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Abstract 

We show that the degree of ambiguity of a nondeterministic finite auto- 

maton (NFA) with n states, if finite, is not greater than 2 n'l°g~n + c1"n 

(c I ~ 2.0566). We present an algorithm which decides in polynomial time 

whether the degree of ambiguity of a NFA is finite or not. Additionally, 

the authors obtain in [14] a corresponding upper bound for the finite 

valuedness of a normalized finite transducer (NFT), and also a polyno- 

mial-time algorithm which decides whether the valuedness of a NFT is 

finite or not. 

Introduction 

Let x be an input string of a nondeterministic finite automaton (NFA) M, 

and also of a normalized finite transducer (NFT) M'. The degree of ambi- 

guity of x in M is defined by the number of accepting paths for x in M. 

The valuedness of x in M~ is defined by the number of different output 

strings on the accepting paths for x in M'. The degree of ambiguity of 

M (the valuedness of M') is the maximal degree of ambiguity (valuedness) 

of an input string of M (M') or is infinite, depending on whether or 

not a maximum exists. 

The degree of ambiguity and the valuedness are structural parameters, 

which only recently received attention in connection with the equiva- 

lence problem for NFA's and NFT's: It is well-known that the equivalence 

problem for NFA's is PSPACE-complete [13], and that the equivalence of 

generalized sequential machines (NFT's without ~-(input) moves) is un- 

decidable [5]. For any fixed integer d, however, the equivalence of NFA's 

with degree of ambiguity not greater than d can be tested in polynomial 

time [12]. From a generalization of the Ehrenfeucht conjecture follows 

that the equivalence of NFT's with finite valuedness is decidable [4]. 

Given any fixed integer d, it can be tested in polynomial time whether 

or not the degree of ambiguity of a NFA [12] (the valuedness of a NFT 
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[6]i is greater than d. Chan and Ibarra [2] exhibited two polynomial- 

space algorithms which decide whether the degree of ambiguity of a NFA 

is finite, and also whether it is greater than an arbitrary given in- 

teger. Moreover, they were able to prove that the latter problem is PSPACE- 

complete. Using a simple reduction, they obtained two exponential-space 

algorithms which solve both problems, if the degree of ambiguity is re- 

placed by the valuedness of a sequential machine (a generalized sequen- 

tial machine with length-preserving input-output relation). 

In section 2 of this paper we show that the degree of ambiguity of a NFA 

with n states, if finite, is not greater than 2 n'l°g2n + c1"n (c I 

2.0566). Such an explicit upper bound cannot be achieved with the methods 

used in [2]. In section 3 we introduce a criterion for the infinite de- 

gree of ambiguity of NFA's, which is testable in polynomial time (In- 

dependently of us, in [10] Ibarra and Ravikumar exhibit an equivalent 

criterion, which can be tested in exponential time). By simple reduc- 

tions, in [14] the authors carry over both results to the degree of am- 

biguity of NFA's with ~-moves, and to the size of products of matrices 

over IN 0 (cf. [2]). 

The ideas used are different from those in [2] and [10]. First of all, 

we show that it is sufficient to consider NFA's of a restricted type. 

Then, for every input string x, we investigate a graph which describes 

all accepting paths of x in the NFA, and we use "pumping arguments" in 

these graphs. 

In [14] the authors extend the above-mentioned methods in order to a- 

chieve an upper bound for the finite valuedness of a NFT, and to define 

a criterion for the infinite valuedness of NFT's, which can be tested 

in polynomial time. The results are presented in section 4. 

In the first section we summarize some definitions and notations. 

I. Definitions 

A nondeterministic finite automaton (NFA) is a 5-tuple M=(Q,Z,6,Q0,F), 

where Q and Z denote nonempty, finite sets of states and input symbols, 

Q0,F~ Qdenote sets of initial and final states, and 6 is a subset of 

Qx~xQ. 

A path of length m for x from p to q in M is a string n = q0xlql .... 

Xmq m 6 Q(ZQ)* so that x = Xl...x m 6 Z*, p = q0 6 Q, q = qm6 Q, and for 
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all i = I .... ,m (qi_1,xi,qi) 6 6. We define ~ :: {(p,x,q)6 Qw Ze×Q I a 

path for x from p to q in M exists}. Note that 6 is a subset of ~. We re- 

name ~ by 6. 

