
Constraints to Stop Higher-Order DeforestationH. SeidlFB IV - InformatikUniversit�at Trier, D-54286 Trier, Germanyseidl@uni-trier.deM.H. S�rensenDepartment of Computer Science, University of CopenhagenUniversitetsparken 1, DK-2100 Copenhagen �, Denmarkrambo@diku.dkAbstractWadler's deforestation algorithm eliminates intermedi-ate data structures from functional programs. To besuitable for inclusion in a compiler, it must terminateon all programs. Several techniques to ensure termi-nation of deforestation on all �rst-order programs areknown, but a technique for higher-order programs wasonly recently introduced by Hamilton, and elaboratedand implemented in the Glasgow Haskell compiler byMarlow. We introduce a new technique for ensuring ter-mination of deforestation on all higher-order programsthat allows useful transformation steps prohibited inHamilton's and Marlowe's techniques.1 IntroductionLazy, higher-order, functional programming languageslend themselves to a certain style of programming whichuses intermediate data structures [28].Example 1 Consider the following program.letreca = �x; y:case x of[] ! y(h : t)! h : a t yin �u; v; w: a (a u v) wThe term �u; v; w:a (a u v)w appends the three lists u,v, and w. Appending u and v results in an intermediateSubmitted to the 24th Annual SIGPLAN-SIGACTSymposium on Principles of Programming Languages,Paris, France, January 15{17, 1997. WORDCOUNT:approx. 4950 excluding appendices and references.

list to which w is appended. Allocation and dealloca-tion of the intermediate list at run-time is expensive.Sacri�cing clarity for e�ciency, we would therefore pre-fer a program like the following.letrecda = �x; y; z:case x of[] ! a 0 y z(h : t)! h : da t y za0 = �y; z:case y of[] ! z(h : t)! h : a 0 t zin �u; v; w: da u v w 2Ideally we should write the �rst version, and haveit translated to the second automatically, e.g., by ourcompiler. This is indeed done by Wadler's [17, 54, 55]deforestation which eliminates intermediate data struc-tures from �rst-order functional programs.1 Deforesta-tion terminates on treeless programs. Subsequent tech-niques to ensure termination of deforestation on all �rst-order programs are due to Chin [7, 8, 10, 11, 13], andlater to Hamilton [21, 22, 24, 25]. The essence of thesetechniques is to annotate all parts of the program thatviolate the treeless syntax, and then let the deforesta-tion algorithm skip over annotated parts. A techniquethat annotates fewer parts of the program is due toS�rensen [48], and was later improved by Seidl [45].These techniques concern only �rst-order programs.However, modern functional languages like ML, Haskell,and Miranda include higher-order functions which shouldbe transformed too. Several preliminary approaches re-duce the higher-order case to the well-studied �rst-ordercase. Wadler [55] considers programs with higher-order1Earlier techniques include [3, 6, 14, 15, 31, 33, 50, 51, 52, 53].

macros. Any such program typable in the Hindley-Milner [27, 36] type system can be expanded out toa �rst-order program, and transformed with �rst-orderdeforestation. These programs include applications ofthe fold and map functions, but exclude useful construc-tions, e.g., lists of functions. Chin [7, 8, 10, 11] startsout with a higher-order program and uses a higher-orderremoval transformation [7, 9, 12] to eliminate some higher-order parts, resulting in a program in a restricted higher-order form. He then adopts a version of deforesta-tion applicable to annotated programs in the restrictedhigher-order form, and annotates any remaining higher-order parts as well as �rst-order parts violating the tree-less syntax. In the process of applying deforestation tosuch a program, higher-order subterms may reappear,and these are again removed by the higher-order re-moval algorithm during deforestation. The process ter-minates if the program is typable in the Hindley-Milnertype system, but a more e�cient and transparent ap-proach is desirable.The �rst formulation of deforestation applicable di-rectly to general higher-order programs is due to Mar-low and Wadler [34], who leave open the question ofguaranteeing termination. This was addressed by Hamil-ton [23], who gives a formulation of the higher-order de-forestation algorithm applicable to annotated programsand introduces a notion of higher-order treelessness. Hethen proves that deforestation of any Hindley-Milnertypable program terminates, if all parts of the programviolating the higher-order treeless syntax are annotated.These ideas have been elaborated and implemented inthe Glasgow Haskell compiler by Marlow [35].The higher-order treeless syntax requires argumentsof applications and selectors of case-expressions to bevariables. This entails annotating and thereby skippingover parts of programs that could have been improved.Example 2 Consider the following program.letrecc = �x; xs:x : xsfoldr = �f; a; l:case l of[] ! a(z : zs)! f z (foldr f a zs)in �u; v; w:foldr c w (foldr c v u)The term foldr c v u is a higher-order formulation ofthe term a u v from Example 1. The whole programis therefore equivalent to the program in Example 1,and we would expect to be able to transform it intothe more e�cient program in Example 1. This is in-deed what happens when we apply deforestation to theprogram. However, the techniques by Hamilton andMarlow require that the argument foldr f a zs in thede�nition of foldr be annotated, and this prevents thedesired transformation. 2

There are many such examples. Chin [11] shows thatsome shortcomings of the treeless syntax can be avoidedby ad-hoc extensions of deforestation. The necessity ofsuch extensions stems from the fact that the annotationscheme is purely syntactic; it does not take into accountwhat actually happens during deforestation.In this paper we give a new technique to ensure ter-mination of higher-order deforestation. We adopt a ver-sion of Hamilton's higher-order deforestation algorithmapplicable to annotated terms, but do not annotate allparts violating the higher-order treeless syntax. Beforetransformation we instead compute a set of constraintsapproximating the set of terms encountered during de-forestation of the program. This can be done e�cientlyusing well-known techniques. While doing so, we ex-tract quantitative information to detect whether defor-estation will proceed inde�nitely, and if so, we anno-tate parts of the program responsible for the inde�nitetransformation. The technique is a generalization of ourtechnique for �rst-order deforestation [48, 45].Section 2 presents our higher-order language, andSection 3 presents higher-order deforestation. Section 4shows the sources of non-termination of deforestation.Section 5 introduces constraint systems, and Section 6uses constraints to approximate deforestation. Section 7shows how to calculate annotations that ensure termi-nation of deforestation, from the set of approximatingconstraints. Section 8 relates the approach to that byHamilton and Marlow. Section 9 concludes. Proofsketches have been banished into appendices.2 Language and notationDe�nition 3 (Higher-order language) Let c, x, and frange over names for constructors, variables, and func-tions, respectively. Let t, q, d, and p range over terms,patterns, de�nitions and programs, respectively, as de-�ned by the grammar:t ::= x j �x:t j c t1 : : : tn j f j let v=t in t0 j t t0 jcase t0 of q1!t1; : : : ; qk!tkq ::= c x1 : : : xnd ::= f = tp ::= letrec d1; : : : ; dn in t(where n � 0; k > 0). The t0 in case-expressions iscalled the selector. In applications t is the operator andt0 the argument. All variables of t in de�nitions f = tand programs letrec d1; : : : ; dn in t must be bound. Novariable may occur more than once in a pattern. Toeach function call must correspond exactly one de�ni-tion, and the patterns in a case-expression must benon-overlapping and exhaustive. We assume that erro-neous terms of form (c t1 : : : tn)t and case (�x:t)ofq1!2

