
The Undefined Domain: Precise Relational
Information for Entities that Do Not Exist1

Holger Siegel, Bogdan Mihaila, and Axel Simon

Technische Universität München, Institut für Informatik II, Garching, Germany
firstname.lastname@in.tum.de

Abstract. Verification by static analysis often hinges on the inference of
relational numeric information. In real-world programs, the set of active
variables is often not fixed for a given program point due to, for instance,
heap-allocated cells or recursive function calls. For these program points,
an invariant has to summarize values for traces E where a variable x
exists and values for traces N where x does not exist. Non-relational
domains solve this problem by copying all information on x in traces E
to those in N . Relational domains face the challenge that the relations
in traces E between x and other variables cannot simply be replicated
for the traces N . This work illustrates this problem and proposes a gen-
eral solution in form of a co-fibered abstract domain that forwards each
domain operation to operations on a child domain. By tracking which
variables are undefined, it transparently stores suitable values in the child
domain thus minimizing the loss of relational information. We present
applications in heap abstractions and function summaries.

1 Introduction

Static analyses that are based on relational numeric domains are often restricted
to programs with limited dynamic memory allocation and without recursive
functions [2]. Analyses that explicitly target heap manipulating programs often
represent their state using a logic formula, e.g. separation logic [7] or three-valued
logic analysis (TVLA) [8]. Combining them with relational numeric domains is
not straightforward. In particular, problems occur when the numeric domain
has to track a changing number of memory cells or when it has to deal with
uninitialized variables. The following examples illustrate these problems.

Non-existing memory regions. In the C program in Fig. 1, a region x is allocated
in one conditional branch but not in the other. When this program is analyzed
using some abstract domain, the resulting abstract state of the then-branch has
to be merged with that of the else-branch. The desired invariant is that x is
initialized to 3 if p points to x. When using the Intervals domain, at least the
fact that x = 3 can be inferred by allowing x to be mapped to an explicit empty
interval ⊥. Specifically, by using this bottom value ⊥ as the value of x in the else-
branch as shown in the first row of the table, the join of the branches retains
1 This work was supported by DFG Emmy Noether programme SI 1579/1.

2

if (rnd()) {
p = malloc(4);
*p = 3;

} else {
p = NULL;

}

Intervals {p = 1 ·&x, x = 3} t {p = 0 ·&x, x = ⊥}
= {p ∈ {0, 1} ·&x, x = 3 }

Polyhedra {p = 1 ·&x, x = 3} t {p = 0 ·&x, x = >}
= {p ∈ {0, 1} ·&x, x = >}

Polyhedra as
Undefined child

{p = 1 ·&x, x = 3, fx = 1}
t {p = 0 ·&x, x = 3, fx = 0}

= {p = fx ·&x, x = 3, fx ∈ {0, 1}}

Fig. 1. Non-existing regions.

if (rnd()) {
x = 1;
y = 2;

} else {
x = 0;

}

Polyhedra/
Intervals

{x = 1, y = 2} t {x = 0, y = >}
= {x ∈ {0, 1}, y = >}

Polyhedra as
Undefined child

{x = 1, fx = 1, y = 2, fy = 1}
t {x = 0, fx = 1, y = 2, fy = 0}

= {x ∈ {0, 1}, fx = 1, y = 2, fy = x}

Fig. 2. Non-initialized variables.

the information that x can only contain value 3. However, relational numeric
domains typically model smash products, i.e. they do not allow assigning the
“empty” value ⊥ to individual variables since this always implies an empty set of
relations and, thus, a domain state that is ⊥. Thus, in contrast to non-relational
domains, xmust map to a value. Consider choosing x = >. In this case the second
table row shows that the relational Polyhedra domain [4] loses the information
that x = 3 in the else-branch. In order to retain as much information as possible,
we propose a copy-and-paste operation that can be used to add missing variables
with values that are more precise than >, so that x = 3 is retained in the join.

Non-initialized variables. Now we consider a precision loss that occurs in the
C program in Fig. 2. Here, one conditional branch initializes variables x and y,
whereas the other branch only initializes variable x, leaving y undefined. When
the resulting states are joined, y has to be introduced in the latter state with an
unrestricted value >, giving the joined state {x = 1, y = 2} ∪ {x = 0, y = >}.
However, introducing variables with value > can lead to loss of precision. In
particular, the implication x = 1 ⇒ y = 2 is lost in domains whose state is
a convex set. For instance, when using the relational Polyhedra domain, the
joined state {x ∈ {0, 1}, y = >} (shown in the first row of the table) is only as
precise as the join over the intervals, in that any relation between x and y is lost.