A path ~ from p to q is called accepting path, if p is an initial state 

and q is a final state. L(M), the language accepted by M, is the set of 

all x6 Z* , for which an accepting path in M exists. 

~he degree of ambiguity of x6 ~* in M (short form: daM(x)) is the number 

of all accepting paths for x in M. The degree of ambiguity of M (short 

form: da(M)) is the supremum of the degrees of ambiguity of all x6 ~* 

in M, i. e. da(M) = sup {daM(x) I x6 ~*}. 

The state q6 Q is called useless, if it is on no accepting path in M. 

Useless states are irrelevant to the degree of ambiguity in M. If no 

state of M is useless, then M is called reduced. 

A state p 6 Q is said to be connected with a state q 6 Q (short form: 

p <---> q), if paths from p to q and from q to p in M exist. Note that 

"<--->" is an equivalence relation on Q. 

Let Q be divided into the equivalence classes QI' .... Qk w.r.t. "<--e>". 

M is said to be of type I, if the following holds: 
k k-1 

Q0 cQ1 & FCQk & ~ D (QxT~xQ) c U QixZxQi U U Qix~xQi+1. 
i=I i =I 

M is said to be of type 2, if states pi,qi 6 Qi (i=I, .... k) exist such 

that the following holds: 
k k-1 

Q0c {pl } & Fc {qk} & ~ n (Q×~XQ) c u Qix~.xQi u u {qi}xZx{Pi+1 }. 
i=I i=I 

Let M be of type 2 such that L(M) ~ ~, and let x = Xl...x m6 L(M). The 

graph GM(X) = (V,E) of the accepting paths for x in M is defined by 

V := {(q,i) 6 Qx{0, .... m} I (Pl,Xl---xi,q) 6 6 & (q,xi+1...Xm,q k) 

6 6} and 

E := {((p,i-1), (q,i)) 6 V 2 [ i6 {I ..... m} & (P,xi,q) 6 6}. 

Note that the number of paths from (Pl,0) to (qk,m) in GM(X) equals 

the degree of ambiguity of x in M. 

! 
Let M=(Q,E,6,Q0,F) and M':(Q',Z',6',Q 0 ,F') be two NFA's. M' is in- 

cluded in M (short form: M' cM), if Q' cQ, E' c E, 6' c6, Q0 'c Q0 and 

F'cF. 
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2. An Upper Bound for the Finite Degree of Ambiguity 

In this section we construct for any NFA M with n states NFA's 
N 

MI,...,~cM of type 2 such that da(M) $ ~ da(M i) and N < 2n-32n/3. 
i=I 

If M is of type 2 with da(M) < ~, then we show: da(M) < 2 n'l°g2n. 

This leads to the following result: 

Theorem 1: Let M be a NFA with n states and finite degree of ambiguity. 

Then, the degree of ambiguity of M is not greater than 2 n'l°g2n + c~-n, 

where c I := I + (2/3).iog23 ~ 2.0566. 

We do not know whether the upper bound of theorem I for the maximal 

finite degree of ambiguity of NFA's with n states is optimal. The best 

lower bound we know of is 2 n" (I+I/64) (for details see [14]). 

In the first lemma we consider the case of NFA's with one equivalence 

class w.r.t. "<--->". 

Lemma I: Let M=(Q,Z,6,Q0,F ) be a reduced NFA such that da(M) < ~. Let 

p6 Q be connected with q6 Q. Then, for any x 6 E*, there is at most 

one path for x from p to q in M. 

Proof: Let q0 6 Q0' qF 6 F, and u,v,w 6 Z* such that (q0,u,p), (q,w,qF) , 

(q,v,p) 6 6. We assume that there are two different paths for x fromp to q. 

This implies for any i ~ 0 : daM(ux(vx)iw) ~ 2 i+I. Thus, da(M) = ~. ~ | 

In the following we consider a NFA M=(Q,Z,6,Q0,F). Proofs of the next 

two lemmas can be found in [14]. 

Lemma 2: Let M be a NFA with n states. We can construct NFA's 

M I,...,MNcM of type I such that N < 2 n and the following assertions are 

true : 
N 

(I) da(M)<~ ~ da(M) < Z da(M i) < ~. 
i=I 

(2) da(M) =~ ~ B i6 {I .... ,N}: da(M i) = ~. 

