Constraints to Stop Higher-Order Deforestation

H. Seidl
FB 1V - Informatik
Universitat Trier, D-54286 Trier, Germany

seidl@uni-trier.de

M.H. Sgrensen

Department of Computer Science, University of Copenhagen

Universitetsparken 1, DK-2100 Copenhagen (), Denmark
rambo@diku.dk

Abstract

Wadler’s deforestation algorithm eliminates intermedi-
ate data structures from functional programs. To be
suitable for inclusion in a compiler, it must terminate
on all programs. Several techniques to ensure termi-
nation of deforestation on all first-order programs are
known, but a technique for higher-order programs was
only recently introduced by Hamilton, and elaborated
and implemented in the Glasgow Haskell compiler by
Marlow. We introduce a new technique for ensuring ter-
mination of deforestation on all higher-order programs
that allows useful transformation steps prohibited in
Hamilton’s and Marlowe’s techniques.

1 Introduction

Lazy, higher-order, functional programming languages
lend themselves to a certain style of programming which
uses intermediate data structures [28].

Ezample 1 Consider the following program.

letrec
a = MAz,y.case z of
l =y
(h:t)—= h:aty
in \u,v,w.a(auv)w

The term Au, v, w.a (a uv) w appends the three lists u,
v, and w. Appending u and v results in an intermediate

Submitted to the 24th Annual SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
Paris, France, January 15-17, 1997. WORDCOUNT:
approx. 4950 excluding appendices and references.

list to which w is appended. Allocation and dealloca-
tion of the intermediate list at run-time is expensive.
Sacrificing clarity for efficiency, we would therefore pre-
fer a program like the following.

letrec
da = Mz,y,z.case z of
I - aye

(h:t)—> h:datyz
a = M\y,z.case yof

l - =

(h:t)— h:ad"tz
in \u,v,w. dauvw a

Ideally we should write the first version, and have
it translated to the second automatically, e.g., by our
compiler. This is indeed done by Wadler’s [17, 54, 55]
deforestation which eliminates intermediate data struc-
tures from first-order functional programs.! Deforesta-
tion terminates on treeless programs. Subsequent tech-
niques to ensure termination of deforestation on all first-
order programs are due to Chin [7, 8, 10, 11, 13], and
later to Hamilton [21, 22, 24, 25]. The essence of these
techniques is to annotate all parts of the program that
violate the treeless syntax, and then let the deforesta-
tion algorithm skip over annotated parts. A technique
that annotates fewer parts of the program is due to
Serensen [48], and was later improved by Seidl [45].

These techniques concern only first-order programs.
However, modern functional languages like ML, Haskell,
and Miranda include higher-order functions which should
be transformed too. Several preliminary approaches re-
duce the higher-order case to the well-studied first-order
case. Wadler [55] considers programs with higher-order

!Earlier techniques include [3, 6, 14, 15, 31, 33, 50, 51, 52, 53].

macros. Any such program typable in the Hindley-
Milner [27, 36] type system can be expanded out to
a first-order program, and transformed with first-order
deforestation. These programs include applications of
the fold and map functions, but exclude useful construc-
tions, e.g., lists of functions. Chin [7, 8, 10, 11] starts
out with a higher-order program and uses a higher-order
removal transformation [7, 9, 12] to eliminate some higher-
order parts, resulting in a program in a restricted higher-
order form. He then adopts a version of deforesta-
tion applicable to annotated programs in the restricted
higher-order form, and annotates any remaining higher-
order parts as well as first-order parts violating the tree-
less syntax. In the process of applying deforestation to
such a program, higher-order subterms may reappear,
and these are again removed by the higher-order re-
moval algorithm during deforestation. The process ter-
minates if the program is typable in the Hindley-Milner
type system, but a more efficient and transparent ap-
proach is desirable.

The first formulation of deforestation applicable di-
rectly to general higher-order programs is due to Mar-
low and Wadler [34], who leave open the question of
guaranteeing termination. This was addressed by Hamil-
ton [23], who gives a formulation of the higher-order de-
forestation algorithm applicable to annotated programs
and introduces a notion of higher-order treelessness. He
then proves that deforestation of any Hindley-Milner
typable program terminates, if all parts of the program
violating the higher-order treeless syntax are annotated.
These ideas have been elaborated and implemented in
the Glasgow Haskell compiler by Marlow [35].

The higher-order treeless syntax requires arguments
of applications and selectors of case-expressions to be
variables. This entails annotating and thereby skipping
over parts of programs that could have been improved.

Ezxample 2 Consider the following program.

letrec
c = Ax,x8.T:IS
foldr = M\f,a,l.case [of

] —a
(z:28) = fz(foldr fazs)
in \u,v,w.foldr cw (foldr cvu)

The term foldr ¢ v u is a higher-order formulation of
the term a u v from Example 1. The whole program
is therefore equivalent to the program in Example 1,
and we would expect to be able to transform it into
the more efficient program in Example 1. This is in-
deed what happens when we apply deforestation to the
program. However, the techniques by Hamilton and
Marlow require that the argument foldr f a zs in the
definition of foldr be annotated, and this prevents the
desired transformation. a

There are many such examples. Chin [11] shows that
some shortcomings of the treeless syntax can be avoided
by ad-hoc extensions of deforestation. The necessity of
such extensions stems from the fact that the annotation
scheme is purely syntactic; it does not take into account
what actually happens during deforestation.

In this paper we give a new technique to ensure ter-
mination of higher-order deforestation. We adopt a ver-
sion of Hamilton’s higher-order deforestation algorithm
applicable to annotated terms, but do not annotate all
parts violating the higher-order treeless syntax. Before
transformation we instead compute a set of constraints
approximating the set of terms encountered during de-
forestation of the program. This can be done efficiently
using well-known techniques. While doing so, we ex-
tract quantitative information to detect whether defor-
estation will proceed indefinitely, and if so, we anno-
tate parts of the program responsible for the indefinite
transformation. The technique is a generalization of our
technique for first-order deforestation [48, 45].

Section 2 presents our higher-order language, and
Section 3 presents higher-order deforestation. Section 4
shows the sources of non-termination of deforestation.
Section 5 introduces constraint systems, and Section 6
uses constraints to approximate deforestation. Section 7
shows how to calculate annotations that ensure termi-
nation of deforestation, from the set of approximating
constraints. Section 8 relates the approach to that by
Hamilton and Marlow. Section 9 concludes. Proof
sketches have been banished into appendices.

2 Language and notation

Definition 8 (Higher-order language) Let ¢, z, and f
range over names for constructors, variables, and func-
tions, respectively. Let ¢, g, d, and p range over terms,
patterns, definitions and programs, respectively, as de-
fined by the grammar:

t u== x| Ardt|cty...ty| flletv=tint' |tt'|
case tg of g1 —>t1;. .. qp—tg

g "= CT1...Ty

d == f=t

p == letrecd;;...;d,int

(where n > 0,k > 0). The #p in case-expressions is
called the selector. In applications t is the operator and
t' the argument. All variables of ¢ in definitions f = ¢
and programs letrecd;;...;d, int must be bound. No
variable may occur more than once in a pattern. To
each function call must correspond exactly one defini-
tion, and the patterns in a case-expression must be
non-overlapping and exhaustive. We assume that erro-
neous terms of form (cty ...t,)t and case (A\z.t)ofg—

t1;...;qn —t, never arise. The semantics of the lan-
guage is call-by-need [2].