t1; : : : ; qn! tn never arise. The semantics of the lan-guage is call-by-need [2].FV(t) denotes the set of free variables in t. We iden-tify terms di�ering only in names for bound variables,and adopt the usual conventions to avoid confusion be-tween free and bound variables. Variable names in theinput program are assumed to be unique. We also usethe usual conventions for association of parentheses.We write �x1; : : : ; xn:t for �x1: : : : �xn:t. The list con-structors Cons and Nil are written : and []. Instead ofx1 : : : : : xn : [] we also write [x1; : : : ; xn]. Substitutionof t0 for x in t is written tfx := t0g. 2The let-construct is an alternative to annotations.Instead of annotating the dangerous parts of a pro-gram and letting deforestation work conservatively onannotated subterms, we transform dangerous parts ofthe program into let-expressions and let deforestationwork conservatively on let-expressions. This leads toless syntactic overhead than working with annotations.3 The higher-order deforestation algorithmWe shall state the deforestation algorithm by rules forrewriting terms. For this, we need some notation toselect, e.g., a function call in a term and replace thecall by the body of the function. The deforestationalgorithm simulates call-by-name evaluation, so thereis always a unique subterm whose reduction is forced.For instance, to �nd out which branch to choose incase f t of []! []; (x : xs)!x : a xs yswe are forced to unfold the call to f . The forced call fis the redex and the surrounding part of the term, i.e.,case hi t of []! []; (x : xs)!x : a xs ysis the context.De�nition 4 Let e; r; o range over contexts, redexes, andobservables, respectively, as de�ned by the grammar:e ::= hi j case e of q1!t1; : : : ; qn!tn j e tr ::= let x=t in t0 j (�x:t) t0 j f jcase (c t1 : : : tn) of q1!s1; : : : ; qk!sk jcase (x t1 : : : tn) of q1!s1; : : : ; qk!sko ::= c t1 : : : tn j x t1 : : : tn j �x:tLet ehti denote the result of replacing hi in e by t. 2Every term t is either an observable or decomposesuniquely into a context e and redex r such that t � ehri.This provides a way of �nding the next subterm to re-duce in a term, i.e., the following clauses of [[:]] are mu-tually exclusive and together exhaustive. The de�nition

of [[:]] is inspired by [23], but the use of let-expressionsrather than annotations, and of explicit contexts, hasreduced the number of rules from 16 to 8.De�nition 5 (Deforestation)[[x t1 : : : tn]] = x [[t1]] : : : [[tn]] (1)[[c t1 : : : tn]] = c [[t1]] : : : [[tn]] (2)[[�x:t]] = �x:[[t]] (3)[[ehfi]] = [[ehtf i]] (f = tf) (4)[[eh(�x:t) t0i]] = [[ehtfx := t0gi]] (5)[[ehlet x=t in t0i]] = let x=[[t]] in [[eht0i]] (6)[[ehcase x t1 : : : tn of q1!s1; : : : ; qk!ski]] = (7)case x [[t1]] : : : [[tn]] of q1![[ehs1i]]; : : : ; qk![[ehski]][[ehcase c t1 : : : tn of q1!s1; : : : ; qk!ski]] = (8)[[ehsjfx1 := t1; : : : ; xn := tngi]] (qj � c x1 : : : xn)Given a program letrec d1; : : : ; dn in t we apply trans-formation [[:]] to t understanding that de�nitions f = tffor function calls must be located among d1; : : : ; dn. 2As is well-known, this algorithm hardly ever termi-nates. For instance, on the program letrec f = f in fthe same term f is encountered over and over again.To avoid this, the algorithm must incorporate folding,i.e., recall the terms it encounters and make repeatingterms into recursive de�nitions. This can be done ina number of ways (cf. [35] for a discussion). What isimportant is that if the rules of the preceding de�nitionencounter only �nitely many di�erent terms, then thealgorithm with folding terminates. For concreteness wesketch one way of doing this.2De�nition 6 (Folding) Let [[:]] take an extra parameterI . In all clauses of the preceding de�nition but (4), I ispassed unchanged to the recursive calls of [[:]]. Replacerule (4) of the preceding de�nition by (4'):[[ehfi]]I=8>><>>: g x1 : : : xn if g = �x1; : : : ; xn:ehfi 2 Ig x1 : : : xn else, whereI 0 = I [fg = �x1; : : : ; xn:ehfigg = �x1; : : : ; xn:[[ehtf i]]I 0where fx1; : : : ; xng = FV(ehfi). Now, given a programletrec d1; : : : ; dn in t we apply [[:]] to t with the emptyset for I . This results in a term, but also in a new setof de�nitions g = �x1; : : : ; xn::[[ehfi]]I 0 generated in theprocess, which are collected into a new program. 22The following algorithm only folds terms with function calls inthe redex. For programs that are not Hindley-Milner typable onemust allow folding for �-redices as well.3

Example 7 We now show how deforestation transformsthe �rst program in Example 1 into the second moree�cient one. For brevity we adopt the abbreviations:I = fda = �u;v;w:a (a u v) wgI 0 = ff = �u;v;w:case (a u v) of []!w; (h:t)!h : a t wgI 00= fa0 = �y;z:a y zgThen transformation proceeds as follows.[[�u; v; w: a (a u v) w]]fg (3)=�u; v; w: [[a (a u v) w]]fg (40)=�u; v; w: da u v w whereda=�u; v; w:[[(�x; y:case x of[] ! w(h : t)! h : a t y) (a u v) w]]I (5)=�u; v; w:[[case (a u v) of[] ! w(h : t)! h : a t w]]I (40)=�u; v; w:f u v w wheref =�u; v; w:[[case ((�x; y:case x of[] ! y(g : s)! g : a s y) u v) of[] ! w(h : t)! h : a t w]]I [I 0 (1; 2; 5; 7)=�u; v; w:case u of[] ! case v of[] ! w(h : t)! h : [[a t w]]I [I 0(h0 : t0)! h0 : [[a (a t0 v) w]]I [I 0 (40)=�u; v; w:case u of[] ! case v of[] ! w(h : t)! h : a 0 t w(h0 : t0)! h0 : da t0 v w wherea0 =�t; w:[[case t of[] ! w(h0 : t0)! h0 : a t0 w]]I [I 0 [I 00 (1; 2; 40; 7)=�t; w:case t of[] ! w(h0 : t0)! h0 : a 0 t0 w

Hence the new program isletrecda = �x; y; z:f u v wf = �x; y; z:case x of[] ! case y of[] ! z(h : t)! h : a 0 t z(h : t)! h : da t y za0 = �y; z:case y of[] ! z(h : t)! h : a 0 t zin �u; v; w:da u v wThis is equivalent to the e�cient program in Example 1.Unnecessary auxilary functions, like f above, can easilybe unfolded in a postprocessing phase. 2Apart from termination|the topic of this paper|there are two other aspects of correctness for deforesta-tion, namely preservation of operational semantics andnon-degradation of e�ciency. A proper development ofthese two aspects is beyond the scope of this paper, sowe end this section with a brief review. This is not tosuggest that these problems are not important; on thecontrary, we believe that they are so important thatthey constitute separate problems.As for preservation of operational semantics, the out-put of deforestation should be semantically equivalentto the input. That each step of the transformationrules for deforestation preserves call-by-need semanticsis easily proved, but extending rigorously the proof toaccount for folding is more involved. A general tech-nique due to Sands [41, 43] can be used to prove thisfor deforestation [40, 42].As for non-degradation in e�ciency, the output ofdeforestation should be at least as e�cient as the in-put. First, there is the problem of avoiding duplicationof computation. Transformation can change a polyno-mial time program into an exponential time program.In Wadler's [55], Hamilton's [23], and Marlow's [35] ap-proaches this is avoided by considering only linear pro-grams, i.e., programs consisting of functions that do notduplicate their arguments. Some weaker restrictions areadopted in partial evaluation [46, 5] and in work on �rst-order deforestation [21]. Second, there is the problem ofcode duplication. Unrestrained unfolding may increasethe size of a program dramatically. In principle the sizeof a program does not a�ect its running-time, but inpractice this is not always true. Third, transformationsteps can loose laziness and full laziness, as is describedin detail by Marlow [35].
4