As a solution to these two problems of non-existing regions and of non-
initialized variables, we propose a dedicated abstract domain called the Unde-
fined domain which is parameterized over another numeric domain, that we call
the child domain. The child can be an arbitrary numeric domain. We require
that non-initialized and non-existent variables are introduced as >. The Un-
defined domain then transparently inserts placeholder values using a so-called
copy-and-paste operation. It additionally tracks a flag fx that indicates if vari-

3

able x is defined, thereby enabling the child domain to infer relations with this
flag, e.g. “x is defined iff p points to x”. In order to introduce the Undefined
domain, we now exemplify how it can be employed to analyze the examples.

We illustrate the Undefined domain by performing an abstract interpretation
of the program in Fig. 1. The resulting state of the then-branch is represented
by the child state st = {p = &x, x = 3, fx = 1}, where x is the content of
region x and fx is a flag that indicates whether x is defined or not. Since flag fx
has value 1, variable x is defined and it has value 3 stored in the child domain.
Furthermore, the state in the else-branch {p = 0} does not contain the variable
x, so that it has to be added with x = >. The Undefined domain observes this
undefined value of x and replaces it by a copy of x from st, yielding the child
state se = {p = 0, x = 3, fx = 0}. Note here that the Undefined domain has
added fx = 0, indicating that x is not defined, and the value of x that is stored
in the child domain has to be ignored. As shown in the second row of the table,
joining both states results in the child state {p = fx · &x, x = 3, fx ∈ {0, 1}},
where p can only point to x if fx has value 1, which means that x is defined. The
Undefined domain has retained the information that region x can only contain
value 3, although the undefined value of x is modeled by > instead of ⊥.

Now consider analyzing the program in Fig. 2 using the Undefined domain
with the Polyhedra domain as its child. The resulting state of the then-branch
is represented by the child state {x = 1, fx = 1, y = 2, fy = 1}. Here, flags fx
and fy have value 1, indicating that x and y are defined. The resulting state of
the else-branch is modeled by the child state {x = 0, fx = 1, y = 2, fy = 0}. Flag
fy has value 0, indicating that y appears to have the value > at the interface of
the Undefined domain. As before, the Undefined domain has used the value of
y from the then-branch as a placeholder value. As shown in the second row of
the table, the joined child state {x ∈ {0, 1}, fx = 1, y = 2, fy = x} now indicates
that x = 1 implies fy = 1 and thus y = 2, an invariant that is retained although
the state is approximated by the Polyhedra domain.

As shown in the examples, existing numeric domains can be wrapped by
the Undefined domain. The resulting domain is a drop-in replacement for the
original numeric domain. The Undefined domain transparently manages flags
for all variables that may be undefined, thereby ensuring that all operations on
the domain are sound even if some of the variables mentioned in the operations
are undefined. We provide an implementation of the Undefined domain that
partitions the flags into groups of flags with equal valuations. By collapsing each
group into one single flag, it minimizes the required number of flag variables. In
summary, this paper makes the following contributions:

– We describe how existing numeric domains can be enabled to incorporate
program states of different size in one abstract state.

– We define the Undefined abstract domain that translates domain operations
to operations on a child domain such that relational information can be
inferred in these situations.

– We illustrate the precision of our approach by presenting examples that
perform dynamic heap allocation and summarize calls to procedures.

4

After providing a formal basis, Sect. 3 defines the Undefined domain. Its
utility for common analysis tasks is shown in Sect. 4 before Sect. 5 presents our
experimental evaluation. Section 6 discusses related work and Sect. 7 concludes.

2 The Undefined Domain

Numeric domains may provide operations that change the support set of a nu-
meric state, that is, the set of variables for which the domain holds numeric
valuations. Joining and comparing states with different support sets is often
preceeded by a process that makes their support sets equal. We follow [11]
and describe domains with non-fixed support sets as co-fibered domains. This
construction allows to systematically derive variants of the compare and join
operations that adjust the support sets themselves. We first give a definition
of numeric domains before we introduce the Undefined domain as an abstract
numeric domain.

Definition 1 (Numeric Domain). A numeric domain is given by a tuple
(D, vD, tD, TD) where D is the set of states, vD is a pre-order, tD is a
binary function, such that s vD s tD t and t vD s tD t for all s, t ∈ D, and
T ⊆ DD is a set of monotonic transfer functions.