FV(t) denotes the set of free variables in ¢. We iden-
tify terms differing only in names for bound variables,
and adopt the usual conventions to avoid confusion be-
tween free and bound variables. Variable names in the
input program are assumed to be unique. We also use
the usual conventions for association of parentheses.
We write Axy,...,z,.t for Axzq.... Az,.t. The list con-
structors Cons and Nil are written : and []. Instead of
X1 i ... 2y || we also write [z1,...,2,]. Substitution
of ¢’ for x in t is written t{z :=t'}. O

The let-construct is an alternative to annotations.
Instead of annotating the dangerous parts of a pro-
gram and letting deforestation work conservatively on
annotated subterms, we transform dangerous parts of
the program into let-expressions and let deforestation
work conservatively on let-expressions. This leads to
less syntactic overhead than working with annotations.

3 The higher-order deforestation algorithm

We shall state the deforestation algorithm by rules for
rewriting terms. For this, we need some notation to
select, e.g., a function call in a term and replace the
call by the body of the function. The deforestation
algorithm simulates call-by-name evaluation, so there
is always a unique subterm whose reduction is forced.
For instance, to find out which branch to choose in

case ftof[|=[];(z :zs)—z:axsys

we are forced to unfold the call to f. The forced call f
is the redex and the surrounding part of the term, i.e.,

case (Jtof[|[=[;(z:xs)>x:azxsys
is the context.

Definition 4 Let e, r, o range over contexts, redexes, and
observables, respectively, as defined by the grammar:

e u= ()|case eof g —ot1;...;qn>t, | et
w= letz=tint' | Qx.t)t' | f]
case (cty...tn) of g—s1;...
case (zt1...t,) of g1 —s1;...
0 = cty...ty| Tt ty | Axt

Sk |
;Qk—Sk

Let e(t) denote the result of replacing () in e by t. O

Every term t is either an observable or decomposes
uniquely into a context e and redex r such that t = e(r).
This provides a way of finding the next subterm to re-
duce in a term, i.e., the following clauses of [.] are mu-
tually exclusive and together exhaustive. The definition

of [.] is inspired by [23], but the use of let-expressions
rather than annotations, and of explicit contexts, has
reduced the number of rules from 16 to 8.

Definition 5 (Deforestation)

[zt .. t] = z[t]...[ta] (1)
[ctr .. ta] = c[ta]. .- [tn] 2)
[Az.1] = Azf] (3)
[e()] = [eth] (f=t) (4)
[e{(Az.t) t')] = [e(t{z:=1'})] (5)
[e(let z=tin#)] = let z=[t] in [e(t)] (6)

[e{case zty...tn of 1 —s15...;q—sk)] = (7)
case z [t1] ... [tn] of i—=e(s1)];- - - ; a—e(sk)]

sak—s)] = (8)
Sxn =t] (g =cz ... xzp)

[e{case ct;...t, of g1—s1;. ..
le(sj{z1 :=t,..

Given a program letrec dy;...;d, int we apply trans-
formation [.] to ¢ understanding that definitions f =t/
for function calls must be located among dy,...,d,. O

As is well-known, this algorithm hardly ever termi-
nates. For instance, on the program letrec f = fin f
the same term f is encountered over and over again.
To avoid this, the algorithm must incorporate folding,
i.e., recall the terms it encounters and make repeating
terms into recursive definitions. This can be done in
a number of ways (cf. [35] for a discussion). What is
important is that if the rules of the preceding definition
encounter only finitely many different terms, then the
algorithm with folding terminates. For concreteness we
sketch one way of doing this.>

Definition 6 (Folding) Let [.] take an extra parameter
I. In all clauses of the preceding definition but (4), I is
passed unchanged to the recursive calls of [.]. Replace
rule (4) of the preceding definition by (4’):

gr1-..xn I g=Arvy,...,xne(fyeT
gzry...r, else, where
I'=Tu{g=Az1,...,z.e(f)}

g=Az1,...,z,.Je(tH]T

[e{H]1I=

where {z1,...,2,} = FV(e(f)). Now, given a program
letrec dy;...;dy, int we apply [.] to ¢ with the empty
set for I. This results in a term, but also in a new set
of definitions g = Az1,...,z,..[e(f)]I’ generated in the
process, which are collected into a new program. O

2The following algorithm only folds terms with function calls in
the redex. For programs that are not Hindley-Milner typable one
must allow folding for (-redices as well.

Example 7 We now show how deforestation transforms
the first program in Example 1 into the second more
efficient one. For brevity we adopt the abbreviations:

I ={da = Mupw.a(auv)w}
I' ={f = MAu,v,w.case (auv)of[|ow;(ht)—=h:atw}
I"'={d" = \y,z.ay 2}

Then transformation proceeds as follows.
[Mu,v,w. a (a uv) w]{}

=\u, v, w. [a (a uv) w]{}
(4')
=Au,v,w. dauvw
where
da=Au,v,w.[(Az,y.case z of
] — w
(h:t)—= h:aty)(auv)w]l

=Au,v,w.[case (a uv)of
] - w

(h:t)—> h:atw]l

=\u, v, w.f uvw

where
f =\u,v,w.[case ((Az,y.case x of
b =y
(g:8)— g:asy)uv)of
] - w
(h:t)— h:atw]IUTI
(172’577)

=Au,v,w.case u of
| — casewvof
] - w
(h:t)— h:Jatw]IUT
(B :t)y—= b :Ja(at' v)w]IUT
(4')
=Au,v,w.case u of
| — casewvof
] - w
(h:t)— h:ad tw
(B :t)y—= b dat' vw

where
a' =\t,w.[case ¢t of
] - w
(W:t)—= b :at'w]IUTI'UI"
(1,2,4,7)

=At,w.case t of
] - w
(W :t")Y— h:d t'w

Hence the new program is

letrec
da = Az,y,z.fuvw
f = Mx,y,z.case xof
| — case yof
TR
(h:t)—= h:ad'tz
(h:t)— h:datyz
a = My,z.case yof

I — z
(h:t)—= h:a'tz
in \u,v,w.dauvw

This is equivalent to the efficient program in Example 1.
Unnecessary auxilary functions, like f above, can easily
be unfolded in a postprocessing phase. O

Apart from termination—the topic of this paper—
there are two other aspects of correctness for deforesta-
tion, namely preservation of operational semantics and
non-degradation of efficiency. A proper development of
these two aspects is beyond the scope of this paper, so
we end this section with a brief review. This is not to
suggest that these problems are not important; on the
contrary, we believe that they are so important that
they constitute separate problems.

As for preservation of operational semantics, the out-
put of deforestation should be semantically equivalent
to the input. That each step of the transformation
rules for deforestation preserves call-by-need semantics
is easily proved, but extending rigorously the proof to
account for folding is more involved. A general tech-
nique due to Sands [41, 43] can be used to prove this
for deforestation [40, 42].

As for non-degradation in efficiency, the output of
deforestation should be at least as efficient as the in-
put. First, there is the problem of avoiding duplication
of computation. Transformation can change a polyno-
mial time program into an exponential time program.
In Wadler’s [55], Hamilton’s [23], and Marlow’s [35] ap-
proaches this is avoided by considering only linear pro-
grams, i.e., programs consisting of functions that do not
duplicate their arguments. Some weaker restrictions are
adopted in partial evaluation [46, 5] and in work on first-
order deforestation [21]. Second, there is the problem of
code duplication. Unrestrained unfolding may increase
the size of a program dramatically. In principle the size
of a program does not affect its running-time, but in
practice this is not always true. Third, transformation
steps can loose laziness and full laziness, as is described
in detail by Marlow [35].

