Nordic Journal of Computing 3(1996), 40-61.

LEAST AND GREATEST
SOLUTIONS OF EQUATIONS
OVER NV

HELMUT SEIDL
FB IV - Informatik
Universitdt Trier
D-54286 Trier
Germany
seidl@ti.uni-trier.de

Abstract. We consider the problem of computing least and greatest solutions of
a system of equations z; = f;, ¢ = 1,...,n, over N/, i.e., the naturals (extended
by c0), where the right hand sides f; are expressions built up from constants and
variables by various sets of operations.

We present efficient algorithms in case where the following operations occur:

(1) minimum and maximum;
(2) maximum, addition and multiplication;
(3) minimum, addition and multiplication;

(4) minimum, maximum, addition and multiplication.

We extend the methods to the cases where (one-sided) conditionals are allowed as
well.

CR Classification: D.3.4, F.4.1, G.2.1

Key words: equations over integers, least or greatest solution, program analysis

1. Introduction

Assume D is a complete partial order (cpo) with least element L. Assume
X, ={x1,...,2,} is a set of variables, and let Q denote a set of continuous
binary operations on D. The set of polynomials Dq[X,] with operations
from €2 consists of all expressions built up from constants d € D, variables
x € X, by application of operations from 2. If €2 is understood, we will also
omit it in the index. Every polynomial f € Dq[X,]| denotes a continuous
function [f] : D™ — D. If the meaning is clear from the context, we do not
distinguish (notationally) between f and [f]. However, we write f = g if
we mean syntactic equality and f = ¢ if they denote the same functions,
ie., [f] = [g]- Let S be a system of equations z; = f;,i = 1,...,n, with
fi € Da[X,]. The following fact is well-known from the theory of cpo’s and
continuous functions.

Received December 13, 1994; revised October 25, 1995. Communicated by Neil Jones.

LEAST AND GREATEST SOLUTIONS OF EQUATIONS 41

FacT 1. S has a unique least solution Xy,...,X,. X; is given by
X, =L x@
ST

where for every i, Xi(o) = 1 and Xi(j) = fi[ij_l), .. ,Xr(Lj_l)] forj > 0. O

Many compile time analyses of programs rely on computations of least
solutions of such systems of equations, cf. e.g., |2, 8,9, 3]. The least solution
of S can be computed effectively whenever D satisfies the ascending chain
condition (acc), meaning that every ascending chain

dy <dy <...<d;j<...

of elements d; € D, is ultimately constant. Corresponding techniques are
considered in [13, 7, 11, 12|. However, there are instances of compile time
program analysis which make use also of cpo’s which do not satisfy the
acc. One technique applicable in these unrestricted cases is the widen-
ing/narrowing approach of |2, 4|. While this approach is very general in
its applicability, it may not compute the least solution itself, but only an
upper bound to it. Therefore, we propose alternative methods at least for
the cpo of natural numbers (extended by o)

N={0<1l<...<n<...<o0}

Clearly, A/ does not satisfy the acc. However, meaningful analyses make use
of systems of equations over N.

In [14], an algorithm is proposed which detects whether instances of vari-
ables that exist in parallel in the PRAM language FORK are equal. It employs
systems of equations over N with operations “M” (minimum) and “LJ” (max-
imum). In the context of register allocation, an approximative complexity
analysis determines bounds to the number of uses of some variable.

ExaAMPLE 1. Consider, e.g., the following definition of a function possibly
occurring in a program (written in some strict functional language):

h y = letrec
gx =1ifx > 0 then (d y)
else 7 x (g (x — 1));
dz=2zxy —9
in
ify <0theny+ (g (—v))
else d(g (y + 1))

The goal is to assign registers to those variables which are most often
used. Calculating (some bounds to) the number of accesses to, say variable
y, results in the following equations:

zpn = 14+(2+xg) U(1+ 29+ 24))
zg = (1+zq) Uz
g = 1

42 HELMUT SEIDL

where z; counts the number of accesses to y during the execution of one call
to function f and the conditional is abstracted with “LJ”. The least solution
of the system provides an upper bound. To obtain a lower bound (at least
w.r.t. error—free program executions), one may compute the least solution
of the system of equations obtained by replacing “LI” with “M”. O

Thus, we need to compute least solutions of systems of equations over A/
with sets of operations {M,+} or {U,+}. Multiplications occur if programs
may contain for—loops (or tail recursion where the recursion depth is de-
termined by some variable’s value). For interval analysis, one may consider
an abstract domain N consisting of all intervals [n, +oc], n € N, ordered
by inclusion (cf. [4]). This domain is isomorphic to N where the order is
reversed. Observe that A indeed satisfies the ascending chain condition
(since N satisfies the descending chain condition). Therefore, all monotonic
functions are also continuous. Thus, least solutions over A/ correspond to
greatest solutions over N .

Therefore, in this paper we investigate the computation of least and great-
est solutions for systems of equations over A using various sets of continuous
operations and give efficient algorithms for all of these. The operations we
are interested in are “U” (maximum), “M” (minimum), “+” (addition, ex-
tended by co + 2 = x 4+ co = o00) and “” (multiplication, extended by
0-00=00-0=0and co-x = x-00 = 0o whenever z # 0). Note that
all these operations are commutative and associative. 0 is the neutral ele-
ment for “L” and “47, 1 is the neutral element for “.”
neutral element for “r”. Additionally to these we also consider (one—sided)
conditionals “>¢;” (¢ € N) defined by

whereas oo 1s the

y ifz>c

T >6Y = { 0 otherwise

The (theoretical) target architecture we have in mind to implement our
algorithms on is a random access machine (RAM). For simplicity, we use
the unit cost model to measure runtime complexities. Especially, we assume
that every element of A can be stored in one cell of our memory, that
tests d < d' and operations from €2 always can be executed in unit time.
Therefore, it makes sense to define the size |S| of system S of equations
z; = fi,i=1,...,n, by |S| =>i—(1+]fi|) where the size |f| of polynomial
f is given by |f| = 1 if p is a constant or a variable, and |f| =1+ |f1| + |f2]
if f=(f10f2) for some O € Q.

The unit cost assumption for every basic operation is realistic as long
as the numbers involved are not too large. Consider, e.g., the system of
equations

rT = 2
Tjiy1n = x;-T; foryj=1,...,n—1

The least solution X;,7 = 1,...,n, can be trivially obtained by n — 1 mul-
tiplications which however involve possibly exponentially large numbers. In

LEAST AND GREATEST SOLUTIONS OF EQUATIONS 43

order to produce least solutions by a polynomial number of operations, we
therefore cannot avoid to use multiplications in this case. However, we will
be as restrictive with the use of multiplications as possible. So, whenever
the considered systems of equations do not contain occurrences of “.”, our
algorithms will not use multiplications either. Also we show that, provided
the finite X; are smaller than some h, operations on numbers of length
O(log(h)) suffice. Finallly, we derive efficient algorithms to determine the
set of all 7 where X; < oo without using multiplications.