Let X be the set of program variables. In this work, we assume that each numeric
state s ∈ D has a support set χ(s) ⊆ X that represents the set of variables for
which state s holds valuations. Then each state s ∈ D represents a set of vectors
of dimension |χ(s)|. Since program variables may be introduced and removed
during a program run, the numeric domain must provide operations that add
or remove variables to and from the support set. Removing a variable x from a
state s ∈ D with x ∈ χ(s) is denoted by a function dropD,x : D → D. Adding an
unrestricted variable x to a state s ∈ D with x 6∈ χ(s) is denoted by a function
addD,x : D → D. These functions are lifted to sets of variables by repeated
application of add and drop operations, that is, addD,X := ©x∈XaddD,x and
dropD,X :=©x∈XdropD,x with © denoting function composition.

Comparing and joining two states s ∈ D and t ∈ D with different support
sets requires to add missing variables to s and t beforehand. Following [11], we
capture this behaviour by requiring that the pre-ordered set (D,vD) together
with the morphisms addD,X , dropD,X for X ⊆ X forms a co-fibered domain.
Specifically, we require the following equivalence:

s vD t⇔ addD,χ(t)\χ(s)(s) vD addD,χ(s)\χ(t)(t).

For the sake of a generic presentation, we assume that all other transfer functions
are divided into assignments [[y := f(x1, . . . , xn)]]D and tests [[f(x1, . . . , xn) ≤ 0]]D
with program variables x1, . . . , xn, y ∈ X and an n-ary function f .

Example 1 (Concrete Domain). The concrete domain (C, vC , tC , TC) models
exact sets of vectors over Z, that is, C =

⋃
n∈N ℘(Zn). The join s tC t of two

states s and t with χ(s) = χ(t) is just the set union s ∪ t. Analogously, for
χ(s) = χ(t) the comparison s vC t is just s ⊆ t.

5

An abstract numeric domain over-approximates the state of another domain. Its
semantics is determined by a concretization function γ that takes an abstract
state to a concrete state.

Definition 2 (Abstract Domain). A domain (A, vA, tA, TA) abstracts a
domain (D, vD, tD, TD) if there is a concretization function γ : A→ D, such
that s vA t ⇒ γ(s) vD γ(t) and γ(s) tD γ(t) vD γ(s tA t) for every s, t ∈ A
and for every τD ∈ TD exists a τA ∈ TA, such that τD ◦ γ vD γ ◦ τA.

This definition ensures that every domain operation of the abstract domain over-
approximates the corresponding operation of the concrete domain.

Example 2. The previously mentioned domain of closed convex Polyhedra [4]
abstracts the concrete domain C by over-approximating a set of vectors by the
topological closure of their convex hull.

In Sect. 4 we will detail how the Undefined domain can improve the precision
of the Polyhedra domain. In the remainder of this section, we assume an ab-
stract domain (A, vA, tA, TA) without making further assumptions about this
domain.

2.1 The Undefined Domain

The Undefined domain is a functor domain [3]: Each state holds a state of a
child domain, and domain operations are forwarded to domain operations on
this child domain. Here, for each variable x of the Undefined domain, its child
domain holds a variable x and a flag fx. When fx = 1 in the child domain,
the value of x is given by the value of x in the child domain. When fx = 0,
variable x is unrestricted and the value stored for x in the child domain is just a
placeholder. As a consequence, every numeric state of dimension n is modelled by
a child state of dimension 2n. We later detail how fewer dimensions suffice. We
denote an Undefined domain that transforms a child domain (D, vD, tD, TD)
by (U(D), vU(D), tU(D), TU(D)). An element of the Undefined domain that has
a child state s ∈ D is denoted by u�s where u denotes the mapping from each x
to its flag fx. We fix the semantics of U(D) by defining functions γ̃D that relate
states of U(D) to states of D.

Definition 3. For every domain (D, vD, tD, TD), function γ̃D : U(D) → D
is given by γ̃D(u � s) := (©x∈χ(s)γ̃D,x)(s) where γ̃D,x : D → D is defined by
γ̃D,x(s) := dropD,fx([[fx = 1]]stD (addD,x ◦dropD,x)([[fx = 0]]s)) for each x ∈ X.