4 Termination problems in deforestation

Even with folding, deforestation does not always ter-
minate. Below we present the three kinds of problems
that can occur. We show that deforestation applied to
each of the programs loops indefinitely, and with cer-
tain small changes in the programs, deforestation ter-
minates. These changes are called generalizations.

Ezample 8 (The Accumulating Parameter) Consider the
following program.

letrec
r = Aus.rrus||
rr = Axs,ys.case zs of
0 — ys
(z:28) = 1r2s(z:ys)
in r

The r function returns its argument list reversed. Ap-
plied to this program, deforestation loops indefinitely.
The problem is that deforestation encounters the pro-
gressively larger terms rr zs[], rr zs1 [z1], rr 282 [22, 21],
etc. Since the formal parameter ys of rr is bound to
progressively larger terms, we call ys an accumulating
parameter.

We can solve the problem if we can make sure that
deforestation does not distinguish between the terms
that are bound to ys. This can be achieved by trans-
forming the program into:

letrec
r = Aus.rrus||
rr = Axs,ys.case xs of
0 — s
(z:28) = letv=z:ysinrrzsv
inr

Deforestation applied to this program terminates. O

Ezample 9 (The Obstructing Function Call) Consider the

following program.

letrec
r = MAxs.case xsof
I -0
(z:2zs) > case (rzs)of
I - [
(y:ys) = y:ays[z]
a = Aus,ws.case us of
[— ws
(v:vs) = v:avsws
in r

The r function again reverses its argument, first revers-
ing the tail and then appending the head to this. De-
forestation encounters the terms r, case (r zsy) of - - -,

case (case (rzsy) of ---) of - - -, etc. Because the call to
r prevents the surrounding case-expressions from being
reduced, we call it an obstructing function call.

We can solve the problem if we make sure that de-
forestation does not distinguish between the different
terms that occur in the redex position. This can be
achieved by transforming the program into:

letrec
r = M\zs. letl=rzsin
case zs of
I =1
(z:28) > caselof
I — [
(y:ys) = y:ays[z]
a = Aus,ws.case us of
[— ws
(v:vs) = v:avsws
in r

Deforestation applied to this program terminates with
the same program as output, which is satisfactory. O

Ezample 10 (The Accumulating Spine) Yet another pos-
sibility to prevent deforestation from termination is to
recursively create larger and larger spines of function
applications. Consider the following program.

letrec
f =
in f

Note that such kind of function definitions is prohibited
in some typing disciplines, e.g., simple types. Defor-
estation applied to the program successively encounters
terms f, f x z, f x x z, etc., and thus never terminates.
The problem is resolved if we modify the program to:

Ae.frx

letrec
f = Xxlety=finyzzx
in f
Then deforestation terminates. O

The operation of going from the term t{z := ¢'} to
letz=t'int is called generalization of t' in t{z :=¢'}. In
Example 8, we generalized rr’s second argument (z : ys)
in the body of the definition for rr. In example 9, we
generalized the call r zs in the body of the definition of
r. Finally, in example 10, the call to f was generalized
in the body of the definition of f.

Generalizing should be thought of as annotating. In-
stead of putting funny symbols on our programs we in-
stead use a distinct language construct.

5 Constraint Systems

Inspired by work by Jones and co-workers [30, 29, 1, 37],
Serensen [48] approximates the set of terms encountered
during first-order deforestation of a program by a set of
terms described by a regular tree grammar. Inspecting
this grammar one can automatically decide whether any
of the phenomena in the preceding section occur, and
generalize accordingly.

An equivalent means for describing regular tree lan-
guages are set constraints [26]. These are technically
more convenient than regular tree grammars, and have
given rise to fast, practical analysis algorithms. Seidl [45]
therefore expressed Sgrensen’s analysis in terms of set
constraints and observed that the information necessary
to detect dangerous subterms can be computed with-
out explicitly building the approximating system of set
constraints. Instead, it suffices to perform a control-
flow analysis in the sense of Palsberg [38] and Palsberg
and O’Keefe [39] and, while doing so, to collect a set
of integer constraints. In this paper we show that this
technique can be elegantly extended to the higher-order
case. This section introduces the necessary theory re-
garding constraint systems.

Let D be a complete lattice. For some variable set
V), we consider sets S of constraints of the form

X3fX,... X,

where X, Xy,...,X,, € V, and f denotes a monotonous
function [f] : D™ — D. Then S has a least model uS
mapping variables to elements of D such that

(1S X) D[S X1) ... (1S Xy)

for every constraint X I fX;...X, € §. We shall
make use of two instances of this sort of constraints:
simple constraints and integer constraints.

In a set of simple constraints, a finite set A of objects
is given. D is the powerset of A ordered by set inclusion.
In our application we need no occurrences of variables or
operators in right-hand sides. So, they are of the simple
form X D a for some a € A.> One important special
case of simple constraints is given by a one-element set
A. Then 24 is isomorphic to the 2-point domain 2 =
{0 C 1}. These constraints are called boolean.

In integer constraints the complete lattice D is the
non-negative numbers A equipped with their natural
ordering and extended by co. Right hand sides are built
up from variables and constants by means of certain
operators, in our case “+” and “LJ” (maximum).

3In [45], constraints also of the form X D Y occur. These have
been removed in the present formulation.

Ezxample 11 Consider the integer constraints:

X > 1

> Z > X+4Y
Y > 7

Y > Zux

In the least model, (uS)X =1, (uS)Y = (uS)Z = co0.O0

Since N does not satisfy the ascending chain condition,
naive fixpoint iteration may not suffice to compute least
models. Seidl [44] presents algorithms that do compute
such least models.* For the systems we consider, least
models can be computed in linear time.

6 Approximating deforestation

We now present an analysis which computes, for a given
program, a set of integer constraints whose least model
indicates which subterms cause termination problems.
In the next section we show how to compute general-
izations from such constraint systems.

The analysis can be viewed as a control-flow analysis
adapted to an outermost unfolding strategy. While per-
forming this analysis we keep track of the depth in which
unfolding occurs and the depth of arguments bound to
formal parameters.

The definition is followed by extensive explanations
along with an example.

Definition 12 (Constraints approximating deforestation)
Let p = letrecd,...,d, int;,;, let T be the set of all
subterms contained in p, and let A =T U {e}, where o
is a special symbol.

For every t € T we consider five different variables
[t], r[t], d[t], s[t] and a]t]. The following table shows the
type of constraints in which the variables are used.

Variable Lattice Constraint Type

[t] 24 simple
r[t] 2 boolean
d[t] N integer
s[t] N integer
alt] N integer

The set of constraints C(p) computed for p is the small-

est set containing the initial constraints, and closed un-

der the transitivity rules, top-level rules, and unfolding

rules. The subset of integer constraints is written Z(p).
The initial constraints are as follows.