The rest of the paper is organized as follows. The next section provides
basic algorithmic facts, especially on the computation of least and great-
est solutions of equations over certain finite cpo’s. Sections 3, 4 and 6
present special algorithms to construct least solutions for various subsets of
operations, whereas Section 7 deals with operations minimum, maximum,
addition and multiplication alltogether. Section 5 proves a lower bound the-
orem which turns out to be crucial for the construction of least solutions of
systems of equations which contain “r1”. Section 8 shows how our basic al-
gorithms can be applied to speed up the computation of least solutions over
restricted ranges of integers, and derives polynomial finiteness tests without
multiplications even if the system contains “”. Section 9 extends the results
by additionally allowing occurrences of conditionals “> ¢;”. The results of
the previous sections can be applied to decide in polynomial time whether
or not the costs of tree automata with cost functions of a very general form
are bounded — a problem which has been left open in [16]. Finally, Section
10 considers the same questions for greatest solutions.

An extended abstract of the present paper appeared in [15]. The sections
on one-sided conditionals and greatest fixpoints are new.

2. Basic Facts

Let S denote a system of equations z; = f; over N with operations from €.
It turns out that it is convenient to assume that the right hand sides f; of S
are of one of the forms p or p;Opy where p, p1, p2 are variables or elements

of N and O € Q. Furthermore,
o Whenever f; € N then z; does not occur in any right hand side fj;
o Whenever f; = ¢;0cy with ¢1,¢9 € N, then O € {-,4};
o Whenever f; = p; >c¢; po then p; € N;
o 1 does not occur as an operand of “.”;

o 0 does not occur as an operand at all, and co may only occur as an
operand of “” or as the second operand of some conditional.

Systems with these properties are called normalized. A normalized system
is called reduced iff oo does not occur as an operand, and for no j and no
operation O, f; = ¢;Ocy with both ¢; € N and ¢y € N.

44 HELMUT SEIDL

EXAMPLE 2. In order to normalize the system of equations from Example 1,
we break large expressions into smaller ones by the introduction of auxiliary
variables yp:

r, = 14wy Yya = xy+1
y1 = yaUys rg = YsUwzy
Y2 = 2+, ys = 141
ys = 14wy rg = 1

To obtain a reduced system, we additionally evaluate the right hand side for
ys and replace all occurrences of y5 in right hand sides with 2. O

Using this idea we find:

FacT 2. For every system S of equations with variables x1,...,z, a normal-
ized system S’ with variables z1,...,z,, for some m > n can be constructed
(without multiplications) in time O(|S|) with least solution (resp. greatest
solution) X7,..., X,, such that Xi,..., X, is also the least solution (resp.
greatest solution) of S. O

For k£ > 2, let k denote the total order {0 < 1 < ... < (k— 1)}, and
consider the set Q© = {1, U, ®, ®} of operations on k where “lJ” and “r” are
maximum and minimum as usual, and “®@” and “©” are truncated addition
and multiplication, i.e., @y = (z+y)N(k—1) and 2Oy = (z-y) M (k—1).
For simplicity, we will denote “®” and “®” by “4+” and “” as well. Domain
k together with mapping H : N — k defined by

H(y) =yn(k—1)

can be used to determine the behavior of system S “up to k& — 2”. The
reasons are the following:

o H is faithful on {0,...,k — 2}, ie., {y} = H ' (H(y)) for all y €

{0,...,k -2}
o H maps least element to least element and greatest element to greatest
element;

o H commutes with operations “M”, “L”, “+”, “” as well as with con-

ditionals “>¢;” whenever 0 < ¢ < k — 1; moreover,
o H is continuous.
These properties allow to prove Fact 3. Let Q@ = {r,U,+,-} and " denote
the set {>¢; | 0 < ¢ < k —1}. Consider a system S of equations z; =
fi,i = 1,...,n, over N' with operations from Q UT. For f € Ngour[X]
let (Hf) € kqur[X] denote the polynomial obtained from f by replacing
every coefficient d with H(d) and the operations on A/ by the corresponding
operations on k. Let Sy denote the system

-’Ez:(Hfl)a izl,...,TL

over k with operations from 2 UI'. Then we have:

LEAST AND GREATEST SOLUTIONS OF EQUATIONS 45

FacT 3. Let X;,i=1,...,n,and X;,i = 1,...,n, be the least and greatest
solutions of S, respectively. Accordingly, let Xy ;,7 =1,...,n,and Xp;,i =

1,...,n, be the least and greatest solutions of Sy, respectively. Then
1. Xpg; = H(X;) for every i;
2. Xy, = H(X;) for every i.]

Since the finite domains k satisfy the acc least solutions of systems over k
as well as greatest solutions can be computed effectively. Using the worklist
algorithm known from dataflow analysis instead of naive fixpoint iteration,
we find that these solutions can even be computed efficiently.

FACT 4. Assume k& > 2. Then the least (resp. greatest) solution of a nor-
malized system S of equations over k with operations from QUI" can be com-
puted in time O(k-|S|). Provided S contains multiplications, the algorithm
may use multiplications as well but only of integers of length O(log(k)). O

COROLLARY 1. Assume S is a system of equations over N with operations
from QUT and least solution X;,i = 1,...,n, (resp. greatest solution X;,i =
1,...,n). For every k > 0, we can compute the sets {i | X; = y}, y =
0,....k, (resp. {i | X; =y}, y=0,...,k) in time O((k + 1) -|S|). Provided
S contains multiplications, the algorithm may use multiplications as well but
only of integers of length O(log(k + 1)). |

By Cor. 1, we can determine in linear time the set of all 2 such that value
X; of the least solution for x; equals 0 (resp. the set of all ¢ such that value
X; of the greatest solution for z; equals 0). Using this information, we can
remove both all operands 0 and all operands oo (of “”). We conclude:

COROLLARY 2. For every normalized system S of equations reduced systems
S1 and Sy of equations can be constructed in time O(|S|) where Sy has the
same least and Sy has the same greatest solution as S. Multiplications are
only needed if S itself contains occurrences of “”. a

In the following, we first consider the fast computation of least solutions
for various subsets of operations. Finally in Section 10, we deal with the
computation of greatest solutions as well.