Lemma 3: Let M be a NFA of type I with n states. We can construct NFA's 

M 1,...,~cM of type 2 such that N< 32n/3" and the following assertions 

are true : 
N 

(I) da(M)<~ ~ da(M) < ~ da(M i) < ~. 
i=I 

(2) da(M) =~ ~ 3 i6 {I ..... N}: da(M i) = ~. 

Lemma 4: Let M be a NFA of type 2 with n states such that 0 <da(M)< ~. 
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Then, da(M) ~ 2 n'lOg2n. 

Proof: Let the equivalence classes QI' .... Qk w.r.t. "<--->" on Q be num- 

bered and the states pi,qi6 Qi (for i=1,...,k) be given in correspond- 

ence with the definition of type 2. Since da(M) > 0, we know: L(M) ~ 0, 

Q0={Pl }, F={qk}, M is reduced. We show by induction on k: 

(*) da[M) ~ 2 n'[l°gzk]-k+1 

The lemma follows from (*) (for further details see [14]). 

Proof of (*) : 

Base of induction: k=1. Pl is connected with q1" According to lemma I 

follows: da(M) = 1. 

Induction step: Let k ~ 2. Define 1 := [k/2]. Divide M into NFA's 
1 k 

M I = ( U Qi ' Z , 61, {pl } , {ql }) and M 2 = ( U Qi ' Z ' 62 ' {PI+I } ' 
i=I i=I+I 

1 1-I 
{qk}), where 61 := 6 D ( U Qix~×Qi U U {qi} x Z x {Pi+1}) and 

i=I i=I 
k k-1 

62 := 6 N ( U Qi×ZxQi U U {qi } × Z × {Pi+1 })" 
i=i+I i=i+I 

1 k 
MI,M 2 are NFA's of type 2 with n I := Z #Qi and n 2 := ~ #Qi states 

i=I i=i+I 

such that 0 < da(M I) < ~ and 0 < da(M 2) < ~. 

Let X=Xl...x m6 L(M). Consider in the graph GM(X)=(V,E) the set D of all 

edges "from Q1 to QI+I"' i.e. D = {((ql,J-1), (Pl+1,j)) 6 E ] j 6 {I ..... m}}. 

Define J := {j 6 {I ..... m} I ((ql,J-1), (Pl+1,j)) 6 E}. We observe: 

daM(x) = Z daM1(Xl.. ).daM2 j 6 J "xj-1 (xj+1"''Xm)" 

From the indBction hypothesis follows: 

daM(x) ~ Z 2nl'FiOgz[k/2]]-[k/2]+1-2 n2"[l°g2[k/2]]-[k/2]+1 

j6 J 

#j . 2 n'[IOgz (k/2) I-k*2 = #j . 2 n'[IOg2k]-n-k*2 

Note that [log2[k/2]] = [logz(k/2)]. Therefore, it is sufficient to 

show: #D = #J ~ 2 n-1. 

We assume that #J > 2 n-1. Consider for all j 6 J A. := [q6 Q I (q,J) 6 V}. 

Since #J> 2 n-1 and, for all j 6 J , PI+I 6 Aj c Q 3 , jl,J2 6 J exist such 

• = A. =: A. that Jl < J2 and A31 32 

Let t 6 ~. Define Yt := x1"''xj (xj .xj2)t xj ...x m. For all 
I I +I"" 2 +I 

~ 6 {0,...,t} and all q6 A we observe: 
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( Pl ' x1"''xj (xj1+1"''xj2)T ' q ) 6 d & 
1 

( q ' (xj1+1"''xj2)T .... Xm ' qk ) £ 6. x32+I 1 

• . . from some state in A n U Qi Moreover, there is a path for x31+i ..x32 i=I 

to PI+I in M (via (ql,xj ,Pl+1 ) £ 5). From this follows: daM(Y t) ~ t. 

Thus, da(M) = ~. ~ 2 

GM(X): 
x. .x. xj2+1...x x1"''Xjl 31+I"" 32 m 

0 .......... Jl .......... J2 .......... m 

Q1 

QI+I F Pl+I 

Qk~ qk 

Aj I Aj 2 | 

This completes the proof of theorem I. 