[t] 2t

rltinit] 21
aff] > N[

4Instead of constraint systems, [44] considers systems of equations.
This makes no difference w.r.t the minimal model.

where N[t is defined by:

NJz] = a[z]

Nic] =0

NI/] 0

Nlcty...ty] =14+ (N[t1]U...UN[t,])

N[tl t2] =1+ (N[tl] (] N[tg])

Nlet z=t in '] =1+ (N[t]U N[t"/{a[z] :== 0})
N[\z.t] =1+ N[t{alz] := 0}

Nlczy ...z, =] = N[tl{a[z1]:=0,...,a[z,] := 0}

Nlcase tg of 1 —=t1;...;qm—tm] =

14+ (Nto] UN[gs = t1]U...UN[gm = tm])

The transitivity rules are as follows.

if [{] D ¢,[t'] D t" then [t] Dt
if rlf] 2 1,[] D ¢' then r{t'] 3 L;d[t] > dlt]; s[t] > sl

The top-level rules are as follows.

. tn then [tznzt] 2 tl, . ,tn

if [tznzt] 2 c t1 ..
i then [tinit] D t,[z] Do

f [tinit] 2 Azt
The unfolding rules are as follows.

if [¢t] 3 1 then case t of
f:
1] 2 ¢/;
t1 t2 .
rlti] 3 1 s[ta] > 1+ sft]; d[ta] > d[t];
if [t1] D Az.t' then [t] D t';[z] D t2;alz] > afta];
if [tl] D e then [t] De; [tznzt] D ta;
let z=t; ints :
[t] D t2;[2] D & [tinit] 2 t1;
case tgof ¢y —t1;. .. gm—tm
rlto] 3 1;s[to] > s[t];d[to] > 1 + d[t];
if [to] D e then
[t] Db, .ty
[y] 2 b (for all Y in qi,--- 7Qn)a

if [to] D ¢cs1...5,and ¢gj = cxy1...2, then
[t] D t;;
[£1] D 8153 [Tn] 2 sn;

alz1] > a[s1];...;alzn] > afsy];

O

The meaning of the variables are as follows. The
variable [t] represents a superset of the terms encoun-
tered when transforming ¢; e denotes a term whose re-
sult will be unknown at transformation time, e.g., a free
variable, or a free variable applied to some term. The
variable r[t] records whether ¢ is unfolded during trans-
formation. The expression s[t] + d[t] is an upper bound
on the depth of reduction contexts in which ¢ occurs
during transformation, where s[t] counts the nesting in-
side applications and d[t] counts the nesting inside se-
lectors of case-expressions. While variables s[t] have

no analog in the first-order case, they are used here to
preclude accumulating spines. Finally, a[t] is an upper
bound on the depth of ¢ within any term bound to a
formal parameter.

The effect of the constraints are as follows. The ini-
tial constraints [t] D ¢t model reflexivity of iterated un-
folding, 7[tinit] 3 1 shows that the main term ¢;,; is due
for transformation, and a[t] > NJt] gives lower bounds
for aft]. Since ¢ may contain free variables from some
set V, NJt] is a polynomial over a[z], z € V.

The transitivity rules model iterated unfolding.

The top-level rules model the fact that on the top-
level, deforestation is pushed down through construc-
tors and A-abstraction. When going down under an
abstraction, the abstracted variable obtains the status
of a free variable and hence receives value e.

The unfolding rules approximate the steps of defor-
estation. First, the rules model indiviual steps of the de-
forstation process, i.e., expansion of function names and
reduction of J-redexes and case-expressions with new
bindings for substituted variables. Second, information
about which subterm is unfolded next by deforestion
is propagated, i.e., the r[]-information is propagated
to the function part of applications and to the selector
of case-expressions. Third, evaluation of certain sub-
terms of let-expressions and case-expressions must be
raised to the top-level. Also, the information involving
e must be propagated. The main point, however, is to
record information about the depth of contexts and ar-
guments. Thus, integer constraints on a[.]-variables are
generated whenever variables become bound by reduc-
tions of B-redexes and case-expressions. When passing
control to the function part of an application or the se-
lector of a case-expression, the increase in the nesting
of the context is recorded by a constraint on the s[.]-
and d[.]-variables, respectively.

Ezample 13 The program in Example 10 has constraints:

r[z] d [x] Dz
M 3t [Dfcefeafae
rife] 31 [fz] Ofazfaw
rifex] 31 [fzz] Ofzz
rAz.fzz]J1 [Az.fxz]DAz.fzzx
alz] >alz] d[z] >
alf] >0 d[f] >d[f],d[f]
alf z) >1+alz] d[f 2] >d[f z],d[f z z]
alf vl >2+4ale] difzx] >d[f za]df]
a[\z.f x x]>3 d z.f z z]>d[Mx.f z z],d[f]
slz] >
s(f] >s[f], 1+ s[f =]

s[f x] >s[fz],1+ s[f xx]
s[fex] >s[fxa],s[f]
shx.f x z]>s[hx.f x], s[f]

Here
s[f1> 14+ s[fz] >1+s[fzx]> s[f]

In particular I s[f] = oo, reflecting the fact that trans-
formation encounters terms with f embedded in un-
boundedly deep applications.

The program in Example 8 has constraints including

alys] > 1+ alz : ys] > 1+ alys]

In particular ul alys] = oo, reflecting the fact that
transformation encounters terms with unboundedly large
arguments containing ys.

The program in Example 9 has constraints including

> d[case zs...] > d[r zs]
> 1+ d|case (rzs)...]

d[case (r zs)...]

which imply upl d[r zs] = oo, reflecting the fact that
transformation encounters terms with calls r zs embed-
ded in unboundedly deep case-expressions. |

The following theorem shows that the set of integer
constraints in general contains enough information to
estimate whether deforestation loops, and that the set
can be computed efficiently.

Theorem 14 Let p = letrec dy, ..
Z(p) with least model plI.

(i) If deforestation applied to p encounters infinitely
many different terms, then (1), (2) or (3) holds:

<y dn in tim’t and I =

(1) pI alz] = oo for some variable x;
(2) pI dt] = oo for some subterm t;
(3) pI s[t] = co for some subterm t.

(ii) I can be computed in polynomial time.

Proof. See Appendix A. |

Properties (1) and (2) correspond to Sgrensen’s [48,
45] criteria for accumulating parameters and obstruct-
ing function calls, respectively, for first-order deforesta-
tion. In the higher-order case (3) is sufficient to cap-
ture accumulating spines. However, if p is monomorphi-
cally typable,® then all values of s[.]-variables are finite!
In this case accumulating parameters and obstructing
function calls are the only reasons for non-termination
of deforestation. W.l.0.g. let us assume henceforth that
tinit does not occur as a subterm of any function defi-
nition. Then we have:

Proposition 15 Given a monomorphically typable pro-

gram p, let I = Z(p) with least solution pI. Then
ul s[t] < oo for all subterms t of p.
Proof. See Appendix B. a

5If p is Hindley-Milner typable program, then by duplication of
function definitions one obtains a monomorphically typable program.

7 Generalizing dangerous subterms

Section 6 shows how to guarantee that deforestation
terminates on some program: check that conditions (1)-
(3) are all false. It remains to show that these conditions
can be decided efficiently, and it remains to compute
appropriate generalizations in case one of the conditions
are true, i.e., when deforestation may fail to terminate.

Let p be a program and I = Z(p). Any inequality
Y > P in I, where P is a polynomial built from vari-
ables, constants, “+”, “lI” can be expressed by a set of
constraints of the forms Y > ¢+ X and Y > ¢, where
¢ > 0 is an integer. Therefore, we may assume that the
constraints in I are of these forms.