3. Minimum and Maximum

THEOREM 1. If S is a system of equations over N with operations from
{n,u} then the least solution of S can be computed (without multiplications)
in time O(|S| - log(|S]))-

Let S be the system x; = f;,¢ = 1,...,n, with least solution X;,7 =
1,...,n. Observe that X; < h for all 4 where A > 0 is the least upper bound

46 HELMUT SEIDL

on the constants from A occurring in S. Therefore, Cor. 1 is applicable.
However, this would result in an O((h 4 1) - |S|)—algorithm.
PROOF. Because of Fact 2 we w.l.o.g. can assume that S is reduced. Let J
denote the set of all 2 where f; does not equal some constant. Furthermore,
let C denote the set of constant operands occurring in S. We observe:
CLAIM. If C =0 then X; =0 for all 7 € J. O
Therefore, assume C # @, and ¢ = LIC. Clearly, X; < cfor all : € J. We
will now show that all occurrences of ¢ in S as an operand can be safely
removed. Let S’ be the system of equations z; = f/,i = 1,...,n, where the
f] are obtained as follows.
o If fi=xzjNcor f; =cMNuz; then f] = z;.
oIf fi=xjUcor fi =clUuxj then f] =c.
o Otherwise, f/ = fi.
S’ has the same least solution as S. Thus, our algorithm constructing the
least solution of S works as follows.

(1) Construct the equivalent reduced system.
(2) Compute sets C and J.
(3) While C # 0 execute Steps (3.1) through (3.4):

(3.1) Set c:=UC.

(3.2) Remove all occurrences of ¢ in S as an operand.

(3.3) Construct again the equivalent reduced system.

(3.4) Remove ¢ from C, and recompute .J.

(4) Finally, set f; = 0 for all remaining ¢ € .J.

By a suitable data structure for S, all the removals in Step (3.2) together
with the reduction in Step (3.3) can be executed in time O(|S|). In order
to efficiently implement the selection in Step (3.1) we can, e.g., keep C
in a sorted list. Then, all maximum computations of Step (3.1) together
consume time O(|S]). It follows that, once this representation for C has
been computed, the remaining steps of the algorithm take time O(|S|). O

Note that if constants d € A occurring in right hand sides are from a small
range we may use bucket sort instead of some general sorting algorithm
which brings complexity down to O(|S|) for this case.

4. Maximum, Addition and Multiplication

THEOREM 2. If S is a system of equations over N with operations from
{U,+,-}, then the least solution of S can be computed in time O(|S]). Mul-
tiplications are only needed provided S itself contains multiplications.

PROOF. Let S be the system z; = f;,7 = 1,...,n, with least solution
X;,o =1,...,n. To compute this least solution of S, we proceed in three
steps:

(1) We determine values X; for all ¢ where X; € {0,1};

LEAST AND GREATEST SOLUTIONS OF EQUATIONS 47

(2) We determine the set of all ¢ where X; = oo;

(3) We determine the remaining values Xj.

By Cor. 1, Step (1) can be executed in linear time. Therefore w.l.o0.g. assume
S is reduced where X; > 1 for every i. For S define graph Gg = (Vg, Eg)
by Vs = {1,...,n} where (i,j) € Eg iff x; occurs in f;. Gg is also called
dependence graph of S.

A fast implementation of Step (2) is based on the following two claims.
Cram 1. If X; = oo for some ¢ then X; = oo for every j reachable from
1.

Claim 1 states that oo wherever it turns up is propagated along every edge.
The reason for this is that by our assumptions, the result of an operator
application cannot be less than any of its operands. a
Cramm 2. Let @ be a strong component of Gg. If Q contains an edge (i, 7)
where f; contains an occurrence of “4” or “.”, then X; = oo.

Claim 2 locates a source for infinity: namely, a strong component contain-
ing an edge e = (i,7) corresponding to an occurrence of “+” or “” in the
right hand side f; for ;. Thus, a cyclic path 7 exits which contains edge
e. 7 represents a cyclic dependency between variables z; and z;. Since “+”
or “” applied to finite values dy, do returns a value which is strictly greater
than both d; and ds, fixpoint iteration results in an unbounded sequence of
approximations XJ(-t) for X;. O

Assuming that Claims 1 and 2 together characterize all z with X; = oo, we
can construct a linear algorithm that implements Step (2) of our algorithm.
Sufficiency of the claims however follows from Claim 3 which provides a
method to compute the values X; for the remaining .

Assume that we determined all ¢ where according to Claims 1 and 2,
X; = oo, replaced the corresponding right hand sides f; with co, and reduced
the resulting system.

Therefore, now assume S is a reduced system where f; does not contain
“+” or “” for any edge (7,7) in a strong component of Gg.

Let @ be a strong component of Gg containing at least one edge such that
each ¢ in @) is reachable only from nodes in @ itself. Let Cg denote the set
of all constant operands of “LI” occurring in f;,7 € Q. We observe:

Cram 3. X; = UCq for every j in Q. a

ExAMPLE 3. Considering the reduced system of equations from Example 2,
we find that {z;} is a strong component as demanded for Claim 3. Since
the right hand side for x4 equals 2 U x4, Claim 3 implies that X, = 2. a

Based on Claim 3, Step (3) can be implemented by a suitable depth—first
scan over GGg in linear time. This completes the proof of the theorem. 0O

5. Lower Bounds

In Sections 6 and 7 we will, in addition to arithmetical operations “+” and
“.” also consider the minimum operation. Moreover in Section 7, we will

48 HELMUT SEIDL

exploit that, starting fixpoint iteration at some h > 0, may allow to simplify
system S without changing the solution. Therefore, Theorem 3 does not
deal with least solutions but with hA—least solutions for h > 0. The h-least
solution of S is defined as the least solution X;,7 = 1,...,n, of S with
X, > h for all .

The starting point for our derivation is Theorem 2 whose generalization
to h—least solutions proves the lower bound at least for systems S without
occurrences of “1”.

PROPOSITION 1. Let h > 0, and S denote a reduced system of equations
z; = fi,i = 1,...,n, over N' with operations from {U,+,-} where f; ¢ N,
and let C denote the set of constant operands of “U7 occurring in of S.
Assume X;,t =1,...,n s the h—least solution of S where X; > h for all i.
Then MC < X; for all i. Especially, C = () implies that X; = co for all 1.

