1; : : : ; k�2, in time O((m+1) � t
(jSj)) using multiplications of integersof length O(log(k)). Using this information, we remove in a second step alloccurrences of conditions from S arriving at a system of equations S0 withoutconditionals but with the same least solution. To S0 we �nally apply thealgorithm from Theorem 6 to compute fi j Xi =1g. Thus, we have proved:Theorem 8. Assume S is a system of equations over N with operationsfrom 
 [ � and least solution Xi; i = 1; : : : ; n. If S contains m occurrencesof conditionals, the set of all i with Xi = 1 can be determined in timeO((m+ 1) � t
(jSj)) using multiplications of integers of length O(log(k)). 2As a �nal remark on the strength of Theorem 8 we consider an applicationin the �eld of �nite tree automata (see, e.g., [1, 6, 16] for motivation andprecise de�nitions).A �nite tree automaton A is a �nite state device operating on (�nite or-dered labeled) trees; a cost function c for A over semiring R maps everytransition of A to some polynomial over R which determines how the costof the whole computation is computed from the costs for the subcomputa-tions. In [16] cost functions over N are considered with operations �u� and�+�, and it is proven that it can be decided whether or not the least upperbound on the costs of all accepting computations is �nite. This was doneby proving an explicit upper bound on the costs of accepting computationsprovided the least upper bound is �nite. The decision procedure implied bythis upper bound could be implemented in polynomial space.It turns out that the given problem can be described by a system of equa-tions over N with operations from fu;t;+g. Therefore, Theorem 8 allowsboth an improvement in the complexity and a generalization to much morecomplicated cost functions. We obtain:



58 HELMUT SEIDLTheorem 9. For every �nite tree automaton A and every cost function forA over N using operations from 
 = fu;t;+; �g [ f>c; j c 2 Ng, it can bedecided in deterministic polynomial time whether the least upper bound onthe costs of all accepting computations is �nite. 210. Greatest SolutionsIn this section, we consider the computation of greatest solutions. Let Sdenote the system of equations xi = fi; i = 1; : : : ; n where fi are polynomialsover N with operations from N . Since the fi are monotone, and N satis�esthe descending chain condition (dcc), the fi are also continuous w.r.t. ���.Hence, the greatest solution �Xi; i = 1; : : : ; n, of S is be obtained by�Xi = uj�0 �X(j)iwhere �X(0)i =1 and for j > 0,�X(j)i = fi[ �X(j�1)1 ; : : : ; �X(j�1)n ]Note that (because of dcc), �xpoint iteration always terminates. However,it need not be e�cient since descending chains may have arbitrary length.Therefore, it makes sense to ask whether e�cient algorithms exist analogousto those for computing least solutions. It turns out that this is indeed thecase. Let us again start by considering systems S of equations withoutoccurrences of conditionals. Recall that by Cor. 2, we w.l.o.g. may assumethat S is reduced.Theorem 10. The greatest solution of a system S of equations over N withoperations from ft;+; �g can be computed in time O(jSj).Proof. Let S be the system xi = fi; i = 1; : : : ; n, and assume w.l.o.g.that S is reduced. Let �Xi; i = 1; : : : ; n, denote the greatest solution of S.Our key observation is:Claim. Let Q be a strong component of GS containing at least one edge.Then �Xi =1 for all i 2 Q. 2Since moreover, �Xj =1 whenever �Xi =1, and j is reachable from i, weobtain the following simple algorithm:(1) Reduce S;(2) Replace every right hand side fi 62 N with 1;This algorithm trivially runs in linear time. 2Next, we consider the general case where system S contains occurrencesof �u� as well. The main result of this section is:Theorem 11. The greatest solution of a system S of equations over Nwith operations from ft;u;+; �g can be computed in time O(jSj � log(jSj)).Multiplications are only needed if S itself contains occurrences of ���.