Definition 16 (Dependence graph) Given program p and
I = Z(p). The dependence graph G is the directed
graph whose nodes are the variables of I, and whose
edges are all (X,Y) withY >c+ X € 1. |

Since the three subsystems of I containing variables
al.], d[.], and s[.] are disjoint, Theorem 14 gives the
following characterization of those X with ul X = 00.%

Proposition 17 Given p and I = Z(p) with least model
wul. For T € {a,d, s}, let J. = {t | ul 7[t] = co}. Then

1. J; is the smallest set containing all t such that

e T[t] is contained in a strong component of G
which also contains variables T[t1], T[t2] with
c>1and 7[t1] > c+ bt2] € I; or

o 7[t] is reachable in G from T[t'] witht' € J..
2. J; can be computed in linear time.

Proof. See [44], Theorem 10. O

By Proposition 17 we can sharpen the formulations
of criteria (2) and (3) in Theorem 14. For criterion (1)
we are only able to provide a more concrete form if a[z']
receives a finite value for all pattern variables z'.

Corollary 18 Given p and I = Z(p) with least model pl.

(1) Assume pl a[z'] < oo for all pattern variables z'.
Then ul alx] = oo for some variable x iff some
subterm t = ty ty of p exists where t> contains a
free variable z # t2 and alz] is in the same strong
component of G as alts].

(2) pl d[t'] = oo for some t' iff some case-expression
t in p exists with selector to such that d[t] is con-
tained in the same strong component of Gy as d[to].

As observed in [45], one may also determine from pI the variables
alt], d[t], and s[t] whose values exceed some threshold. This may be
useful for preventing code explosion during deforestation, see [35].

(8) ul s[t'] = oo for some t' iff some subterm t = t; to
of p exists where s[t;] is contained in the same
strong component of Gy as s[t].]

Proof. See Appendix C. a

In view of this we now propose the following strat-
egy for computing generalizations. Starting with pro-
gram p, we repeatedly generalize subterms of p. In order
to determine candidates for generalization, we compute
the set I = Z(p) of integer constraints according to our
analysis. If pI is finite for all variables a[t], d[t] and s[t]
no further generalizations are necessary. Otherwise, we
generalize according to the following three rules.

(1) e t=t;ty and ¢, contains a free variable z # o
and a[z] is in the same strong component of
G as aftz]. Then generalize to in t.

e t = case ty of ¢y >t1;...;¢m —t, and for a
variable z of a pattern ¢;, uI a[z] = co. Then
generalize t in ¢.

(2) t = case tg of g1 —t1;. .. gm—tm and d[t] is con-
tained in the same strong component of G as d[to].
Then generalize ty in t.

(3) t = t1 t2 and s[t;] is contained in the same strong
component of Gy as s[t]. Then generalize ¢; in ¢t.

Our strategy is non-deterministic. We prove that every
admissible sequence of choices results in a correctly an-
notated program. If p is monomorphically typable, no
generalizations according to (3) will ever be performed.

The only simple constraints generated for a let-bound
variable z is [z] D . Therefore, s[z] and d[z] cannot
occur in right-hand sides of integer constraints. Also, if
the selector of a case-expression t is a let-bound vari-
able then [z] D e are the only simple constraints gener-
ated for pattern variables z of ¢, and therefore always
ul afz] = 0. From this we can conclude that no sub-
term t is ever generalized which already equals a single
let-bound variable. Hence, every sequence of general-
izations eventually terminates. Furthermore, we obtain
from Corollary 18:

Theorem 19 Assume p is a program, I = Z(p) is the set
of integer constraints generated for p and pl is the least
solution of I.

(1) If no generalization is possible according to rule (1)
then pl alzx] < oo for all variables x.

(2) If no generalization is possible according to rule (2)
then pl d[t] < oo for all t.

(3) If no generalization is possible according to rule (3)
then pl s[t] < oo for all t. O

From Theorem 14 we therefore derive that deforesta-
tion definitely terminates when no further meaningful
generalizations can be applied to p.

8 Relation to higher-order treelessness

Hamilton [23] and later Marlow [35] generalize the no-
tion of treeless programs to the higher-order case. Their
generalizations are slightly different, but in both cases
treeless terms require arguments in applications and se-
lectors in case-expressions to be variables. The follow-
ing definition is Hamilton’s version.

Definition 20 (Treeless programs) We let treeless terms,
functional terms, and treeless programs, ranged over by
tt, ft, and tp, respectively, be the subsets of general
terms and programs defined by the grammar:

tt ==z | ctty...tt, | case x of ¢ —tty;. ..
Az.tt |tz | f | let v=tt in it

fta=e | f|ftft

tp ::=letrec fi; = tty;. ..

s >ty |

s fn =t in Az, ... Ty i
O

Note that we do not demand treeless terms to be lin-
ear. In general, as can be seen by Example 10, de-
forestation is mot guaranteed to terminate on treeless
programs. Hamilton and Marlow therefore impose the
additional restriction that programs be Hindley-Milner
typable. For simplicity we consider here programs that
are monomorphically typable.

Without loss of generality we may assume for a pro-
gram p = letrec di;...;d, in t;,; that all function
names occurring in t;,;; are distinct and no function h
is reachable from two distinct functions fi, fo occurring
in t;;:. Any program can be brought to this form by
suitable duplication of function definitions.

The following shows that given a monomorphically
typable, higher-order treeless program, our analysis finds
that no annotations are required, provided all construc-
tors have non-functional arguments only. Under the lat-
ter proviso this shows that our analysis is never worse
than Hamilton’s and Marlow’s techniques. On the other
hand, for many examples, our analysis is better.

Theorem 21 Assume p = letrec di;...;dy, in t;n; is
monomorphically typable, higher-order treeless, and that
all constructors in p have non-functional arguments only.
Then conditions (1)-(3) of Theorem 14 are all false.

Proof. See Appendix D. a

The restriction that constructors may not have func-
tional arguments is a weakness of our analysis in its
present form.

Ezxample 22 Consider the following program.

letrec
I = MXz.case zof[|=[;(h:t)>h: It
in \z.I (I x)

Unfolding the outer call to I in term I (I z) leads to
the term case (I z) of | —=[];(h : t) = h: It in which
the inner call to I must be unfolded. Superficially, a
call to I in the empty context leads to a new call to I
in a non-empty context, with the risk of deforestation
proceeding indefinitely. The truth is that the two calls
to I are unrelated, and the problem could be solved by
considering instead the following program:

letrec
I, = MAzj.case z; Of[]—)[],(hl Ztl)—)hl IR
I, = MAzy.case 23 Of[] —)[], (h2 : t2) —hy i Ity

in \z.I; (Ip x)

In the first-order case this trick is sufficient to ensure
that no generalizations are performed on treeless pro-
grams [48]. However, in the higher-order case, the prob-
lematic situation may arise after a number of transfor-
mation steps as in the program:

letrec

I = M\z.case zof[|=[;(h:t)—=h: It
G = MXd.case dof(cha)—ha

H = M,ycf(fy)

in \x.G (H I x)

The restriction on treeless programs that constructors
may not have functional arguments is sufficient to pre-
vent this problem.