PROOF. In case h > 1, the given lower bound on the X; easily follows
from a generalization of the characterization in Claims 1, 2 and 3 within the
proof of Theorem 2. to h-least solutions. In case, h = 0 and X; = 1 for
some 7, it turns out that in fact, 1 must occur as an operand of “LI” in S. O

Now consider a system S of equations z; = f;,i = 1,...,n, over N with
operations from Q = {M,U, +,-} and h-least solution X;,i = 1,...,n. Let
J denote the set of all 7 such that f; contains “M”. The J—tuple p is called
legal choice iff = (y;j)jcs where for every j € J with f; = pj, M pj,,
y;j € {pj.,pj,}- Let M denote the set of all legal choices.

For legal choice p = (y;)jec, let S, denote the system of equations z; =

gi,t=1,...,n, where g; = y; whenever ¢ € J and g; = f; otherwise.
PropPoSITION 2. Let X, ;,i = 1,...,n, denote the h-least solution of S,,.
Then

1.VpeM:Viel,n]: X; <X, ;;
2. Jpo e M :Vie[l,n]: X; =X,

O)i'

PRrROOF. Assertion 1 follows by usual fixed point induction. Therefore,
consider Assertion 2. For every f; = p1 M pg, we have X; = p1[Xq,..., X, N
p2[X1,...,X,]. Consequently, X; = p,,[X1,...,X,] for some v; € {1,2}.

Hence, we define p9 = (py;)jes. By construction, X;,i = 1,---,n, is a
solution of S, with X; > h for all 7. Therefore, X, ; < X; for all 7. Since
by Assertion 1, also X; < X, ; for all 7, Assertion 2 follows. O

Prop. 2 can be used to derive the desired generalization of Prop. 1.

THEOREM 3. Let h > 0, and consider a reduced system S of equations over
N with operations from Q where f; € N for all i, and let C denote the set
of constant operands of ‘1”7 or “U” occurring in S. Assume X;,1=1,...,n
15 the h-least solution of S. where X; > h for allt. Then MC < X; for all
i. Especially, C = 0 implies that X; = oo for all i.

LEAST AND GREATEST SOLUTIONS OF EQUATIONS 49

Proor. Consider the system of equations S, as constructed in the proof
of Prop. 2. S,, has the same h-least solution as S but does not contain
occurrences of “I1”. Let S’ denote the reduced system x; = f/,i =1,...,n,
corresponding to Sy,. Let C' denote the set of constant operands of “” or
“J” occurring in S’.

Moreover, let R denote the set of i where f; € N'. We observe:

1. MC < X, for all 7 € R;

2. Ac<mc.
Since by Prop. 1, M’ < X; for all 7 € R, the assertion follows. |

6. Minimum, Addition and Multiplication

THEOREM 4. If S is a system of equations over N with operations from
{M,+,-}, then the least solution of S can be computed in time O(|S|-log(]S])).
Multiplications are only needed provided S itself contains multiplications.

PrROOF. Let S denote the system x; = f;,2 = 1,...,n, with least solution
Xi,2 = 1,...,n. We start by determining the values of the X; for all
where X; = 0. By Cor. 1, this can be done in linear time. Therefore, let
us again assume w.l.o.g. that S is reduced with f; ¢ N and X; > 0 for all
i. (X; # 1 is not required by our algorithm). Let C denote the set of all
constant operands of “M” occurring in S. The following claim immediately
follows from Theorem 3:

CLAIM.

1. If C = 0 then X; = oo for all 4.

2. Assume C # 0 and ¢ =T1C. If fy =x;Mcor f; = cMNaxj then X; = c.
O

EXAMPLE 4. Consider the following system of equations:

ry = x3+1 x5 = TNy
Tro9 = I3 M Te re — 4 + T
r3 = 3Mxy Ty = X1-T9
ry = Tp M Te

Then, X; > 0 for all i. The set C of constant operands of “M” equals {3, 7}
where 3 occurs in the third equation. Hence, X35 = 3. O

Based on our claim, we construct the algorithm as follows.

(1) Compute the sets of all ¢ where X; = 0, and replace the corresponding
right hand sides with 0.

(2) Construct the equivalent reduced system.
(3) Compute the set C.
(4) While C # 0, execute steps (4.1) to (4.4).

50 HELMUT SEIDL

(4.1) Compute c:=TC.

(4.2) Replace every right hand side ¢ M z; and every right hand side
x; Mc with c.

(4.3) Construct the corresponding reduced system.

(4.4) Recompute C.

(5) For all remaining 7, replace f; with oco.

By appropriate data structures for S, all the updates in (4.2) and (4.3)
together can be executed in time O(]S|). The set C is kept in a priority
queue. Using an efficient implementation for a priority queue (see, e.g., [5])
we find, that all minimum extractions of (4.1) together with all insertions
and deletions of (4.4) can be executed in time O(|S] - log(]S|)). Thus, the
overall complexity of the algorithm is O(|S| - log(|S])). O

7. All Operations Together

THEOREM 5. Assume S is a system of equations over N with operations
from {M,U,+,-}, and X;,i = 1,...,n, is the least solution of S. Then the
following holds:

1. Let h > 1 and d < h for every constant d occurring in any of the f;.
Then

ColSI g £ ;
X.<oo iff X< h2|52| if fi € N{U’m7+}[Xn] for all 1
h otherwise
2. The least solution of S can be computed in deterministic time O(|S|?).

Multiplications are only needed provided S itself contains multiplica-
tions.

Note that by Assertion (1) of the Theorem and Cor. 1, the least solution
of S can be effectively determined. However, the resulting algorithm may
have double exponential running time. Alternatively, Prop. 2 could be used
to determine whether for given Y and ¢, X; < Y. However, this algorithm
would only run in nondeterministic polynomial time.

PROOF OF STATEMENT (1). First observe that we w.l.o.g. may assume
that

1. S is normalized, and

2. 1 < X; < oo for all 4.

Secondly, we observe that the given bounds easily can be seen to hold pro-
vided S only contains operations from {+,-}. Therefore, our proof is based
on the following claim:

CrAIM 1. A system S’ of equations x; = f/,i = 1,...,n, can be constructed
having the same least solution as S but which uses operations from {+,-}
alone.

LEAST AND GREATEST SOLUTIONS OF EQUATIONS o1

Because of Prop. 2 we w.l.o.g. may now assume that S is a system of
equations with operations from {LJ,+,-}.

Let @ denote some strong component of the dependence graph Gg of S
and some node ¢ from Q.

Cram 2. If f; contains “UU”, then some j in Q exists such that f; con-
tains an operand pgp which is not some variable from @ such that X; =
pQ[Xl,...,Xn]. d

With the help of Claim 2, S’ is obtained from S as follows.

If f; does not contain “LI”, then f; = f;. Otherwise, we put f] = pg where
@ is the strong component in which ¢ is contained.