3. A Criterion for the Infinite Degree of Ambiguity, Which is Decidable 

in Polynomial Time 

Let M=(Q,Z,6,Q0,F) be a NFA. Consider the following criterion for M: 

I H q0 6 Q0 3 p,q, 6 Q B qF6 F H u,v,w6 E* : (q0,u,p) 6 6 

(DA) & (p,v,p),(p,v,q),(q,v,q) 6 6 & (q,w,q F) 6 6 & p ; q. 

v v 
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If M complies with (DA), then we observe that for all i 6~ daM(uvlw) i, 

i.e. da(M) = ~. If da(M) is infinite, then, according to lemma 2 and 3, 

there is a NFA M' cM of type 2 such that da(M') is infinite. In this 

section we show that M' complies with (DA), and hence M complies with 

(DA), too. This leads to the following result: 

Theorem 2: Let M be a NFA. The degree of ambiguity of M is infinite, 

if and only if M complies with (DA). 

We can decide in polynomial time whether or not a NFA complies with 

(DA) : Let M=(Q,~,~,Q0,F) be a reduced NFA with n states. Consider the 

directed graph G 3 = (Q3,E 3) , where E 3 := 

= { ((PI'P2'P3)' (ql q2'q3 )) 6 Q3 Q3 , x I H a 6 ~ V i 6 {1,2,3} : 

(Pi,a,qi) 6 6 }. G 3 allows us to rewrite (DA) as follows: 

H p,q6 Q : p ~ q & in G 3 a path from (p,p,q) to (p,q,q) exists. 

Thus, with well-known graph algorithms we can test in time O(n6-#Z + n 8) 

(on a RAM using the uniform cost criterion) whether or not M complies 

with (DA) (see [I]). With theorem 2 follows: 

Theorem 3: Let M be a NFA with n states and an input alphabet Z. It is 

decidable in time O(n6.#Z + n 8) whether or not the degree of ambiguity 

of M is infinite. 

We remark that the time bound in theorem 3 can be improved to O(n6-#Z) 

(see ~14]). With theorem 2 of [2] and with theorem I the exact (finite) 

degree of ambiguity of a NFA can be computed in polynomial space. 

The following lemma completes the proof of theorem 2. 

Lemma 5: Let M be a NFA of type 2 such that da(M) is infinite. Then, 

M complies with (DA). 

Proof: Let M=(Q,Z,6,Q0,F). Let the equivalence classes QI,...,Qk w.r.t- 

"<--->" on Q be numbered and the states pi,qi6 Qi (for i=I ..... k) be 

given in correspondence with the definition of type 2. Since da(M) = ~, 

we know: Q0={PI }, F={qk} , M is reduced. 

Case I: There are p',q' 6 Q and yC E* such that p' is connected with q', 

and two different paths for y from p' to q' in M exist. 

This implies: B p,q 6 Q 3 yl,Y2,y 3 6 ~* : p ~ q & y = ylY2 & 

(p',yl,p), (p',yl,q), (p,y2,q'), (q,y2,q') 6 6 & (q',y3,p') 6 6. Define 
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v := y2Y3Yl , then: {p,q}×{v} × {p,q} c 6. Since M is reduced, M complies 

with (DA).. 

Case 2: For all i6 {1,...,k}, all p',q' 6 Q i, and all y6 Z* there is at 

most one path for~ y from p' to q' in M. 

Let X=Xl...Xm6L(M) and 16 {I,...,k-I} (note: k > 2). Consider in the 

graph GM(X)=(V,E) the set Dl(X) of all edges "from Q1 to QI+I"' i.e. 

Dl(X ) = { ((qi,3-I), (Pi+i,3))6 E i 36 {I ..... m}}. Define n := #Q. We 

are able to choose x6L(M) and 16 {I,...,k-I} so that #Dl(X) > 2 n-1. 

Otherwise we would have, because of case 2: 
k-1 

V x6L(M) : daM(x) < ~ #Dl(X) < 2 (n-l)" (k-l) , 
1=I 

i.e. da(M) < ~ 

Just like in the proof of lemma 4 we can find a decomposition x = uyw 

with the following properties: 

u,y~ E , ((ql, lUl-1),(Pl+l,lUl)) 6E , ((ql, luyl-1), (Pl+1,1uyi)) 

6 E , A := {q6 Q i (q, lul) 6 V} = {q6 Q I (q, luyl)6 V}. 

We construct states r i6 A (i > I) as follows: Let a I 6 7~ so that y = Ylal. 