There are two reasons why the restriction may not
be serious: first, it is not clear how often programs ac-
tually make use of constructors with functional argu-
ments; and second, it is only in some special cases that
our analysis is confused by such constructors. |

An investigation of possible enhancements of our
analysis to avoid occasional deficiencies of this type re-
mains for future work.

9 Conclusion

We have given a technique to ensure termination of
higher-order deforestation allowing useful transforma-
tion steps what were not previously possible. The tech-
nique can be efficiently implemented using well-known
techniques for constraint systems.

A somewhat different approach to elimination of in-
termediate data structures in higher-order programs is
due to Gill, Launchbury, and Peyton Jones [18, 19, 20]
who remove intermediate lists explicitly produced and

10

consumed by means of the primitives build and foldr
within the same function. Similar techniques were in-
dependently proposed by Sheard and Fegaras [16, 47],
and later by Takano and Meijer [49]. These approaches
rely on functions being written in a form that explic-
itly builds and destroys intermediate data structures,
although some functions can be transformed into this
form automatically [32]. Gill [18] shows that some pro-
grams can be improved by traditional deforestation, but
not by the build-foldr technique, whereas other pro-
grams can be improved by the build-foldr technique,
but not by traditional deforestation, see also [35]. A
more direct comparison remains to be done.

Acknowledgments. We are indebted for discus-
sions on higher-order deforestation to Geoff Hamilton
and Wei-Ngan Chin.

References

[1] N. Andersen. Approximating term rewrite systems.
Technical Report 86/16, Department of Computer
Science, University of Copenhagen, 1986.

[2] Z.M. Ariola, M. Felleisen, M. Maraist, J. Odersky,
and P. Wadler. A call-by-need lambda-calculus. In
Conference Record of the Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Program-

ming Languages, pages 233-246. ACM Press, 1995.
[3]

R. Bird. Using circular programs to eliminate mul-
tiple traversals of data. Acta Informatica, 21:239—

250, 1984.

[4] D. Bjgrner, A.P. Ershov, and N.D. Jones, editors.
Partial Evaluation and Mixed Computation. North-

Holland, Amsterdam, 1988.

A. Bondorf. Self-Applicable Partial Evaluation.
PhD thesis, Department of Computer Science, Uni-
versty of Copenhagen, 1990. DIKU-Rapport 90/17.

R.M. Burstall and J. Darlington. A transformation
system for developing recursive programs. Jour-
nal of the Association for Computing Machines,
24(1):44-67, 1977.

W.-N. Chin. Awutomatic Methods for Program
Transformation. PhD thesis, Imperial College,
University of London, 1990.

[7]

[8] W.-N. Chin. Generalising deforestation to all first-
order functional programs. In Workshop on Static
Analysis of Equational, Functional and Logic Pro-
gramming Languages, BIGRE 7/, pages 173-181,

1991.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

W.-N. Chin. Fully lazy higher-order removal. In
Proceeding of the ACM SIGPLAN Syposium on
Partial Fvaluation and Semantics-Based Program
Manipulation, pages 38—47, 1992. Yale University
technical report YALEU/DCS/RR-909.

W.-N. Chin. Safe fusion of functional expressions.
In ACM Conference on Lisp and Functional Pro-
gramming, pages 11-20. ACM Press, 1992.

W.-N. Chin. Safe fusion of functional expressions
II: Further improvements. Journal of Functional
Programming, 4(4):515-555, 1994.

W.-N. Chin and J. Darlington. Higher-order re-
moval transformation technique for functional pro-
grams. In Australian Computer Science Confer-

ence, volume 14,1 of Australian CS Comm., pages
181-194, 1992.

W.-N. Chin and S.-C. Khoo. Better consumers
for deforestation. In D.S. Swierstra, editor, Pro-
gramming Languages: Implementations, Logics
and Programs, volume 982 of Lecture Notes in
Computer Science, pages 223-240. Springer-Verlag,
1995.

J. Darlington. An experimental program trans-
formation and synthesis system. Artificial Intel-
ligence, 16:1-46, 1981.

M.S. Feather. A system for assisting program
transformation. ACM Transactions on Program-
ming Languages and Systems, 4(1):1-20, 1982.

L. Fegaras, T. Sheard, and T. Zhou. Improving pro-
grams which recurse over multiple inductive struc-
tures. In Proceeding of the ACM SIGPLAN Sypo-
sium on Partial Evaluation and Semantics-Based
Program Manipulation, 1994.

A. Ferguson and P.L. Wadler. When will deforesta-
tion stop? In Glasgow Workshop on Functional
Programming, pages 39-56, 1988.

A.J. Gill. Cheap Deforestation for Non-strict Func-
tional Languages. PhD thesis, Department of Com-
puting Science, Glasgow University, 1996.

A.J. Gill, J. Launchbury, and S.L. Peyton Jones.
A short cut to deforestation. In Conference on
Functional Programming and Computer Architec-
ture, pages 223-232. ACM Press, 1993.

A.J. Gill and Simon L. Peyton Jones. Cheap defor-
estation in practice: An optimiser for Haskell. In
IFIP, pages 581-586, 1994.

11

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

G. Hamilton. Compile-Time Optimisations of
Storage Usage in Lazy Functional Programs. PhD
thesis, University of Stirling, 1993.

G. Hamilton. Extending first order deforestation.
Technical Report TR, 95-06, Department of Com-
puter Science, Keele University, 1995.

G. Hamilton. Higher order deforestation. Tech-
nical Report TR 95-07, Department of Computer
Science, Keele University, 1995.

G. Hamilton and S.B. Jones. Extending deforesta-
tion for first order functional programs. In Glasgow
Workshop on Functional Programming, pages 134—
145, 1991.

G. Hamilton and S.B. Jones. Transforming pro-
grams to eliminate intermediate structures. In
Workshop on Static Analysis of Equational, Func-
tional and Logic Programming Languages, BIGRE
74, pages 182—188, 1991.

N. Heintze. Set-based analysis of ML programs. In
ACM Conference on Lisp and Functional Program-
ming, pages 306-317, 1994.

J.R. Hindley. The principal type scheme of an
object in combinatory logic. Transactions of the
American Mathematical Society, 146:29-60, 1969.

J. Hughes. Why functional programming matters.
In D. Turner, editor, Research Topics in Functional
Programming. Addison-Wesley, 1990.

N.D. Jones. Flow analysis of lazy higher-order
functional programs. In S. Abramsky and C. Han-
kin, editors, Abstract Interpretation of Declarative
Language, chapter 5. Ellis Horwood, London, 1987.

N.D. Jones and S.S. Muchnick. Flow analysis of
LISP-like structures. In Conference Record of the
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 244—
256. ACM Press, 1979.

R.B. Kierburtz and J. Schultis. Transformations
of FP program schemes. In Conference on Func-

tional Programming and Computer Architecture,
pages 41-48. ACM Press, 1981.

J. Launchbury and T. Sheard. Warm fusion: Deriv-
ing build-catas from recursive definitions. In Con-
ference on Functional Programming and Computer
Architecture, pages 314-323. ACM Press, 1995.

Z. Manna and R. Waldinger. Synthesis: Dreams
=> programs. IEEFE Transations on Software En-
gineering, 5(4):157-164, 1979.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

S. Marlow and P.L. Wadler. Deforestation for
higher-order functions. In J. Launchbury, editor,
Glasgow Workshop on Functional Programming,
Workshops in Computing, pages 154-165, 1992.