In order to prove the correctness of the construction, we simply execute
the algorithm from the proof of Theorem 2 on both systems. It turns out
that it indeed computes the same least solution on input S as on input S’.
O

The proof of statement (2) is based on Theorem 3. Additionally, we need
the following observations on h—least solutions of system S.

FacTt 5. If h > h' > 0 and X; > h for all ¢ then the h-least solution of S
equals the h'-least solution of S. |

For h > 0, system S is called h—reduced if S is reduced and h < ¢ for every
constant operand of “I” or “U” occurring in S.

FAacT 6. Assume h > 0, and S is reduced where X;,i = 1,...,n, is the
h-least solution of S. Assume furthermore, that X; > h for every . Then a
h-reduced system S’ can be constructed in time O(|S|) such that the h-least
solution of S’ equals X;,i =1,...,n.

PROOF. For a proof observe that S cannot contain any equation x; = f;
where f; = p1 M po with p1 = ¢ < h or pg = ¢ < h. Therefore, consider
system S’ of equations z; = f! which is obtained from S as follows.
o If fy = cUx;j or f; = zjUc where ¢ € N and ¢ < h then define f] = z;;
o Otherwise, define f! = f;.
Clearly, S’ is h-reduced, and the h-least solution of S’ equals the h-least
solution of S. a

Observe that the h-reduced system S’ constructed in the proof of Fact 6
has not necessarily the same least solution as S. This can be seen from the
following simple system S of equations:

T =21+ 22 Tro =x3U1 r3=1x1012

S has least solution X7 = oo, X9 = X3 = 2. Especially, X; > 1 for all . By
Fact 5, this is also the 1-least solution of S. Therefore, we can construct
the corresponding 1-reduced system S’. It is given by:

Ilzl‘l—l—.’ﬂg Tr9 = I3 I3:.’E1|_|2

The 1-least solution of S’ is indeed equal to the 1-least solution of S. The
least solution of S, however, is different. It is given by X| = X} = X} = 0.

52 HELMUT SEIDL

FacT 7. Assume 0 < h < m, and S is a reduced system of equations z; = f;,
i=1,...,n, over m (or N if m = oo) with operations from Q and h-least
solution X;,72 = 1,...,n where for all 4, X; > h. Then the set of all « with
X, = h can be computed in time O(]S|).

PROOF. W.l.o.g. we only consider the case where m = oo, ie., S is a
system of equations over A/. By Facts 5 and 6 we can also assume that S is
(h — 1)-reduced. Let [h, o] denote the partial ordering

h<(h+1)<(h+2)<...<o
We introduce the map Hy, : [h,00] — 2 defined by

0 ifz=n
Hh(x)_{ 1 ifz>h

We have for all z1, 29 € [h,o0]:

1. Hp(zy +d) =1 for all d > 0.

2. If h =1 then Hp(zy - x9) = Hp(x1) U Hp(x2).

If h > 1 then Hyp(xy-d) =1 for all d > 1.

3. Hp(xy Uzy) = Hyp(x1) U Hp(x2); and finally,

4. Hh(azl M 1'2) = Hh(azl) M Hh(ajg).
Let J denote the set of all ¢ such that not f; = ¢ < h, and S}, denote the
system of equations z; = H}, f;,7 € J, where Hy, f; is defined as follows.

o If f; = ¢ > h then Hyf; = Hyec.
o If f; contains “4” then Hyf; = 1.
o If f; = p1 - p2 we have to distinguish between the cases h = 1 and
h > 1. If h =1 then Hyf; = Hy(p1) U Hp(p2) (where Hy(z;) = x;). If
h > 1 then Hyf; = 1.
o Otherwise, Hy f; = f;.
Let Xj 4,1 =1,...,n, denote the least solution of S;. We find:
CrLAM. For allz e J, X} ; = H,X;. O
This Claim together with Fact 4 implies the assertion. O

EXAMPLE 5. Consider system S of equations

ry = xllxs3 ry = xUwxs
ro = I + T4 rs — I3 mno
T3 = x4 U7 rg = x9+4

Then S is 6-reduced with X; > 7 for all 7. To determine the set of all 7 with
X; =7, we construct the following system of equations:

r1T = T2 M xr3 ry = I (] ZIs5
Ty = 1 rs = x3M1
xr3 = T4 T = 1

LEAST AND GREATEST SOLUTIONS OF EQUATIONS 53

The occurrences of 7 and 9 are replaced with 0 and 1 respectively; moreover,
the right hand sides for 3 and zg have been replaced with 1. Solving this
system we find that {i| X; =7} = {1,3,4,5}. 0

PROOF OF STATEMENT (2). Assume system S is reduced where f; ¢ N’
and X; > 0 for all 7. Let C the set of all constant operands of “M” or “LI”
occurring in S.

If C = 0 then by Theorem 3, X; = oo for all i. Therefore, assume C # ()
and let ¢ > 0 denote the smallest element in C. By Fact 7 we know that the
set of all + where X; = ¢ can be computed in linear time.

Assume we have replaced all f; with the minimum ¢ of C whenever X; = ¢
and afterwards constructed the corresponding reduced system. Then by
Fact 6, we can remove all occurrences of ¢ as operands of “IM” or “U”. This
procedure can be iterated until all constant operands of “r1” or “LI” in the
system are removed. Thus, we obtain the following algorithm to compute
the least solution of a system of equations S:

(1) Compute the set of all # where X; = 0, and replace the corresponding

right hand sides with 0.

(2) Construct the equivalent reduced system.

(3) Compute the set C of all constant operands of “I” or “LI” occurring
in S.

(4) While C # 0 execute steps (4.1) to (4.4):

4.1) Compute ¢ :=T1C.

4.2) Determine the set .J of all 7 where X; = c.

4.3) For every j € J replace every right hand side f; with c.
4.4) Construct the corresponding c—reduced system and recompute C.

(
(
(
(
(5) Replace every remaining f; ¢ A with co.

To determine the complexity of the algorithm, first observe that the size of
the system of equations under consideration after every iteration of the loop
is strictly decreasing. Since every iteration can be executed in time O(]S|)
the result follows. a

8. Consequences

Depending on €2, let tq denote the function with

T ifQ={u,+,}
to(z) =< x-log(z) ifQ={u,N}or Q={n+,-}
z? if Q= {u,n,+,-}

By Fact 3, Theorems 1, 2, 4 and 5 can be used to speed up Cor. 1.