4 Termination problems in deforestationEven with folding, deforestation does not always ter-minate. Below we present the three kinds of problemsthat can occur. We show that deforestation applied toeach of the programs loops inde�nitely, and with cer-tain small changes in the programs, deforestation ter-minates. These changes are called generalizations.Example 8 (The Accumulating Parameter) Consider thefollowing program.letrecr = �us:rr us []rr = �xs; ys:case xs of[] ! ys(z : zs)! rr zs (z : ys)in rThe r function returns its argument list reversed. Ap-plied to this program, deforestation loops inde�nitely.The problem is that deforestation encounters the pro-gressively larger terms rr zs [], rr zs1 [z1], rr zs2 [z2; z1],etc. Since the formal parameter ys of rr is bound toprogressively larger terms, we call ys an accumulatingparameter.We can solve the problem if we can make sure thatdeforestation does not distinguish between the termsthat are bound to ys. This can be achieved by trans-forming the program into:letrecr = �us:rr us []rr = �xs; ys:case xs of[] ! ys(z : zs)! let v=z : ys in rr zs vin rDeforestation applied to this program terminates. 2Example 9 (The Obstructing Function Call) Consider thefollowing program.letrecr = �xs:case xs of[] ! [](z : zs)! case (r zs) of[] ! [z](y : ys)! y : a ys [z]a = �us; ws:case us of[] ! ws(v : vs)! v : a vs wsin rThe r function again reverses its argument, �rst revers-ing the tail and then appending the head to this. De-forestation encounters the terms r, case (r zs1) of � � �,

case (case (r zs2) of � � �) of � � �, etc. Because the call tor prevents the surrounding case-expressions from beingreduced, we call it an obstructing function call.We can solve the problem if we make sure that de-forestation does not distinguish between the di�erentterms that occur in the redex position. This can beachieved by transforming the program into:letrecr = �xs: let l=r xs incase xs of[] ! [](z : zs)! case l of[] ! [z](y : ys)! y : a ys [z]a = �us; ws:case us of[] ! ws(v : vs)! v : a vs wsin rDeforestation applied to this program terminates withthe same program as output, which is satisfactory. 2Example 10 (The Accumulating Spine) Yet another pos-sibility to prevent deforestation from termination is torecursively create larger and larger spines of functionapplications. Consider the following program.letrecf = �x:f x xin fNote that such kind of function de�nitions is prohibitedin some typing disciplines, e.g., simple types. Defor-estation applied to the program successively encountersterms f , f x x, f x x x, etc., and thus never terminates.The problem is resolved if we modify the program to:letrecf = �x:let y=f in y x xin fThen deforestation terminates. 2The operation of going from the term tfx := t0g toletx=t0 int is called generalization of t0 in tfx := t0g. InExample 8, we generalized rr's second argument (z : ys)in the body of the de�nition for rr. In example 9, wegeneralized the call r xs in the body of the de�nition ofr. Finally, in example 10, the call to f was generalizedin the body of the de�nition of f .Generalizing should be thought of as annotating. In-stead of putting funny symbols on our programs we in-stead use a distinct language construct.5

5 Constraint SystemsInspired by work by Jones and co-workers [30, 29, 1, 37],S�rensen [48] approximates the set of terms encounteredduring �rst-order deforestation of a program by a set ofterms described by a regular tree grammar. Inspectingthis grammar one can automatically decide whether anyof the phenomena in the preceding section occur, andgeneralize accordingly.An equivalent means for describing regular tree lan-guages are set constraints [26]. These are technicallymore convenient than regular tree grammars, and havegiven rise to fast, practical analysis algorithms. Seidl [45]therefore expressed S�rensen's analysis in terms of setconstraints and observed that the information necessaryto detect dangerous subterms can be computed with-out explicitly building the approximating system of setconstraints. Instead, it su�ces to perform a control-
ow analysis in the sense of Palsberg [38] and Palsbergand O'Keefe [39] and, while doing so, to collect a setof integer constraints. In this paper we show that thistechnique can be elegantly extended to the higher-ordercase. This section introduces the necessary theory re-garding constraint systems.Let D be a complete lattice. For some variable setV , we consider sets S of constraints of the formX w fX1 : : : Xnwhere X;X1; : : : ; Xn 2 V , and f denotes a monotonousfunction [[f]] : Dn ! D. Then S has a least model �Smapping variables to elements of D such that(�S X) w [[f]](�S X1) : : : (�S Xn)for every constraint X w fX1 : : :Xn 2 S. We shallmake use of two instances of this sort of constraints:simple constraints and integer constraints.In a set of simple constraints, a �nite set A of objectsis given. D is the powerset of A ordered by set inclusion.In our application we need no occurrences of variables oroperators in right-hand sides. So, they are of the simpleform X � a for some a 2 A.3 One important specialcase of simple constraints is given by a one-element setA. Then 2A is isomorphic to the 2{point domain 2 =f0 < 1g. These constraints are called boolean.In integer constraints the complete lattice D is thenon-negative numbers N equipped with their naturalordering and extended by1. Right hand sides are builtup from variables and constants by means of certainoperators, in our case \+" and \t" (maximum).3In [45], constraints also of the form X � Y occur. These havebeen removed in the present formulation.

Example 11 Consider the integer constraints:X � 1 Z � X + YY � 7 Y � Z tXIn the least model, (�S)X = 1; (�S)Y = (�S)Z =1.2Since N does not satisfy the ascending chain condition,naive �xpoint iteration may not su�ce to compute leastmodels. Seidl [44] presents algorithms that do computesuch least models.4 For the systems we consider, leastmodels can be computed in linear time.6 Approximating deforestationWe now present an analysis which computes, for a givenprogram, a set of integer constraints whose least modelindicates which subterms cause termination problems.In the next section we show how to compute general-izations from such constraint systems.The analysis can be viewed as a control-
ow analysisadapted to an outermost unfolding strategy. While per-forming this analysis we keep track of the depth in whichunfolding occurs and the depth of arguments bound toformal parameters.The de�nition is followed by extensive explanationsalong with an example.De�nition 12 (Constraints approximating deforestation)Let p � letrec d1; : : : ; dn in tinit, let T be the set of allsubterms contained in p, and let A = T [f�g, where �is a special symbol.For every t 2 T we consider �ve di�erent variables[t], r[t], d[t], s[t] and a[t]. The following table shows thetype of constraints in which the variables are used.Variable Lattice Constraint Type[t] 2A simpler[t] 2 booleand[t] N integers[t] N integera[t] N integerThe set of constraints C(p) computed for p is the small-est set containing the initial constraints, and closed un-der the transitivity rules, top-level rules, and unfoldingrules. The subset of integer constraints is written I(p).The initial constraints are as follows.[t] � tr[tinit] w 1a[t] � N [t]4Instead of constraint systems, [44] considers systems of equations.This makes no di�erence w.r.t the minimal model.6