S.D. Marlow. Deforestation for Higher-Order
Functional Languages. PhD thesis, University of
Glasgow, 1996.

R. Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sci-
ences, 17:348-375, 1978.

T. Mogensen. Partially static structures in a self-
applicable partial evaluator. In Bjorner et al. [4].

J. Palsberg. Closure analysis in constraint form.
ACM Transactions on Programming Languages
and Systems, 17:47-82, 1995.

J. Palsberg and P. O’Keefe. A type system equiv-
alent to flow analysis. ACM Transactions on
Programming Languages and Systems, 17:576-599,
1995.

D. Sands. Proving the correctness of recursion-
based automatic program transformation. In
P. Mosses, M. Nielsen, and M.I. Schwartzbach, ed-
itors, Theory and Practice of Software Develop-
ment, volume 915 of Lecture Notes in Computer
Science, pages 681-695. Springer-Verlag, 1995.

D. Sands. Total correctness by local improvement
in program transformation. In Conference Record
of the Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages,
pages 221-232. ACM Press, 1995.

D. Sands. Proving the correctness of recursion-
based automatic program transformations. Theo-
retical Computer Science, A(167), 1996.

D. Sands. Total correctness by local improvement,
in the transformation of functional programs. ACM
Transactions on Programming Languages and Sys-
tems, 18(2), March 1996.

H. Seidl. Least solutions of equations over N'. In In-
ternational Colloquium on Automata, Languages,
and Programming, volume 820 of Lecture Notes in
Computer Science, pages 400411, 1994.

H. Seidl. Integer constraints to stop deforestation.
In European Symposium on Programming, volume
1058 of Lecture Notes in Computer Science, pages
326-340. Springer-Verlag, 1996.

P. Sestoft. Automatic call unfolding in a partial
evaluator. In Bjgrner et al. [4], pages 485-506.

12

[47] T. Sheard and L. Fegaras. A fold for all sea-
sons. In Conference on Functional Programming
and Computer Architecture, pages 233—242. ACM
Press, 1993.

[48] M.H. Sgrensen. A grammar-based data-flow analy-
sis to stop deforestation. In S. Tison, editor, Collo-
quium on Trees in Algebra and Programming, vol-
ume 787 of Lecture Notes in Computer Science,

pages 335-351. Springer-Verlag, 1994.

[49] A. Takano and E. Meijer. Shortcut deforestation
in calculational form. In Conference on Functional
Programming and Computer Architecture, pages

306-313. ACM Press, 1995.

[50] V.F. Turchin, R. Nirenberg, and D. Turchin. Ex-
periments with a supercompiler. In ACM Confer-
ence on Lisp and Functional Programming, pages

47-55. ACM Press, 1982.

[51] P.L. Wadler. Applicative style programming, pro-
gram transformation, and list operators. In Con-
ference on Functional Programming and Computer

Architecture, pages 25-32. ACM Press, 1981.

[52] P.L. Wadler. Listlessness is better than laziness.
In ACM Conference on Lisp and Functional Pro-

gramming, pages 282-305. ACM Press, 1984.

[53] P.L. Wadler. Listlessness is better than lazyness
IT: Composing listless functions. In Workshop on
Programs as Data Objects, volume 217 of Lecture

Notes in Computer Science. Springer-Verlag, 1985.

[54] P.L. Wadler. Deforestation: Transforming pro-
grams to eliminate trees. In Furopean Symposium
on Programming, volume 300 of Lecture Notes in

Computer Science. Springer-Verlag, 1988.

[55] P.L. Wadler. Deforestation: Transforming pro-
grams to eliminate intermediate trees. Theoretical

Computer Science, 73:231-248, 1990.

A Proof of correctness of the analysis

Proof of Theorem 14. To prove correctness of our anal-
ysis, we extend the methods of [45] to the higher-order
case. First, we replace all free variables of terms ¢ to be
transformed by the special symbol “e”. Then we put
up a reduction relation “=" on such closed terms such
that if transformation of ¢ leads to transformation of #'
then also t = /.

Definition 23

cty...ty =

Azt = t{x:= e}

e(ot) = e(e)

e(et) = t

e(f) = e(th) (f=t))

e((Az.t) t') = e(t{z:=t'})

e(let z=tint') = e(t{z :=e})

e(let z=tint') = t

e(case (cty...ty) of q1—81;...; @m—rSm) =

e(sj{z1 :—tl,.. JEp i=tn}y (g =cmxy)

e(case ° ofql—)sl, e Qm—Sm) =

e(si{zy :=eo,...,x,:=0}) (gs=cxy...2y) foralli

O

Note that expressions of the form et ...t, are suc-

cessively rewritten to e while their argument terms t;
are raised to the top-level.

Instead of abstracting this reduction system we pre-
fer to abstract the corresponding system where sub-
stitutions are made explicit. This allows us, for in-
stance, to keep track of instances of subterms. There-
fore instead of terms we consider stacks of pairs con-
sisting of terms and environments. Environments E are
used for making substitutions explicit whereas stacks o
are introduced to model the outermost unfolding strat-
egy. The stack stores suspended abstractions and case-
expressions.

Definition 24 Let E and o range over environments and
stacks, respectively, as defined by the grammar:

E o= 0] {e=(t0)+F
o = (t,E)o
o = €e|(tt,E)d
| (case tgof qi—ti;...;qm—tm, E) o’
As usual, we abbreviate

{371 = (tl,El)} + ...

by {x1 := (t1,F1),...,zn := (t1, Ep)}-

The function u[.] maps a pair consisting of a term
and an environment (or a stack of such pairs) to the
term that the pair (resp. the stack) denotes.

+{zyn = (tn, En)} + 0

U’[fv E] = f

ule, E] =

ulz, E] = ulE (z)]

u[Az.t, E] = Az.uft, E]

u[cty ... tn, E] = cuft1, E]... uftn, E]
ultt', E) = uft,E|u[t', E]
uf[case tg of ¢ —t1;.. .5 gm—tm, E] =

case ufty, E] of ¢y —ult1, E];. .. ; gm—ultm, E]

u[let =t int', F]
ul(t, E)(t1 t2, E')

= let z=ult, E]inu[t', E]
o'l = u[(vty, E') 0'], v =ult, E]
u[(t, E)(case to of g1 —>t1;...; gm—tm, E') o'] =
u[(case v of ¢ —t1;...; gm—tm, E') 0], v=u[t, E|
O

The following proposition, which relates the depth
of terms with depth of stacks and environments, can be
proved by induction on the depth of terms.

Proposition 25 Let ag denote the maximal depth of a
term in p, and assume we are given term t and stack
o = (t1,E1)...(tx, Ex) containing only subterms from
p and o such that ulo] = t. If depth(u[E; z]) < a for
all j and x € dom(E;) then

depth(t) < k+ap + a O

On stacks we introduce a reduction relation “—”
which is going to simulate our reduction relation “="
on terms.