COROLLARY 3. For k > 2 let S be a system of equations over k with op-
erations from Q C {U,MN,+,-}. Using multiplications of integers of length
O(log(k)), the least solution of S can be computed in time O(tq(]S|)). O

54 HELMUT SEIDL

Note that the given complexity bounds are independent of k.

Instead of determining the precise values of the least solution only up to
some given bound k, we are sometimes also interested in computing the set
of all © where X; = oco. It turns out that in this case, we can eliminate all
multiplications from our algorithm. The key tool for this is provided by the
following proposition.

PROPOSITION 3. Assume S is a normalized system of equations over N
with operations from Q C {U,M,+,-} and least solution X;,i = 1,...,n.
Assume X; > 1 for all i. Then a system S can be constructed (without
multiplications) in time O(|S|) with least solution X;,i = 1,...,n, such that

1. S contains operations only from Q\{-};

2. For every i, X; = oo iff X; = co.

PROOF. Define S as the system of equations obtained from S by replacing
every occurrence of every ¢ € A/ with 1 and every occurrence of “” with
((+7’.
CLAIM 1. Some h > 1 exists such that for all i, X; < X; < hX:.

The assertion of the proposition obviously follows from Claim 1. To prove
Claim 1, we successively consider Claims 2, 3, 4 and 5.

Let S; be the system of equations obtained from S where every occurrence
of “” is replaced by “+7, and let X ;,7 =1,...,n, denote the least solution

of Sl.

CLAmM 2. Foralli=1,...,n,
(1) X1 <X
(2) 2 < Xy,

(do)
2
Since y1 + y2 < y1 - y2 whenever 2 < y; and 2 < y5, we conclude that for all
¢ and 7, X&-) < Xi(]ﬂO). Thus, Assertion (1) of Claim 2 follows.
To prove’Assertion (2) of Claim 2 just observe that y; - y2 < y1 + ¥2
whenever y; < 2 and yy < 2. O
Choose some h > 1 such that ¢ < h for every ¢ € N occurring in S.

Cram 3. For all ¢,

Since 2 < X for every i, some jo exists such that for every i, 2 < X

(1) X; <Xy; <h-Xj

(2) 1< X;.

Assertion (1) follows by usual fixed point induction, whereas Assertion (2)
is implied by Assertion (1). O

The first Assertions of Claims 2 and 3 imply the left inequality of Claim 1.
Also for later use, observe that by Assertion (2) of Claim 3, X;,i = 1,...,n,
is also the 1-least solution of S.

Next, we approximate S from above. Define Sy as the system of equations
obtained from S by replacing every occurrence of every ¢ € N with h. Let
Xoi,1=1,...,n, denote the least solution of S5.

CLAIM 4. For all 4,

(1) X < Xos;

LEAST AND GREATEST SOLUTIONS OF EQUATIONS 59

(2) h < Xs;.
Assertion (1) of Claim 4 again follows by fixed point induction, whereas
Assertion (2) follows from Theorem 3. Observe that by (2), X»,,i=1,...,n,

is also the h-least solution of Ss. O
Let S3 be the system of equations obtained from Sy by replacing every oc-
currence of “+” with “”. Let X3;,2 =1,...,n, denote the h-least solution
of Sg.
CrLAIM 5. For all 4,
(1) X < X35
(2) X3, =h'i

Both assertions follow by fixed point induction where for (1), we need
that h > 1. For (2) recall that X; = UJ>0X(J) where Xi(o) = 1, and

X3; = Uj>o X:gjz) where X:goz) = h. Since Ej, : [1,00] — [h,00] defined by
Eh() = hY commutes with “U” and “r1” and maps “+7 to “”, Assertion
(2) follows by induction on j. O

Claims 4 and 5 together imply the right inequality of Claim 1. O

The following theorem collects our results on finiteness for subsets 2 C
{U,M,+, -} considered so far.

THEOREM 6. Assume S is a system of equations over N with operations
from Q C {U,MN,+,-} and least solution X;,i =1,...,n. Then the set of all
i with X; = 0o can be determined in time O(tq(|S|)) without multiplications.

PrROOF. The case where Q@ = {M,U} is trivially implied by Theorem 1.
Otherwise, we can by Cor. 1 and Fact 2 w.l.o.g. assume that the assumptions
of Prop. 3 are satisfied. Then the results follow from Theorems 2, 4 resp. 5.
O

9. Conditionals

In this section we extend the methods of the last sections to the case of
systems S which additionally contain conditionals. Observe that in presence
of conditionals, removal of variables x; with, e.g., X; =0 or X; = 1 is more
involved, since computing the least solution of (the image of) S over 3 may
not be meaningful if S contains occurrences of conditionals “>¢;” with ¢ > 2.

For the following assume k¥ > 2, I' = {> ¢ | 0 < ¢ < k — 1}, and
QC{u,m+,-}.

THEOREM 7. Assume S is a system of equations over N with operations
from QUL containing m occurrences of conditionals. Then the least solu-
tion X;,i = 1,...,m, of S can be computed in time O((m + 1) - ta(]|S])).

Multiplications are only needed provided S itself contained occurrences of
[

56 HELMUT SEIDL

One immediate method to construct the least solution of S would be to
perform ordinary fixpoint iteration in the finite domain k42 to determine
all the sets {7 | X; = r}, » =0,...,k. This information can then be used in a
second step to remove all conditionals which allows to apply our algorithms
for systems of equations over 2. The first step however, consumes time
O((k + 1) - |S|) which depends on the size of the numbers occurring in
conditions whereas the complexity of the new algorithm only depends on
the number of occurrences of conditionals. Therefore, the trivial solution
favorably competes with our algorithm only provided k is sufficiently small.
PROOF. W.lo.g. assume S is reduced, and assume that only for ¢ =
1,...,m, f; = x;;, >c;;p;, and f; does not contain a conditional for 2 > m.
Let D = 2™. Then S defines a mapping ug : D — D as follows.

For a = (a1, ...,) € D define S, as the system of equations x; = f/,i =
1,...,n, where for 1 <i <m,

f(:{ pi ifa;=1

0 otherwise

and f; = f; for the remaining i. Let X,;,7 = 1,...,n, denote the least
solution of S,. Then define pg(a) = (B4, ..., Bm) where 3; = 1 iff the i—th

condition is satisfied, i.e.,

B = { 1 if Xoj >0
"7 0 otherwise
CLAIM 1. pg is monotonic. O
Since D is finite, pug is even continuous. Define a = Llj>o ol9) where
o = (0,...,0) and a9 = pg(al=Y) for j > 0. Then « is the least
fixpoint of ug, and we have:

Cramn 2. Foralli=1,...,n,

(1) X, <X forall j >0

(2) Xo,i =X,

Assertion (1) of Claim 2 follows by usual induction on j whereas for a
proof of assertion (2) it suffices to show that X, ;,i =1,...,n, is indeed a
solution of S. O

Observe that all the systems of equations S,) contain operations only
from €2. Therefore, Claims 1 and 2 give rise to the following algorithm:

(1) Initialize o := (0,...,0);
(2) For 7 :=1 to m execute Steps (2.1), (2.2) and (2.3):

(2.1) Compute Sy;
(2.2) Set Xi,...,X,, to the least solution of Sy;
(2.3) Set o := pg(a);

(3) Return Xy,...,X,.