Adding and Removing Dimensions. Removing a variable x from a state u� s ∈
U(D) consists of straightforwardly removing variable x and the correspond-
ing flag fx from the child state. Thus, we define dropU(D),x(u � s) := u �

dropD,{x,fx}(s). Adding a variable x to a state u � s ∈ U(D) can be done in
two different ways: One way is to simply add an unrestricted variable x and
the corresponding flag fx with value one to the child state s. Another way is to

6

add x with an arbitrary value and flag fx with value zero to the child domain,
indicating that x is undefined and the value held for x in the child domain has to
be ignored. However, for abstract domains the chosen placeholder value of x can
influence the precision of subsequent domain operations, namely join operations.
In order to characterize the functions that may be used to introduce placeholder
values for x, we first introduce the notion of X-Adders.

Definition 4. A function ϕ : D → D is an X-Adder iff χ(ϕ(d)) = χ(d) ∪ X
and dropD,X(ϕ(d)) = d for all sets of variables X ⊆ X and states d ∈ D with
χ(d) ∩X = ∅.
The intuition of an X-Adder ϕ is that it extends a state with new dimensions
X that are bound to placeholder values. Given an X-Adder ϕ for domain D
and variable set x1, . . . , xn, we define operation addϕU(D),{x1,...,xn}(u � s) :=

u � [[fx1
= · · · = fxn

= 0]]ϕ(addD,fx1 ,...,fxn
(s)). It remains to show that every

operation addD,X on domain D has a corresponding operation on domain U(D).
Indeed, for every domain D and variable set X function addD,X itself is an X-
Adder, and so add

addD,X

U(D),X corresponds to addD,X .

Joining, Widening and Comparing States. Two states u�s and u� t with equal
support sets χ(s) = χ(t) are compared, joined or widened by simply performing
these operations on their child states s and t. For states u � s and u � t with
different support sets χ(s) 6= χ(t), their support sets are made equal by perform-
ing addϕ operations on s and t before they can be compared, joined or widened.
This allows for a degree of freedom, since an arbitrary X-Adder ϕ can be chosen
for each addϕ operation. In the next section we will show how the precision of
the Undefined domain can be improved by introducing an X-Addder that retains
relational information between the variables X.

It is worth noting that the ordering given by this comparison operation
slightly deviates from the pre-order obtained from constructing the co-fibered
domain. There, the relation u � s v u � t holds for two states u � s and u � t
with different support sets whenever two X-Adders ϕ and ψ exist, such that
addϕD,χ(t)\χ(s)(s) vD addψD,χ(s)\χ(t)(t), whereas the comparison operation only
detects subset relations that can be established by a previously chosen pair of
X-Adders. In fixpoint computations, this may lead to extra iterations, although
termination is still guaranteed by widening. Consider, for example, the child
states s := {x = 1, y = 1, fy = 0} and t := {x = 1}. Clearly, s and t describe the
same state, but the comparison operation might obscure this by adjusting state
t to {x = 1, y = 2, fy = 0}, thereby necessitating one more fixpoint iteration.

Transfer Functions. An assignment y := f(x1, . . . , xn) is directly executed on the
child domain. Since the resulting value y is only valid if all variables x1, . . . , xn
are defined (that is, if all fi = 1), the flag fy is set to the conjunction

∧n
i=1 fxi

.
A test f(x1, . . . , xn) ≤ 0 is performed by first splitting the state into one state
where all fi = 1 and one state where fi = 0 for some i. The test is then performed
on the former state, while the latter state remains unchanged. After that, both
states are joined. Figure 3 shows the transfer functions for tests and assignments.

7

[[y := f(x1, . . . , xn)]]U(D)u� s

:= u� [[y := f(x1, . . . , xn); fy :=

n∧
i=1

fxi]]Ds

[[f(x1, . . . , xn) ≤ 0]]U(D)u� s

:= u� [[f(x1, . . . , xn) ≤ 0;

n∧
i=1

fxi = 1]]Ds tD [[

n∨
i=1

fxi = 0]]Ds

Fig. 3. Transfer functions for unary operations.

U(A)

γU

��

γ̃C ·γU

''

A

γ

��
U(C)

γ̃C // C

Fig. 4. Abstract domains and their concretizations.

2.2 Correctness of the Undefined Domain

In order to verify that domain U(A) is indeed an abstraction of domain C, we
first show that U(A) is an abstraction of domain U(C), and then we show that
U(C) is an abstraction of C. As sketched in Fig. 4, it follows immediately that
domain U(A) is also an abstraction of domain C. In the first step, we observe
that domain U(A) is an abstraction of U(C).

Lemma 1. If domain A abstracts domain C, then U(A) abstracts U(C).