where N [t] is de�ned by:N [x] = a[x]N [c] = 0N [f] = 0N [c t1 : : : tn] = 1 + (N [t1] t ::: tN [tn])N [t1 t2] = 1 + (N [t1] tN [t2])N [let x=t in t0] = 1 + (N [t] tN [t0]fa[x] := 0g)N [�x:t] = 1 +N [t]fa[x] := 0gN [c x1 : : : xn ! t] = N [t]fa[x1] := 0; : : : ; a[xn] := 0gN [case t0 of q1!t1; : : : ; qm!tm] =1 + (N [t0] tN [q1 ! t1] t : : : tN [qm ! tm])The transitivity rules are as follows.if [t] � t0; [t0] � t00 then [t] � t00if r[t] w 1; [t] � t0 then r[t0] w 1; d[t0] � d[t]; s[t0] � s[t]The top-level rules are as follows.if [tinit] � c t1 : : : tn then [tinit] � t1; : : : ; tnif [tinit] � �x:t then [tinit] � t; [x] � �The unfolding rules are as follows.if r[t] w 1 then case t off :[t] � tf ;t1 t2 :r[t1] w 1; s[t1] � 1 + s[t]; d[t1] � d[t];if [t1] � �x:t0 then [t] � t0; [x] � t2; a[x] � a[t2];if [t1] � � then [t] � �; [tinit] � t2;let x=t1 in t2 :[t] � t2; [x] � �; [tinit] � t1;case t0 of q1!t1; : : : ; qm!tm :r[t0] w 1; s[t0] � s[t]; d[t0] � 1 + d[t];if [t0] � � then[t] � t1; : : : ; tn;[y] � � (for all y in q1; : : : ; qn);if [t0] � c s1 : : : sn and qj � c x1 : : : xn then[t] � tj ;[x1] � s1; : : : ; [xn] � sn;a[x1] � a[s1]; : : : ; a[xn] � a[sn]; 2The meaning of the variables are as follows. Thevariable [t] represents a superset of the terms encoun-tered when transforming t; � denotes a term whose re-sult will be unknown at transformation time, e.g., a freevariable, or a free variable applied to some term. Thevariable r[t] records whether t is unfolded during trans-formation. The expression s[t] + d[t] is an upper boundon the depth of reduction contexts in which t occursduring transformation, where s[t] counts the nesting in-side applications and d[t] counts the nesting inside se-lectors of case-expressions. While variables s[t] have

no analog in the �rst-order case, they are used here topreclude accumulating spines. Finally, a[t] is an upperbound on the depth of t within any term bound to aformal parameter.The e�ect of the constraints are as follows. The ini-tial constraints [t] � t model re
exivity of iterated un-folding, r[tinit] w 1 shows that the main term tinit is duefor transformation, and a[t] � N [t] gives lower boundsfor a[t]. Since t may contain free variables from someset V , N [t] is a polynomial over a[x], x 2 V .The transitivity rules model iterated unfolding.The top-level rules model the fact that on the top-level, deforestation is pushed down through construc-tors and �-abstraction. When going down under anabstraction, the abstracted variable obtains the statusof a free variable and hence receives value �.The unfolding rules approximate the steps of defor-estation. First, the rules model indiviual steps of the de-forstation process, i.e., expansion of function names andreduction of �-redexes and case-expressions with newbindings for substituted variables. Second, informationabout which subterm is unfolded next by deforestionis propagated, i.e., the r[:]-information is propagatedto the function part of applications and to the selectorof case-expressions. Third, evaluation of certain sub-terms of let-expressions and case-expressions must beraised to the top-level. Also, the information involving� must be propagated. The main point, however, is torecord information about the depth of contexts and ar-guments. Thus, integer constraints on a[:]-variables aregenerated whenever variables become bound by reduc-tions of �-redexes and case-expressions. When passingcontrol to the function part of an application or the se-lector of a case-expression, the increase in the nestingof the context is recorded by a constraint on the s[:]-and d[:]-variables, respectively.Example 13 The program in Example 10 has constraints:r[x] wr[f] w1r[f x] w1r[f x x] w1r[�x:f x x]w1 [x] �x[f] �f; �x:f x x; f x x[f x] �f x; f x x[f x x] �f x x[�x:f x x]��x:f x xa[x] �a[x]a[f] �0a[f x] �1 + a[x]a[f x x] �2 + a[x]a[�x:f x x]�3 d[x] �d[f] �d[f]; d[f x]d[f x] �d[f x]; d[f x x]d[f x x] �d[f x x]; d[f x]d[�x:f x x]�d[�x:f x x]; d[f]s[x] �s[f] �s[f]; 1 + s[f x]s[f x] �s[f x]; 1 + s[f x x]s[f x x] �s[f x x]; s[f x]s[�x:f x x]�s[�x:f x x]; s[f]7

Here s[f] � 1 + s[f x] � 1 + s[f x x] � s[f]In particular �I s[f] =1, re
ecting the fact that trans-formation encounters terms with f embedded in un-boundedly deep applications.The program in Example 8 has constraints includinga[ys] � 1 + a[z : ys] � 1 + a[ys]In particular �I a[ys] = 1, re
ecting the fact thattransformation encounters terms with unboundedly largearguments containing ys.The program in Example 9 has constraints includingd[case (r zs) : : :] � d[case xs : : :] � d[r zs]� 1 + d[case (r zs) : : :]which imply �I d[r zs] = 1, re
ecting the fact thattransformation encounters terms with calls r zs embed-ded in unboundedly deep case-expressions. 2The following theorem shows that the set of integerconstraints in general contains enough information toestimate whether deforestation loops, and that the setcan be computed e�ciently.Theorem 14 Let p � letrec d1; : : : ; dn in tinit and I =I(p) with least model �I.(i) If deforestation applied to p encounters in�nitelymany di�erent terms, then (1), (2) or (3) holds:(1) �I a[x] =1 for some variable x;(2) �I d[t] =1 for some subterm t;(3) �I s[t] =1 for some subterm t.(ii) I can be computed in polynomial time.Proof. See Appendix A. 2Properties (1) and (2) correspond to S�rensen's [48,45] criteria for accumulating parameters and obstruct-ing function calls, respectively, for �rst-order deforesta-tion. In the higher-order case (3) is su�cient to cap-ture accumulating spines. However, if p is monomorphi-cally typable,5 then all values of s[:]-variables are �nite!In this case accumulating parameters and obstructingfunction calls are the only reasons for non-terminationof deforestation. W.l.o.g. let us assume henceforth thattinit does not occur as a subterm of any function de�-nition. Then we have:Proposition 15 Given a monomorphically typable pro-gram p, let I = I(p) with least solution �I. Then�I s[t] <1 for all subterms t of p.Proof. See Appendix B. 25If p is Hindley-Milner typable program, then by duplication offunction de�nitions one obtains a monomorphically typable program.