LEAST AND GREATEST SOLUTIONS OF EQUATIONS 57

Since the length of the longest chain in D is m + 1, the least fixpoint of
ps equals o™, Therefore, m iterations suffice. Since Step (2.2) can be
implemented by appropriate algorithms of the preceding sections the result
follows. O

Using Fact 3, the idea for the algorithm of Theorem 7 can also be applied
to compute least solutions over some finite domain k.

COROLLARY 4. S be a system of equations over k with operations from QUT
containing m occurrences of conditionals. Using multiplications of integers
of length O(log(k)), the least solution of S can be computed in time O((m +
1) - ta(lS]))- O

Similar to the last section, we would like to determine the set {: | X; =
oo} efficiently without using unrestricted multiplications. This is indeed
possible. W.l.o.g. let us assume that our system S of equations is already
normalized. Let £ — 2 be the least upper bound on the values occurring in
conditions, and consider the map H : A" — k defined by H(z) =z (k—1).
Applying the algorithm of Cor. 4 to Sy we determine the sets {i | X; = r},
r=1,...,k—2,in time O((m+1)-tq(]S|)) using multiplications of integers
of length O(log(k)). Using this information, we remove in a second step all
occurrences of conditions from S arriving at a system of equations S” without
conditionals but with the same least solution. To S’ we finally apply the
algorithm from Theorem 6 to compute {i | X; = co}. Thus, we have proved:

THEOREM 8. Assume S is a system of equations over N with operations
from QUT and least solution X;,i = 1,...,n. If S contains m occurrences
of conditionals, the set of all © with X; = oo can be determined in time
O((m+1) -tq(]S|)) using multiplications of integers of length O(log(k)). O

As a final remark on the strength of Theorem 8 we consider an application
in the field of finite tree automata (see, e.g., [1, 6, 16| for motivation and
precise definitions).

A finite tree automaton A is a finite state device operating on (finite or-
dered labeled) trees; a cost function ¢ for A over semiring R maps every
transition of A to some polynomial over R which determines how the cost
of the whole computation is computed from the costs for the subcomputa-
tions. In [16] cost functions over N are considered with operations “r1” and
“+” and it is proven that it can be decided whether or not the least upper
bound on the costs of all accepting computations is finite. This was done
by proving an explicit upper bound on the costs of accepting computations
provided the least upper bound is finite. The decision procedure implied by
this upper bound could be implemented in polynomial space.

It turns out that the given problem can be described by a system of equa-
tions over N with operations from {M, U, +}. Therefore, Theorem 8 allows
both an improvement in the complexity and a generalization to much more
complicated cost functions. We obtain:

58 HELMUT SEIDL

THEOREM 9. For every finite tree automaton A and every cost function for
A over N using operations from Q = {1, U, +,-} U{>¢; | c € N}, it can be
decided 1n deterministic polynomaial time whether the least upper bound on
the costs of all accepting computations is finite. O

10. Greatest Solutions

In this section, we consider the computation of greatest solutions. Let S
denote the system of equations z; = f;,2 = 1,...,n where f; are polynomials
over N with operations from N. Since the f; are monotone, and N satisfies
the descending chain condition (dcc), the f; are also continuous w.r.t. “>7.
Hence, the greatest solution X;,7 = 1,...,n, of S is be obtained by

X, =nx¥
B

where X'i(o) = oo and for j > 0,
Xz(]) = fi[Xij_l)a s 7X7(zj_1)]

Note that (because of dcc), fixpoint iteration always terminates. However,
it need not be efficient since descending chains may have arbitrary length.
Therefore, it makes sense to ask whether efficient algorithms exist analogous
to those for computing least solutions. It turns out that this is indeed the
case. Let us again start by considering systems S of equations without
occurrences of conditionals. Recall that by Cor. 2, we w.l.o.g. may assume
that S is reduced.

THEOREM 10. The greatest solution of a system S of equations over N with
operations from {U,+,-} can be computed in time O(|S]).

Proor. Let S be the system z; = f;,7 = 1,...,n, and assume w.l.o.g.

that S is reduced. Let X;,i = 1,...,n, denote the greatest solution of S.

Our key observation is:

CrAamM. Let @ be a strong component of Gg containing at least one edge.

Then X; = oo for all i € Q. O
Since moreover, Xj = 0o whenever X; = 0o, and j is reachable from i, we

obtain the following simple algorithm:

(1) Reduce S;
(2) Replace every right hand side f; ¢ A with oo;

This algorithm trivially runs in linear time. O

ext, we consider the general case where system S contains occurrences
Next, der th | h t S t
of “M” as well. The main result of this section is:

THEOREM 11. The greatest solution of a system S of equations over N
with operations from {U,M,+,-} can be computed in time O(|S| - log(|S])).
Multiplications are only needed if S itself contains occurrences of “7”.

LEAST AND GREATEST SOLUTIONS OF EQUATIONS 59

PROOF. Let S be the system z; = f;,¢ = 1,...,n, and assume w.l.o.g. that
S is reduced and f; € N for all i. Let X;,i = 1,...,n, denote the greatest
solution of S and C the set of constant operands of “M” or “ULI” occurring in
S. Analogous to Theorem 3, we would like to establish a lower bound on
the components X;.
CLAIM 1. MC < X; for all i. Especially, C = 0 implies that X; = oo for
all 4.
The proof of this claim follows directly by fixpoint induction. O
Next, we show how occurrences of the minimal operand in C safely can be
removed. For ¢ = M C, define the system S’ of equations z; = f/,i =1,...,n,
where f! is defined as follows.

oIf fi=pUcor fi=clUpthen f/ =p.

oIf fi=pNcor fi=cMpthen f/ =c.

o Otherwise, f/ = fi.
Let X!,i =1,...,n, denote the greatest solution of S’. Then the following
holds: B B
Cramv 2. X; = X! for all 4.]