Proof. Given an concretization function γ : A → C, a concretization function
γU : U(A)→ U(C) is given by γU (u� s) := u� γ(s).

In the second step, we observe that the domain U(C) is an abstraction of C.

Lemma 2. Domain U(C) abstracts domain C.

Proof. For every Domain (D, vD, tD, TD) and every x ∈ X, function γ̃Dx is a
concretization function. In particular, every function addϕU(D),x abstracts func-
tion addD,x. As a composition of such functions, function γ̃C also is.

The following theorem states the desired property that domain U(A) is an
abstraction of the concrete domain C: all operations on domain U(A) over-
aproximate the corresponding operations on the concrete domain C.

Theorem 1. Domain U(A) abstracts domain C.

Proof. Since γU and γ̃C are concretization functions by Lemma 1 and 2, their
composition γ̃C ◦ γU : U(A)→ C also is.

8

The given semantics of the Undefined domain is still impractical, as it stores
one additional flag variable for each variable in the child state, and it is incom-
plete, as it does not fully specify how missing variables are added. The next
section describes how the number of flag variables can be reduced and suggests
an X-Adder copyAndPaste that adds missing variables in a clever way: it copies
relations between those variables that are missing in the respective other domain.

3 Practical Implementation of the Undefined Domain

In this section we propose an implementation of the Undefined domain that is
practical in following two senses: firstly, it associates a flag with a set of variables
rather than with each variable, thus yielding a scalable domain; secondly, it uses
a copy-and-paste operation that transfers the valuations of whole sets of variables
to another domain, thereby allowing for retaining relational information between
variables of a partition. After some definitions, we consider each aspect in turn.

3.1 Definition of the Domain

Let X ⊆ X denote the program variables and F ⊆ X \ X denote the variables
used as flags. A state of the undefined domain U(A) is given by u � a with
child state a ∈ A and a partial mapping u : X 99K F . This mapping takes each
variable in the state’s support set to a flag that tracks whether this variable is
defined. Thus, the support set of child state a is χ(a) = dom(u) ∪ img(u) where
dom(u) denotes the domain of u and img(u) denotes the image of u. We allow
several program variables to map to the same flag variable, thereby inducing a
partitioning of program variables. For each mapping u this partitioning is given
by Π(u) := {u−1(f) | f ∈ img(u)}), where u−1 : F → ℘(X) is the reverse
relation of u. For better legibility, we sometimes denote u by its reverse relation.
Thus, for u = [x0 7→ f0, x1 7→ f1, x2 7→ f0, x3 7→ f1] we write [f0 7→ {x0, x2},
f1 7→ {x1, x3}]. We now detail how to manage flags when partitions change.

3.2 Making Partitions Compatible

Whenever two states u1 � a1 and u2 � a2 are compared or joined, their par-
titionings Π(u1) and Π(u2) must agree. To this end, the coarsest partitioning
P := {p1 ∩ p2 | p1 ∈ Π(u1), p2 ∈ Π(u2)} whose partitions can be merged to
give either Π(u1) or Π(u2) is calculated. We then associate each partition p ∈ P
with a fresh flag fp, thereby obtaining a new state u12 =

⋃
p∈P [fp 7→ p]. Let

u12 = common(u1, u2) abbreviate this operation. Since u12 associates different
(and possibly more) flags with its partitions than u1 and u2, the flags stored in
a1 and a2 have to be adjusted. Thus, let transu12

ui
(f) := {u12(x) | x ∈ u−1i (f)}

denote the flags of those partitions in u12 whose union is associated with f in
ui. We transfer the value of f to the flags {f1, . . . , fn} ∈ transu12

ui
(f) using the

assignment adjOneu12
ui

(f) := [[f1 := f]] · · · [[fn := f]]. The assignment for all par-
titions is then given by the composition adjustu12

ui
:= ©f∈img(ui)adjOneu12

ui
(f).

9

x ∈ X x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

u1(x) f1 f1 f1 f1 f2 f2 f2 f2 f3 f3
u2(x) f4 f4 f5 f5 f5 f5 f6 f6 f7 f7
u12(x) f8 f8 f9 f9 f10 f10 f11 f11 f12 f12

Fig. 5. Partition u12 = common(u1, u2) of Example 3.

Making two child states a1 and a2 compatible with u12 requires that the flags
img(u12) are introduced, the renaming adjustu12

ui
is applied, and that the now

stale flags img(ui) are removed. These operations are aggregated by the function
compatu12

ui
= dropimg(ui) ◦ adjust

u12
ui
◦ add img(u12).