7 Generalizing dangerous subtermsSection 6 shows how to guarantee that deforestationterminates on some program: check that conditions (1)-(3) are all false. It remains to show that these conditionscan be decided e�ciently, and it remains to computeappropriate generalizations in case one of the conditionsare true, i.e., when deforestation may fail to terminate.Let p be a program and I = I(p). Any inequalityY � P in I , where P is a polynomial built from vari-ables, constants, \+", \t" can be expressed by a set ofconstraints of the forms Y � c +X and Y � c, wherec � 0 is an integer. Therefore, we may assume that theconstraints in I are of these forms.De�nition 16 (Dependence graph) Given program p andI = I(p). The dependence graph GI is the directedgraph whose nodes are the variables of I , and whoseedges are all (X;Y) with Y � c+X 2 I . 2Since the three subsystems of I containing variablesa[:], d[:], and s[:] are disjoint, Theorem 14 gives thefollowing characterization of those X with �I X =1.6Proposition 17 Given p and I = I(p) with least model�I. For � 2 fa; d; sg, let J� = ft j �I � [t] =1g. Then1. J� is the smallest set containing all t such that� � [t] is contained in a strong component of GIwhich also contains variables � [t1]; � [t2] withc � 1 and � [t1] � c+ b[t2] 2 I; or� � [t] is reachable in GI from � [t0] with t0 2 J� .2. J� can be computed in linear time.Proof. See [44], Theorem 10. 2By Proposition 17 we can sharpen the formulationsof criteria (2) and (3) in Theorem 14. For criterion (1)we are only able to provide a more concrete form if a[x0]receives a �nite value for all pattern variables x0.Corollary 18 Given p and I = I(p) with least model �I.(1) Assume �I a[x0] < 1 for all pattern variables x0.Then �I a[x] = 1 for some variable x i� somesubterm t � t1 t2 of p exists where t2 contains afree variable z 6� t2 and a[z] is in the same strongcomponent of GI as a[t2].(2) �I d[t0] = 1 for some t0 i� some case-expressiont in p exists with selector t0 such that d[t] is con-tained in the same strong component of GI as d[t0].6As observed in [45], one may also determine from �I the variablesa[t], d[t], and s[t] whose values exceed some threshold. This may beuseful for preventing code explosion during deforestation, see [35].8

(3) �I s[t0] =1 for some t0 i� some subterm t � t1 t2of p exists where s[t1] is contained in the samestrong component of GI as s[t]. 2Proof. See Appendix C. 2In view of this we now propose the following strat-egy for computing generalizations. Starting with pro-gram p, we repeatedly generalize subterms of p. In orderto determine candidates for generalization, we computethe set I = I(p) of integer constraints according to ouranalysis. If �I is �nite for all variables a[t]; d[t] and s[t]no further generalizations are necessary. Otherwise, wegeneralize according to the following three rules.(1) � t � t1 t2 and t2 contains a free variable x 6� t2and a[x] is in the same strong component ofGI as a[t2]. Then generalize t2 in t.� t � case t0 of q1!t1; : : : ; qm!tm and for avariable x of a pattern qi, �I a[x] =1. Thengeneralize t0 in t.(2) t � case t0 of q1!t1; : : : ; qm!tm and d[t] is con-tained in the same strong component ofGI as d[t0].Then generalize t0 in t.(3) t � t1 t2 and s[t1] is contained in the same strongcomponent of GI as s[t]. Then generalize t1 in t.Our strategy is non-deterministic. We prove that everyadmissible sequence of choices results in a correctly an-notated program. If p is monomorphically typable, nogeneralizations according to (3) will ever be performed.The only simple constraints generated for a let-boundvariable x is [x] � �. Therefore, s[x] and d[x] cannotoccur in right-hand sides of integer constraints. Also, ifthe selector of a case-expression t is a let-bound vari-able then [z] � � are the only simple constraints gener-ated for pattern variables z of t, and therefore always�I a[z] = 0. From this we can conclude that no sub-term t is ever generalized which already equals a singlelet-bound variable. Hence, every sequence of general-izations eventually terminates. Furthermore, we obtainfrom Corollary 18:Theorem 19 Assume p is a program, I = I(p) is the setof integer constraints generated for p and �I is the leastsolution of I.(1) If no generalization is possible according to rule (1)then �I a[x] <1 for all variables x.(2) If no generalization is possible according to rule (2)then �I d[t] <1 for all t.(3) If no generalization is possible according to rule (3)then �I s[t] <1 for all t. 2

From Theorem 14 we therefore derive that deforesta-tion de�nitely terminates when no further meaningfulgeneralizations can be applied to p.8 Relation to higher-order treelessnessHamilton [23] and later Marlow [35] generalize the no-tion of treeless programs to the higher-order case. Theirgeneralizations are slightly di�erent, but in both casestreeless terms require arguments in applications and se-lectors in case-expressions to be variables. The follow-ing de�nition is Hamilton's version.De�nition 20 (Treeless programs) We let treeless terms,functional terms, and treeless programs, ranged over bytt, ft, and tp, respectively, be the subsets of generalterms and programs de�ned by the grammar:tt ::=x j c tt1 : : : ttn j case x of q1!tt1; : : : ; qk!ttk j�x:tt j t x j f j let v=tt in tt0ft ::=x j f j ft fttp ::=letrec f1 = tt1; : : : ; fn = ttn in �x1; : : : ; xm:ft2Note that we do not demand treeless terms to be lin-ear. In general, as can be seen by Example 10, de-forestation is not guaranteed to terminate on treelessprograms. Hamilton and Marlow therefore impose theadditional restriction that programs be Hindley-Milnertypable. For simplicity we consider here programs thatare monomorphically typable.Without loss of generality we may assume for a pro-gram p � letrec d1; : : : ; dn in tinit that all functionnames occurring in tinit are distinct and no function his reachable from two distinct functions f1, f2 occurringin tinit. Any program can be brought to this form bysuitable duplication of function de�nitions.The following shows that given a monomorphicallytypable, higher-order treeless program, our analysis �ndsthat no annotations are required, provided all construc-tors have non-functional arguments only. Under the lat-ter proviso this shows that our analysis is never worsethan Hamilton's and Marlow's techniques. On the otherhand, for many examples, our analysis is better.Theorem 21 Assume p � letrec d1; : : : ; dn in tinit ismonomorphically typable, higher-order treeless, and thatall constructors in p have non-functional arguments only.Then conditions (1)-(3) of Theorem 14 are all false.Proof. See Appendix D. 2The restriction that constructors may not have func-tional arguments is a weakness of our analysis in itspresent form.9

Example 22 Consider the following program.letrecI = �z:case z of []! []; (h : t)!h : I tin �x:I (I x)Unfolding the outer call to I in term I (I x) leads tothe term case (I x) of []! []; (h : t)! h : I t in whichthe inner call to I must be unfolded. Super�cially, acall to I in the empty context leads to a new call to Iin a non-empty context, with the risk of deforestationproceeding inde�nitely. The truth is that the two callsto I are unrelated, and the problem could be solved byconsidering instead the following program:letrecI1 = �z1:case z1 of []! []; (h1 : t1)!h1 : I1 t1I2 = �z2:case z2 of []! []; (h2 : t2)!h2 : I2 t2in �x:I1 (I2 x)In the �rst-order case this trick is su�cient to ensurethat no generalizations are performed on treeless pro-grams [48]. However, in the higher-order case, the prob-lematic situation may arise after a number of transfor-mation steps as in the program:letrecI = �z:case z of []! []; (h : t)!h : I tG = �d:case d of (c h a)!h aH = �f; y:c f (f y)in �x:G (H I x)The restriction on treeless programs that constructorsmay not have functional arguments is su�cient to pre-vent this problem.There are two reasons why the restriction may notbe serious: �rst, it is not clear how often programs ac-tually make use of constructors with functional argu-ments; and second, it is only in some special cases thatour analysis is confused by such constructors. 2An investigation of possible enhancements of ouranalysis to avoid occasional de�ciencies of this type re-mains for future work.9 ConclusionWe have given a technique to ensure termination ofhigher-order deforestation allowing useful transforma-tion steps what were not previously possible. The tech-nique can be e�ciently implemented using well-knowntechniques for constraint systems.A somewhat di�erent approach to elimination of in-termediate data structures in higher-order programs isdue to Gill, Launchbury, and Peyton Jones [18, 19, 20]who remove intermediate lists explicitly produced and