Observe that |S’| < |S|. Therefore, Claims 1 and 2 allow to construct the

following algorithm:

(1) Construct the corresponding reduced system;
(2) Compute the set C;
(3) While C # 0 execute steps (3.1), (3.2) and (3.3):

(3.1) Compute c:=TMC;
(3.2) Remove all occurrences of ¢ as an operand of “L” or “M”;
(3.3) Construct the corresponding reduced system, and recompute C;

(4) Replace the remaining right hand sides f; ¢ A/ with oo.

Since every iteration of the loop strictly decreases the size of the system of
equations, we have at most O(|S|) iterations. By keeping C in an appropriate
data structure, all minimum extractions together with all new insertions take
time O(|S|-log(|S])). Since all remaining actions only consume time O(]S|)
the theorem follows. O

A simple special case of Theorem 11 is the problem of determining for
every vertex v in a graph G the minimal cost of paths (w.r.t. to a positive
cost measure on the edges of G) from a distinguished source vy to v. Here,
our algorithm specializes to (a variant of) Dijkstra’s algorithm (see, e.g.,
10)).

Similar to the case of least solutions, we would like to determine for some
k> 1, the sets {i | X; = y} with y = 0,...,k — 2, without using multipli-
cations of arbitrary numbers. The simplest idea is to execute the ordinary
fixpoint iteration for system S but doing all computations within finite do-
main k. This results in an algorithm whose runtime depends on k. Instead
however, we may use the algorithm from Theorem 11 resulting in an algo-
rithm with a runtime independent of k. We obtain:

60 HELMUT SEIDL

COROLLARY 5. Assume S is a system of equations over N with operations
from {U, 1, +,-} with greatest solution X;,i =1,...,n. For k > 1, the sets
{i| X; =y} withy=0,...,k—2, can be computed in time O(|S| - log(|S|))
by using multiplications only of numbers up to length O(log(k)). O

We also would like to compute the set {i | X; = co} efficiently without
using multiplications.

THEOREM 12. Assume S is a system of equations over N with operations
from Q C {U,M,+,-} and greatest solution X;,i =1,...,n. Then the set of
all i with X; = oo can be determined in polynomial time.

Depending on 2, we achieve the following complexity bounds:

Q={u,+,-} O(|S1)
Q={un+,} : O(|5] - log(|51))

The proof is based on the next proposition which is the analogue to Prop.
3 in case of least solutions. The proof of this proposition is based on a
similar construction.

PROPOSITION 4. Assume S is a normalized system of equations over N
with operations from Q C {U,M,+,-} and greatest solution X;,i =1,...,n.
Assume X; > 0 for all i. Then a system S' can be constructed (without
maultiplications) in time O(|S|) with greatest solution X|,i =1,...,n, such

2
that

1. 8" contains operations only from Q\{-};

2. For every i, X; = oo iff X! = oo. O

An extension of the presented greatest fixpoint methods to systems of
equations containing one-sided conditionals is possible as well. Since we
compute greatest solutions we start the iteration with the assumption that
all conditions hold true. The rest of the computation proceeds completely
along the lines of Section 9.

11. Conclusion

We presented efficient algorithms which compute the least and greatest so-
lutions of a system S of equations over A/ for various sets of operations.
The algorithms use multiplications only provided S itself contains multipli-
cations. In order to compute the set of all components where the result
is oo, we derived polynomial time algorithms without multiplications. We
extended our results by allowing occurrences of conditionals as well.

(1
2l

3]
(4]
(5]
l6]

(7l
[8]

19l

[10]

[11]

[12]

[13]

[14]

[15]

[16]

LEAST AND GREATEST SOLUTIONS OF EQUATIONS 61

References

COURCELLE, B. AND MosBaH, M. 1993. Monadic Second—Order Evaluations on
Tree—Decomposable Graphs. Theoretical Computer Science 109, 49-82.

Cousot, P. AND Cousor, R. 1977. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of Fix-
points. In 4th Symposium on Principles of Programming Languages. Los Angeles,
California, 238-252.

CousoTt, P. AND CousoT, R. 1992. Abstract Interpretation and Application to
Logic Programs. Journal of Logic Programming 13, 2 and 3 (July), 103—-179.
Cousot, P. AND Cousor, R. 1992. Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation. Report LIENS-92-16, Paris.
FrEDMAN, M. L. AND TARrRJAN, R. E. 1987. Fibonacci Heaps and Their Uses in
Improved Network Optimization Algorithms. Journal of the ACM 34, 597-615.
HaBEL, A., KrReowski, H.-J., AND VOGLER, W. 1991. Decidable Boundedness
Problems for Sets of Graphs Generated by Hyperedge-Replacement. Theoretical
Computer Science 89, 33-62.

HankIN, C. AND HuNT, S. 1991. Fixed Points and Frontiers: A New Perspective.
Journal of Functional Programming 1, 91-120.

KENNEDY, K. 1981. A Survey of Data Flow Analysis Techniques. In S. S. Much-
nick and N. D. Jones, editors, Program Flow Analysis. Theory and Applications.
Englewood Cliffs, New Jersey, Prentice—Hall, 5-54.

MarLowE, T. J. AND RYDER, B. G. 1990. Properties of Data Flow Frameworks.
Acta Informatica 28, 121-163.

MEHLHORN, K. 1984. Data Structures and Algorithms, Vol. 2: Graph Algorithms and
NP—-Completeness. EATCS Monographs on Theoretical Computer Science. Springer,
New York, Heidelberg.

NiELSON, F. AND NIELSON, H. R. 1992. Bounded Fixed Point Iteration. Journal of
Logic and Computation 2, 441-464.

NiELSON, F. AND NIELSON, H. R. 1992. Finiteness Conditions for Fixed Point It-
eration. In Proceedings of the 1992 ACM Conference on LISP and Functional Pro-
gramming, 96-108.

PEYTON-JONES, S. AND CLACK, C. 1987. Finding Fixpoints in Abstract Interpreta-
tions. In S. Abramsky and C. Hankin, editors, Abstract Interpretation of Declarative
Languages. Ellis Horwood Ltd. and John Wiley, 246-265.

SEIDL, H. 1993. Equality of Instances of Variables in FORK. Report 6/93, SFB 124—
C1, Saarbriicken.

SEIDL, H. 1994. Least Solution of Equations over N'. In E. Shamir S. ASbiteboul,
editor, Proceedings of the 21st International Colloquium on Automata, Languages
and Programming (ICALP), Volume 820 of Lecture Notes in Computer Science.
Springer Verlag, 400-411.

SEIDL, H. 1994. Tree Automata with Cost Functions. Theoretical Computer Science
126, 113-142. Special Issue on CAAP’92.