LEAST AND GREATEST SOLUTIONS OF EQUATIONS 59Proof. Let S be the system xi = fi; i = 1; : : : ; n, and assume w.l.o.g. thatS is reduced and fi 62 N for all i. Let �Xi; i = 1; : : : ; n, denote the greatestsolution of S and C the set of constant operands of �u� or �t� occurring inS. Analogous to Theorem 3, we would like to establish a lower bound onthe components �Xi.Claim 1. u C � �Xi for all i. Especially, C = ; implies that �Xi = 1 forall i.The proof of this claim follows directly by �xpoint induction. 2Next, we show how occurrences of the minimal operand in C safely can beremoved. For c = u C, de�ne the system S0 of equations xi = f 0i ; i = 1; : : : ; n,where f 0i is de�ned as follows.� If fi � � t c or fi � c t � then f 0i � �.� If fi � � u c or fi � c u � then f 0i � c.� Otherwise, f 0i � fi.Let �X 0i; i = 1; : : : ; n, denote the greatest solution of S0. Then the followingholds:Claim 2. �Xi = �X 0i for all i. 2Observe that jS0j < jSj. Therefore, Claims 1 and 2 allow to construct thefollowing algorithm:(1) Construct the corresponding reduced system;(2) Compute the set C;(3) While C 6= ; execute steps (3.1), (3.2) and (3.3):(3.1) Compute c := u C;(3.2) Remove all occurrences of c as an operand of �t� or �u�;(3.3) Construct the corresponding reduced system, and recompute C;(4) Replace the remaining right hand sides fi 62 N with 1.Since every iteration of the loop strictly decreases the size of the system ofequations, we have at mostO(jSj) iterations. By keeping C in an appropriatedata structure, all minimumextractions together with all new insertions taketime O(jSj � log(jSj)). Since all remaining actions only consume time O(jSj)the theorem follows. 2A simple special case of Theorem 11 is the problem of determining forevery vertex v in a graph G the minimal cost of paths (w.r.t. to a positivecost measure on the edges of G) from a distinguished source v0 to v. Here,our algorithm specializes to (a variant of) Dijkstra's algorithm (see, e.g.,[10]).Similar to the case of least solutions, we would like to determine for somek > 1, the sets fi j �Xi = yg with y = 0; : : : ; k � 2, without using multipli-cations of arbitrary numbers. The simplest idea is to execute the ordinary�xpoint iteration for system S but doing all computations within �nite do-main k. This results in an algorithm whose runtime depends on k. Insteadhowever, we may use the algorithm from Theorem 11 resulting in an algo-rithm with a runtime independent of k. We obtain:



60 HELMUT SEIDLCorollary 5. Assume S is a system of equations over N with operationsfrom ft;u;+; �g with greatest solution �Xi; i = 1; : : : ; n. For k > 1, the setsfi j �Xi = yg with y = 0; : : : ; k � 2, can be computed in time O(jSj � log(jSj))by using multiplications only of numbers up to length O(log(k)). 2We also would like to compute the set fi j �Xi = 1g e�ciently withoutusing multiplications.Theorem 12. Assume S is a system of equations over N with operationsfrom 
 � ft;u;+; �g and greatest solution �Xi; i = 1; : : : ; n. Then the set ofall i with �Xi =1 can be determined in polynomial time.Depending on 
, we achieve the following complexity bounds:
 = ft;+; �g : O(jSj)
 = ft;u;+; �g : O(jSj � log(jSj))The proof is based on the next proposition which is the analogue to Prop.3 in case of least solutions. The proof of this proposition is based on asimilar construction.Proposition 4. Assume S is a normalized system of equations over Nwith operations from 
 � ft;u;+; �g and greatest solution �Xi; i = 1; : : : ; n.Assume �Xi > 0 for all i. Then a system S0 can be constructed (withoutmultiplications) in time O(jSj) with greatest solution X 0i; i = 1; : : : ; n; suchthat1. S0 contains operations only from 
nf�g;2. For every i, �Xi =1 i� X 0i =1. 2An extension of the presented greatest �xpoint methods to systems ofequations containing one�sided conditionals is possible as well. Since wecompute greatest solutions we start the iteration with the assumption thatall conditions hold true. The rest of the computation proceeds completelyalong the lines of Section 9. 11. ConclusionWe presented e�cient algorithms which compute the least and greatest so-lutions of a system S of equations over N for various sets of operations.The algorithms use multiplications only provided S itself contains multipli-cations. In order to compute the set of all components where the resultis 1, we derived polynomial time algorithms without multiplications. Weextended our results by allowing occurrences of conditionals as well.
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