consumed by means of the primitives build and foldrwithin the same function. Similar techniques were in-dependently proposed by Sheard and Fegaras [16, 47],and later by Takano and Meijer [49]. These approachesrely on functions being written in a form that explic-itly builds and destroys intermediate data structures,although some functions can be transformed into thisform automatically [32]. Gill [18] shows that some pro-grams can be improved by traditional deforestation, butnot by the build-foldr technique, whereas other pro-grams can be improved by the build-foldr technique,but not by traditional deforestation, see also [35]. Amore direct comparison remains to be done.Acknowledgments. We are indebted for discus-sions on higher-order deforestation to Geo� Hamiltonand Wei-Ngan Chin.References[1] N. Andersen. Approximating term rewrite systems.Technical Report 86/16, Department of ComputerScience, University of Copenhagen, 1986.[2] Z.M. Ariola, M. Felleisen, M. Maraist, J. Odersky,and P. Wadler. A call-by-need lambda-calculus. InConference Record of the Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-ming Languages, pages 233{246. ACM Press, 1995.[3] R. Bird. Using circular programs to eliminate mul-tiple traversals of data. Acta Informatica, 21:239{250, 1984.[4] D. Bj�rner, A.P. Ershov, and N.D. Jones, editors.Partial Evaluation and Mixed Computation. North-Holland, Amsterdam, 1988.[5] A. Bondorf. Self-Applicable Partial Evaluation.PhD thesis, Department of Computer Science, Uni-versty of Copenhagen, 1990. DIKU-Rapport 90/17.[6] R.M. Burstall and J. Darlington. A transformationsystem for developing recursive programs. Jour-nal of the Association for Computing Machines,24(1):44{67, 1977.[7] W.-N. Chin. Automatic Methods for ProgramTransformation. PhD thesis, Imperial College,University of London, 1990.[8] W.-N. Chin. Generalising deforestation to all �rst-order functional programs. In Workshop on StaticAnalysis of Equational, Functional and Logic Pro-gramming Languages, BIGRE 74, pages 173{181,1991.10

[9] W.-N. Chin. Fully lazy higher-order removal. InProceeding of the ACM SIGPLAN Syposium onPartial Evaluation and Semantics-Based ProgramManipulation, pages 38{47, 1992. Yale Universitytechnical report YALEU/DCS/RR-909.[10] W.-N. Chin. Safe fusion of functional expressions.In ACM Conference on Lisp and Functional Pro-gramming, pages 11{20. ACM Press, 1992.[11] W.-N. Chin. Safe fusion of functional expressionsII: Further improvements. Journal of FunctionalProgramming, 4(4):515{555, 1994.[12] W.-N. Chin and J. Darlington. Higher-order re-moval transformation technique for functional pro-grams. In Australian Computer Science Confer-ence, volume 14,1 of Australian CS Comm., pages181{194, 1992.[13] W.-N. Chin and S.-C. Khoo. Better consumersfor deforestation. In D.S. Swierstra, editor, Pro-gramming Languages: Implementations, Logicsand Programs, volume 982 of Lecture Notes inComputer Science, pages 223{240. Springer-Verlag,1995.[14] J. Darlington. An experimental program trans-formation and synthesis system. Arti�cial Intel-ligence, 16:1{46, 1981.[15] M.S. Feather. A system for assisting programtransformation. ACM Transactions on Program-ming Languages and Systems, 4(1):1{20, 1982.[16] L. Fegaras, T. Sheard, and T. Zhou. Improving pro-grams which recurse over multiple inductive struc-tures. In Proceeding of the ACM SIGPLAN Sypo-sium on Partial Evaluation and Semantics-BasedProgram Manipulation, 1994.[17] A. Ferguson and P.L. Wadler. When will deforesta-tion stop? In Glasgow Workshop on FunctionalProgramming, pages 39{56, 1988.[18] A.J. Gill. Cheap Deforestation for Non-strict Func-tional Languages. PhD thesis, Department of Com-puting Science, Glasgow University, 1996.[19] A.J. Gill, J. Launchbury, and S.L. Peyton Jones.A short cut to deforestation. In Conference onFunctional Programming and Computer Architec-ture, pages 223{232. ACM Press, 1993.[20] A.J. Gill and Simon L. Peyton Jones. Cheap defor-estation in practice: An optimiser for Haskell. InIFIP, pages 581{586, 1994.

[21] G. Hamilton. Compile-Time Optimisations ofStorage Usage in Lazy Functional Programs. PhDthesis, University of Stirling, 1993.[22] G. Hamilton. Extending �rst order deforestation.Technical Report TR 95-06, Department of Com-puter Science, Keele University, 1995.[23] G. Hamilton. Higher order deforestation. Tech-nical Report TR 95-07, Department of ComputerScience, Keele University, 1995.[24] G. Hamilton and S.B. Jones. Extending deforesta-tion for �rst order functional programs. In GlasgowWorkshop on Functional Programming, pages 134{145, 1991.[25] G. Hamilton and S.B. Jones. Transforming pro-grams to eliminate intermediate structures. InWorkshop on Static Analysis of Equational, Func-tional and Logic Programming Languages, BIGRE74, pages 182{188, 1991.[26] N. Heintze. Set-based analysis of ML programs. InACM Conference on Lisp and Functional Program-ming, pages 306{317, 1994.[27] J.R. Hindley. The principal type scheme of anobject in combinatory logic. Transactions of theAmerican Mathematical Society, 146:29{60, 1969.[28] J. Hughes. Why functional programming matters.In D. Turner, editor, Research Topics in FunctionalProgramming. Addison-Wesley, 1990.[29] N.D. Jones. Flow analysis of lazy higher-orderfunctional programs. In S. Abramsky and C. Han-kin, editors, Abstract Interpretation of DeclarativeLanguage, chapter 5. Ellis Horwood, London, 1987.[30] N.D. Jones and S.S. Muchnick. Flow analysis ofLISP-like structures. In Conference Record of theAnnual ACM SIGPLAN-SIGACT Symposium onPrinciples of Programming Languages, pages 244{256. ACM Press, 1979.[31] R.B. Kierburtz and J. Schultis. Transformationsof FP program schemes. In Conference on Func-tional Programming and Computer Architecture,pages 41{48. ACM Press, 1981.[32] J. Launchbury and T. Sheard. Warm fusion: Deriv-ing build-catas from recursive de�nitions. In Con-ference on Functional Programming and ComputerArchitecture, pages 314{323. ACM Press, 1995.[33] Z. Manna and R. Waldinger. Synthesis: Dreams=> programs. IEEE Transations on Software En-gineering, 5(4):157{164, 1979.11