Choose r I 6A such that (rl,Yl,q I) 6 6. Choose ri6A such that (ri,Y,ri_ I) 

6 ~ (i=2,3 .... ). There are il,i 2 6 ~ such that ril = ri1+i 2 =: p. 

6 A (i > 0) as follows: Define s o := 6 A. We construct states s i = PI+I 

Choose si6A such that it holds: (si_1,Y,S i) 6 6 & (V j 6 {I,...,i}: 

si_1=sj_1 ~ si=sj) (i=1,2,...). There are i36 IN 0 and i46 iN such 

u i ~ Y I I w ;z ' y 

QI r . ~  ;I-1 
r4 ~ r4 ~ ~ Y 

r3 ~ r3 

p : =r 5 =r 2 r 2 

L rl rl ~ %V ~ " 
Q1 ql y'3 

 1+I pl+1:s0 So 
s I s I Y'~ 

s 2 s2=s4=s6=:q 

s 3 s3=s 5 

°kl 
A A 

Yl 
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that si3 = si3+i 4 =: q and ii+i3=0 mod i 2. 

In conclusion, we know: 

(p , yi2 , p) £ 6 , (p , yil-ly I , ql ) 6 6 , (ql ' al ' Pl+1 ) £ 6 , 

(PI+I , yl3 , q) 6 6 , (q , yl4 , q) 6 6. 

p and q are different, because otherwise ql would be connected with 

PI+I" Choose Jl ~ (i1+i3)/i 2 so that 91 = 0 mod i 4, and define 

v := yi2-jl. Then, we have: 

(p,v,p) 6 6 , (p,v,q) 6 6 , (q,v,q) 6 6. 

Moreover, we know that Pl 6 Q0' (Pl 'u'p) 6 6, qk 6 F and (q,w,qk) £ 6. 

Hence, M complies with (DA). • 

We remark that the proof of lemma 2 contains the core of a brief proof 

of a criterion for the exponential degree of ambiguity, which was intro- 

duced in [10] (for details see [14]). 

4. Results on Valuedness 

We are able to modify the theorems I and 3 so that the degree of ambi- 

guity of a NFA is replaced by the valuedness of a NFT. The outcome is 

stated in this section, the proofs are given in [14]. 

A normalized finite transducer (NFT) is a 6-tuple M = (Q,Z,A,6,Q0,F) , 

where Q'Z'Q0 and F have the same meaning as in a NFA, A is a nonempty, 

finite output alphabet, and 6 is a finite subset of Qx (ZU{E})xA* x Q. 
m 

A path with input x and output z in M is a string ~ = q0 H xiziqi 
i=I 

6 Q ((ZU{e})A*Q)* such that X=Xl...x m6 Z*, Z=Zl...z m6 4*, and for all 

i=1,...,m (qi_1,xi,zi,qi) £ 6. Accepting paths are defined just like in 

a NFA. 

The valuedness of x6 Z* in M (short form: ValM(X)) is the number of all 

strings z 6 4" so that an accepting path with input x and output z exists 

in M. The valuedness of M (short form: val(M)) is the supremum of the 

set {ValM(X ) I x 6 ~*}. Moreover, we define 

val(6) := max({1} U{# 6 n ({p} × {a} x A*x {q}) I p,q6 Q , a6~U:{E} }), 

diff(6) := max({0} U { I Iz11-1z211 I H a £ Z V i=1,2 B pi,q i6 Q : 

(Pi,a,zi,qi) 6 6} U {Izl I B p,q6 Q : (p,£,z,q) 6 6}). 

Theorem 4: Let M = (Q,Z,A,6,Q0,F) be a NFT with n states and finite 
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valuedness. Then, the valuedness of M is not greater than 
2(n-5)-logzn + c3-(n-I) , val(~)n-1 (1+diff(~))n-1 . #An4-diff(~) 

where c 3 := 21 + (2/3)-iog23 ~ 22.0566. 

Theorem 5: Let M be a NFT. It is decidable in polynomial time whether 

or not the valuedness of M is infinite. 
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