Definition 26 Define — by:

(z,E) o — (Ez)o

(cty...tn, E) — (t;, E) for all i

(Az.t, E) = (t,{z:=(s,0)} + E)
(f,E) o - 5, 0) o

(t t’ E)o - (t,E)(tt,E)o

(e,)(tt' E)o = (%00

(e,0) (tt',E) o - (t',E)

()\Cﬂt E) (t1 tQ,EQ) o — (t,E + {ZL' = (tQ,EQ)}) o
(let z=tint' E) o — (', E+{z:=(o,0)}) 0
(let z=tint' | E) o - (t, E)

(case tg of g1 —t1;. .. ;Gm—tm, E) o

— (to, E) (case toof g1 —t1;...; gm—tm, E) o
(cs1...8n, FE) (case tg of g1—t1; ... qm—tm, E1) o

— (t;,E') 0 whenever ¢; = c1,...,2p

and E' = By + {z1 := (s1,E),..., 2y := (sn, E)}

(o,0) (case tg of g1—>t1;. .. ; qm—tm, F1) o
— (t;, E') o for all i whenever ¢; = cxy,...,2,
and E' = By + {z1 := (e,0),..., 3y := (e,0)}
O

By case distinction on reduction steps we verify:

Proposition 27 Assume t = u[o]. Then

13

1. t=t" implies o = o' for some o' with u[o'] = t';
2. o—0o' implies t = u[o'] or t = ufo’]. i

From Proposition 27 we conclude that it is enough
to abstract relation “—” on stacks. For stack o, let ao
denote the following set of simple constraints.

- If 0 = ¢ then ao = ()

If 0 = (¢, E) then ac = {[tinit] D t} UaE;

-If 0 = (¢, E)(t1 t2, E') o' then aoc = {[t1] D t} U
aEUa((ty t2, E") o');

!

- If 0 = (t, E) (case tg of g1—t1;. ..
then ao = {[to] 2 t} UaEU
a((case tgof ¢ —t1;...; gm—tm, E') o)

i qm—tm, E') o

where

ifE =10

0
ok = {{[x] DtlUaE UaE, ifE = {x:=(t E)} + B,

By induction on the length of reduction paths we
prove:

Proposition 28 Let I = Z(p) with least model pul. As-
sume (tini,0) = o where o = (t,E) o'. Then

1. a0 C S;
2. r[f] 3 1is in S;

9. (uI dlf]) + (uI sft]) > |o];

4. ul alz] > depth(ulz, E)) for every z € dom(E);
5. ul alt] > depth(u[t, E]).

If furthermore (t,E) o' = (t',E') o’ is a reduction path
where all intermediate stacks are of the form o10', then

6. [t] Dt is in S as well. O

We conclude:

Theorem 29 Consider program p = letrec defs in t;p;;
and I = Z(p) with least model plI.

Safety: Assume during deforestation of p, t is encoun-
tered. Then (tinit,) = o for some o = (t', E') o
withulo] = t{x1 :=e,...,zp := o} ({z1,..., 21} =
FV(t)) such that:

1. (I d[t']) + (uI s[t']) = |o'];
2. ul alz] > depth(u[E z]) for all E occurring
in o and all z € dom(E).

Efficiency: S can be computed in polynomial time.

14

Proof. The safety part follows from Proposition 28.
The fast algorithm to perform the control-flow analysis
essentially consists (of an adaptation) of Heintze’s al-
gorithm for computing a normalized system of set con-
straints in [26] where additionally the constraints for
variables r[.] are considered and the integer constraints
in I are generated. Note that, theoretically Heintze’s
algorithm has cubic complexity. In practice, however,
we found that it behaves quite well on all example pro-
grams. O

Note that ul indeed contains all information neces-
sary to determine whether or not [.] stops. Additionally
applying Proposition 25 we obtain Theorem 14. This
concludes the proof of Theorem 14.

B Proof of non-accumulating spines

Proof of Proposition 15. First note that control-flow
analysis is conservative over types, i.e., whenever ¢ : 7
and [t] D t' € S then ¢ : 7 as well. Let D denote the
set of all types of subterms in p and define the ordering
“<” as the reflexive and transitive closure of relation
“<” defined by 7 < ¢ iff 0 = 7 — 7' for some 7. Now
define function R mapping subterms to elements in D
by R[t] = 7 iff £ : 7. Then we have:

1. If ¢t # tins then [t] D¢’ € S implies R[t] = R[t'].

2. Whenever t; t» is a subterm of p then R[t;] >
R[t ta].

The special treatment of t;,;; is due to the possibilities

of “raising” subterms to the top-level - which clearly

does not preserve types. From 1 and 2 we deduce that

ul s[t] is bounded above by the height of D, i.e., the

maximal length of a strictly increasing chain in D.
This concludes the proof of Proposition 15.

C Proof of characterization of termination

Proof of Corollary 18. For statement (1) assume that
for every pattern variable z', a[z'] receives a finite value.
Then every such z can only be contained in strong com-
ponents having edges corresponding to constraints of
the form aly] > a[y'].

Now let uI a[z] = oo for some variable z. By Propo-
sition 17, some strong component () exists which con-
tains an edge corresponding to a constraint aft] > ¢ +
a[z] with ¢ > 0. Since 2’ cannot be a pattern variable,
this constraint must have been generated for an appli-
cation 1 t where [t1] D Az".t/, i.e., N[t] = pl U (c + a[z])
for some polynomial pl. Especially, a[z] is a free vari-
able of N[t]. Hence, z must be a free variable of ¢ where
t # z. This gives us one direction of statement (1).

For the reverse direction assume z Z to is a free
variable of ¢2, and a[t2] and a[z] are contained within the
same strong component @ of the dependence graph G7.
Since z # ta, N[t2] has the form Nt2] = plli(c+a[z]) for
some ¢ > 0. But then) contains an edge corresponding
to constraint aftz2] > ¢ + a[z] which, by Proposition 17,
implies pl a[z] = co.

The characterizations of statements (2) and (3) di-
rectly follow from the observations that the d[.]-value is
increased precisely when going from a case-expression
to its selector, and that the s[.]-value is inceased pre-
cisely when going from an application to its operator.

This finishes the proof of Corollary 18.

D Proof of conservativity

Proof of Theorem 21. Let S and I denote the sets of
constraints resp. integer constraints generated by our
analysis applied to p. Furthermore, let ul denote the
least solution of I. Since p is monomorphically typed
we know from Proposition 15 that pl s[t] < oo for all
subterms ¢. Therefore, it remains to prove finiteness for
variables a[z] and d[t].

As in the proof of Proposition 15, we construct a
finite partial ordering D together with ranking function
R mapping the subterms ¢ of p to elements in D. For
this let us w.l.o.g. assume that t;n;: = Az1,-.-, 2m-to
where to is of non-functional type. Then the carrier
of D consists of all non-functional subterms occurring
in ty, ordered by the subterm ordering. Note that by
our extra assumption, tg is contained in D and is the
maximal element.

Given D, function R is defined as follows. If ¢ is a
subterm of to then RJ[t] is the smallest superterm of ¢
of non-functional type. Furthermore, if R[f] = d then
R[t] = d for every subterm ¢ occurring in the right-hand
side of f. Now assume t' # e. Then the following holds:

1. If [f] D ¢ then R[] > R[t'].

2. If variable z is of functional type, then a[z] >
a[t'] € I implies that either ¢’ is a variable as well
or a subterm of #.

3. If variable z is not of functional type, then [z] D ¢’
implies that either #' is a variable or R[z] > R[t'].

From statement 3 we deduce that for all ¢, pI d[t] is
bounded above by the height of D plus 1. For the al.]-
constraints statements 2 and 3 imply that every strong
component has only edges corresponding to constraints
of the form a[z] > afy]. It follows that ul alz] < oo for
all variables z.

This concludes the proof of Theorem 21.

15