[34] S. Marlow and P.L. Wadler. Deforestation forhigher-order functions. In J. Launchbury, editor,Glasgow Workshop on Functional Programming,Workshops in Computing, pages 154{165, 1992.[35] S.D. Marlow. Deforestation for Higher-OrderFunctional Languages. PhD thesis, University ofGlasgow, 1996.[36] R. Milner. A theory of type polymorphism in pro-gramming. Journal of Computer and System Sci-ences, 17:348{375, 1978.[37] T. Mogensen. Partially static structures in a self-applicable partial evaluator. In Bj�rner et al. [4].[38] J. Palsberg. Closure analysis in constraint form.ACM Transactions on Programming Languagesand Systems, 17:47{82, 1995.[39] J. Palsberg and P. O'Keefe. A type system equiv-alent to
ow analysis. ACM Transactions onProgramming Languages and Systems, 17:576{599,1995.[40] D. Sands. Proving the correctness of recursion-based automatic program transformation. InP. Mosses, M. Nielsen, and M.I. Schwartzbach, ed-itors, Theory and Practice of Software Develop-ment, volume 915 of Lecture Notes in ComputerScience, pages 681{695. Springer-Verlag, 1995.[41] D. Sands. Total correctness by local improvementin program transformation. In Conference Recordof the Annual ACM SIGPLAN-SIGACT Sympo-sium on Principles of Programming Languages,pages 221{232. ACM Press, 1995.[42] D. Sands. Proving the correctness of recursion-based automatic program transformations. Theo-retical Computer Science, A(167), 1996.[43] D. Sands. Total correctness by local improvementin the transformation of functional programs. ACMTransactions on Programming Languages and Sys-tems, 18(2), March 1996.[44] H. Seidl. Least solutions of equations overN . In In-ternational Colloquium on Automata, Languages,and Programming, volume 820 of Lecture Notes inComputer Science, pages 400{411, 1994.[45] H. Seidl. Integer constraints to stop deforestation.In European Symposium on Programming, volume1058 of Lecture Notes in Computer Science, pages326{340. Springer-Verlag, 1996.[46] P. Sestoft. Automatic call unfolding in a partialevaluator. In Bj�rner et al. [4], pages 485{506.

[47] T. Sheard and L. Fegaras. A fold for all sea-sons. In Conference on Functional Programmingand Computer Architecture, pages 233{242. ACMPress, 1993.[48] M.H. S�rensen. A grammar-based data-
ow analy-sis to stop deforestation. In S. Tison, editor, Collo-quium on Trees in Algebra and Programming, vol-ume 787 of Lecture Notes in Computer Science,pages 335{351. Springer-Verlag, 1994.[49] A. Takano and E. Meijer. Shortcut deforestationin calculational form. In Conference on FunctionalProgramming and Computer Architecture, pages306{313. ACM Press, 1995.[50] V.F. Turchin, R. Nirenberg, and D. Turchin. Ex-periments with a supercompiler. In ACM Confer-ence on Lisp and Functional Programming, pages47{55. ACM Press, 1982.[51] P.L. Wadler. Applicative style programming, pro-gram transformation, and list operators. In Con-ference on Functional Programming and ComputerArchitecture, pages 25{32. ACM Press, 1981.[52] P.L. Wadler. Listlessness is better than laziness.In ACM Conference on Lisp and Functional Pro-gramming, pages 282{305. ACM Press, 1984.[53] P.L. Wadler. Listlessness is better than lazynessII: Composing listless functions. In Workshop onPrograms as Data Objects, volume 217 of LectureNotes in Computer Science. Springer-Verlag, 1985.[54] P.L. Wadler. Deforestation: Transforming pro-grams to eliminate trees. In European Symposiumon Programming, volume 300 of Lecture Notes inComputer Science. Springer-Verlag, 1988.[55] P.L. Wadler. Deforestation: Transforming pro-grams to eliminate intermediate trees. TheoreticalComputer Science, 73:231{248, 1990.A Proof of correctness of the analysisProof of Theorem 14. To prove correctness of our anal-ysis, we extend the methods of [45] to the higher-ordercase. First, we replace all free variables of terms t to betransformed by the special symbol \�". Then we putup a reduction relation \)" on such closed terms suchthat if transformation of t leads to transformation of t0then also t �) t0.
12

De�nition 23c t1 : : : tn) ti�x:t) tfx := �geh� ti) eh�ieh� ti) tehfi) ehtf i (f = tf)eh(�x:t) t0i) ehtfx := t0giehlet x=t in t0i) ehtfx := �giehlet x=t in t0i) tehcase (c t1 : : : tn) of q1!s1; : : : ; qm!smi)ehsjfx1 := t1; : : : ; xn := tngi (qj � c x1 : : : xn)ehcase � of q1!s1; : : : ; qm!smi)ehsifx1 := �; : : : ; xn := �gi (qi = c x1 : : : xn) for all i2Note that expressions of the form � t1 : : : tn are suc-cessively rewritten to � while their argument terms tiare raised to the top-level.Instead of abstracting this reduction system we pre-fer to abstract the corresponding system where sub-stitutions are made explicit. This allows us, for in-stance, to keep track of instances of subterms. There-fore instead of terms we consider stacks of pairs con-sisting of terms and environments. Environments E areused for making substitutions explicit whereas stacks �are introduced to model the outermost unfolding strat-egy. The stack stores suspended abstractions and case-expressions.De�nition 24 Let E and � range over environments andstacks, respectively, as de�ned by the grammar:E ::= ; j fx := (t; E)g+E0� ::= (t; E) �0�0 ::= � j (t t0; E) �0j (case t0 of q1!t1; : : : ; qm!tm; E) �0As usual, we abbreviatefx1 := (t1; E1)g+ : : :+ fxn := (tn; En)g+ ;by fx1 := (t1; E1); : : : ; xn := (t1; En)g.The function u[:] maps a pair consisting of a termand an environment (or a stack of such pairs) to theterm that the pair (resp. the stack) denotes.

u[f; E] = fu[�; E] = �u[x;E] = u[E (x)]u[�x:t; E] = �x:u[t; E]u[c t1 : : : tn; E] = c u[t1; E] : : : u[tn; E]u[t t0; E] = u[t; E] u[t0; E]u[case t0 of q1!t1; : : : ; qm!tm; E] =case u[t0; E] of q1!u[t1; E]; : : : ; qm!u[tm; E]u[let x=t in t0; E] = let x=u[t; E] in u[t0; E]u[(t; E)(t1 t2; E0) �0] = u[(v t2; E0) �0], v = u[t; E]u[(t; E)(case t0 of q1!t1; : : : ; qm!tm; E0) �0] =u[(case v of q1!t1; : : : ; qm!tm; E0) �0], v = u[t; E]2The following proposition, which relates the depthof terms with depth of stacks and environments, can beproved by induction on the depth of terms.Proposition 25 Let a0 denote the maximal depth of aterm in p, and assume we are given term t and stack� = (t1; E1) : : : (tk; Ek) containing only subterms fromp and � such that u[�] = t. If depth(u[Ej x]) � a forall j and x 2 dom(Ej) thendepth(t) � k + a0 + a 2On stacks we introduce a reduction relation \!"which is going to simulate our reduction relation \)"on terms.De�nition 26 De�ne ! by:(x;E) � ! (E x) �(c t1 : : : tn; E) ! (ti; E) for all i(�x:t; E) ! (t; fx := (�; ;)g+E)(f; E) � ! (tf ; ;) �(t t0; E) � ! (t; E) (t t0; E) �(�; ;) (t t0; E) � ! (�; ;) �(�; ;) (t t0; E) � ! (t0; E)(�x:t; E) (t1 t2; E2) � ! (t; E + fx := (t2; E2)g) �(let x=t in t0; E) � ! (t0; E + fx := (�; ;)g) �(let x=t in t0; E) � ! (t; E)(case t0 of q1!t1; : : : ; qm!tm; E) �! (t0; E) (case t0 of q1!t1; : : : ; qm!tm; E) �(c s1 : : : sn; E) (case t0 of q1!t1; : : : ; qm!tm; E1) �! (tj ; E0) � whenever qj � c x1; : : : ; xnand E0 = E1 + fx1 := (s1; E); : : : ; xn := (sn; E)g(�; ;) (case t0 of q1!t1; : : : ; qm!tm; E1) �! (ti; E0) � for all i whenever qi � c x1; : : : ; xnand E0 = E1 + fx1 := (�; ;); : : : ; xn := (�; ;)g 2By case distinction on reduction steps we verify:Proposition 27 Assume t = u[�]. Then13

1. t)t0 implies � �! �0 for some �0 with u[�0] = t0;2. �!�0 implies t = u[�0] or t) u[�0]. 2From Proposition 27 we conclude that it is enoughto abstract relation \!" on stacks. For stack �, let ��denote the following set of simple constraints.- If � = � then �� = ;;- If � = (t; E) then �� = f[tinit] � tg [�E;- If � = (t; E)(t1 t2; E0) �0 then �� = f[t1] � tg [�E [�((t1 t2; E0) �0);- If � = (t; E) (case t0 of q1!t1; : : : ; qm!tm; E0) �0then �� = f[t0] � tg [�E[�((case t0 of q1!t1; : : : ; qm!tm; E0) �0)where�E = �; ifE = ;f[x] � tg [�E1 [�E2 ifE = fx:=(t; E1)g+E2By induction on the length of reduction paths weprove:Proposition 28 Let I = I(p) with least model �I. As-sume (tinit; ;) �! � where � = (t; E) �0. Then1. �� � S;2. r[t] w 1 is in S;3. (�I d[t]) + (�I s[t]) � j�0j;4. �I a[x] � depth(u[x;E]) for every x 2 dom(E);5. �I a[t] � depth(u[t; E]).If furthermore (t; E) �0 �! (t0; E0) �0 is a reduction pathwhere all intermediate stacks are of the form �1�0, then6. [t] � t0 is in S as well. 2We conclude:Theorem 29 Consider program p � letrec defs in tinitand I = I(p) with least model �I.Safety: Assume during deforestation of p, t is encoun-tered. Then (tinit; ;) �! � for some � = (t0; E0) �0with u[�] = tfx1 := �; : : : ; xk := �g (fx1; : : : ; xkg =FV(t)) such that:1. (�I d[t0]) + (�I s[t0]) � j�0j;2. �I a[x] � depth(u[E x]) for all E occurringin � and all x 2 dom(E).E�ciency: S can be computed in polynomial time.

Proof. The safety part follows from Proposition 28.The fast algorithm to perform the control-
ow analysisessentially consists (of an adaptation) of Heintze's al-gorithm for computing a normalized system of set con-straints in [26] where additionally the constraints forvariables r[:] are considered and the integer constraintsin I are generated. Note that, theoretically Heintze'salgorithm has cubic complexity. In practice, however,we found that it behaves quite well on all example pro-grams. 2Note that �I indeed contains all information neces-sary to determine whether or not [[:]] stops. Additionallyapplying Proposition 25 we obtain Theorem 14. Thisconcludes the proof of Theorem 14.B Proof of non-accumulating spinesProof of Proposition 15. First note that control-
owanalysis is conservative over types, i.e., whenever t : �and [t] � t0 2 S then t0 : � as well. Let D denote theset of all types of subterms in p and de�ne the ordering\�" as the re
exive and transitive closure of relation\<" de�ned by � < � i� � = � ! � 0 for some � 0. Nowde�ne function R mapping subterms to elements in Dby R[t] = � i� t : � . Then we have:1. If t 6� tinit then [t] � t0 2 S implies R[t] = R[t0].2. Whenever t1 t2 is a subterm of p then R[t1] >R[t1 t2].The special treatment of tinit is due to the possibilitiesof \raising" subterms to the top-level - which clearlydoes not preserve types. From 1 and 2 we deduce that�I s[t] is bounded above by the height of D, i.e., themaximal length of a strictly increasing chain in D.This concludes the proof of Proposition 15.C Proof of characterization of terminationProof of Corollary 18. For statement (1) assume thatfor every pattern variable x0, a[x0] receives a �nite value.Then every such x can only be contained in strong com-ponents having edges corresponding to constraints ofthe form a[y] � a[y0].Now let �I a[x] =1 for some variable x. By Propo-sition 17, some strong component Q exists which con-tains an edge corresponding to a constraint a[t] � c +a[z] with c > 0. Since z0 cannot be a pattern variable,this constraint must have been generated for an appli-cation t1 t where [t1] � �z0:t0, i.e., N [t] = pl t (c+ a[z])for some polynomial pl. Especially, a[z] is a free vari-able of N [t]. Hence, z must be a free variable of t wheret 6� z. This gives us one direction of statement (1).14

For the reverse direction assume z 6� t2 is a freevariable of t2, and a[t2] and a[z] are contained within thesame strong component Q of the dependence graph GI .Since z 6� t2, N [t2] has the formN [t2] = plt(c+a[z]) forsome c > 0. But then Q contains an edge correspondingto constraint a[t2] � c+ a[z] which, by Proposition 17,implies �I a[z] =1.The characterizations of statements (2) and (3) di-rectly follow from the observations that the d[:]-value isincreased precisely when going from a case-expressionto its selector, and that the s[:]-value is inceased pre-cisely when going from an application to its operator.This �nishes the proof of Corollary 18.D Proof of conservativityProof of Theorem 21. Let S and I denote the sets ofconstraints resp. integer constraints generated by ouranalysis applied to p. Furthermore, let �I denote theleast solution of I . Since p is monomorphically typedwe know from Proposition 15 that �I s[t] < 1 for allsubterms t. Therefore, it remains to prove �niteness forvariables a[x] and d[t].As in the proof of Proposition 15, we construct a�nite partial ordering D together with ranking functionR mapping the subterms t of p to elements in D. Forthis let us w.l.o.g. assume that tinit � �z1; : : : ; zm:t0where t0 is of non-functional type. Then the carrierof D consists of all non-functional subterms occurringin t0, ordered by the subterm ordering. Note that byour extra assumption, t0 is contained in D and is themaximal element.Given D, function R is de�ned as follows. If t is asubterm of t0 then R[t] is the smallest superterm of tof non-functional type. Furthermore, if R[f] = d thenR[t] = d for every subterm t occurring in the right-handside of f . Now assume t0 6= �. Then the following holds:1. If [t] � t0 then R[t] � R[t0].2. If variable x is of functional type, then a[x] �a[t0] 2 I implies that either t0 is a variable as wellor a subterm of t0.3. If variable x is not of functional type, then [x] � t0implies that either t0 is a variable or R[x] > R[t0].From statement 3 we deduce that for all t, �I d[t] isbounded above by the height of D plus 1. For the a[:]-constraints statements 2 and 3 imply that every strongcomponent has only edges corresponding to constraintsof the form a[x] � a[y]. It follows that �I a[x] <1 forall variables x.This concludes the proof of Theorem 21. 15