Example 3. Consider the task of making two domains, u1�a1 and u2�a2 com-
patible where u1 and u2 are given by the first two rows in Fig. 5. First, the new
partition u12 = common(u1, u2) is calculated as shown in the last line of Fig. 5. In
order to adjust, a1 to be compatible with u12, we compute a′1 = compatu12

u1
(a1) =

drop{f1,f2,f3}(adjust
u12
u1

(add{f8,...f12}(a1))). The function adjustu12
u1

expands to
adjOneu12

u1
(f1) · · · adjOneu12

u1
(f3)=[[f8=f1, f9=f1]]·[[f10=f2, f11=f2]]·[[f12=f3]].

Computing a′2 = compatu12
u2

(a2) analogously suffices to perform any operation
that requires χ(a′1) = χ(a′2), such as (u1�a1)tU(A) (u2�a2) = u12�(a′1 tA a′2).

This concludes the process of making domains compatible which allows us to
associate a flag with a partition rather than a single variable. While tracking
fewer flags improves performance, we now detail how precision can be improved.

3.3 Rescuing Relational Information

Tracking whether a set of variables is undefined is only useful if the content of
undefined variables is replaced by other values that lead to less precision loss.
In order to distinguish variables that are always undefined, we use a special flag
fundef whose value is always zero in the child domain. The variables u−1(fundef)
associated with fundef are omitted from the child domain. Due to this, computing
the join of two states (u1�a1)tU(A) (u2�a2) requires that the variables X12 =

u−11 (fundef) \ u−12 (fundef) that are undefined in a1 but not in a2 are added to
a1 before the child states ai can be joined (and vice-versa). To this end, define
a function copyAndPasteD,X : D × D → D with r = copyAndPasteD,X(s, a)
such that variables X are copied from s into a, yielding r where X ⊆ χ(s),
χ(a)∩X = ∅ and χ(r) = χ(a)∪X. We illustrate copyAndPaste with an example:

Example 4. Suppose the following modified version of the introductory example
is given where rnd(0,10) returns a number between 0 and 10:

1 int x,y;
2 if (rnd()) {
3 x = rnd(0,10);
4 y = x;
5 }

10

(u1 � a1)�U(A) (u2 � a2) = let for i = 1, 2 (1)

Xi = u−1
i (fundef)

u′i = ui[x 7→ fi]x∈Xi\X3−i
where fi fresh

u12 = common(u′1, u
′
2)

a′i = copyAndPasteA,X3−i\Xi
(a3−i, ai)

in u12 � (compatu12
u1

(a′1)�A compatu12
u2

(a′2))

addx(u� a) = u[x 7→ fundef]� a (2)
dropx(u� a) = if u(x) = fundef then (u \ x)� a else (3)

if |{y ∈ dom(u) | u(x) = u(y)}| > 1

then (u \ x)� dropA,x(a)

else (u \ x)� dropA,{x,u(x)}(a) (4)

[[y := f(x1, . . . , xn)]]U(A)u� a = let Φ := {u(x1), . . . u(xn)} in (5)
if fundef ∈ Φ then addU(A),y(dropU(A),y(u� a)) else
if Φ = {f} then u[y 7→ f]� [[y := f(x1, . . . , xn);]]Aa

else let fy fresh and u′ = u[y 7→ fy] in (6)

u′ � [[y := f(x1, . . . , xn); fy :=
∑
f∈Φ

f = |Φ|]]Aa (7)

[[f(x1, . . . , xn) ≤ 0]]U(A)u� a = let Φ := {u(x1), . . . u(xn)} and ψ =
∑
f∈Φ

f in (8)

u� [[f(x1, . . . , xn) ≤ 0;ψ = |Φ|]]Aa tA [[ψ < |Φ|]]Aa

Fig. 6. Transfer functions for binary operations � = t,v,∇, and unary operations.

Consider analyzing this program with a state u1�a1 where u1 = [fundef 7→ {x, y}]
and a1 = {fundef = 0} is a convex polyhedron. Note that χ(a1) = {fundef}
since the variables x, y ∈ u−11 (fundef) are not stored in a1 as explained above.
The state at line 5 becomes u2 � a2 where u2 = [fdef 7→ {x, y}] and a2 =
{x = y, x ∈ [0, 10], fdef = 1}. The benefit of not storing x, y in a1 is that
they can be introduced using a′1 = copyAndPasteA,{x,y}(a2, a1) = {x = y, x ∈
[0, 10], fundef = 0} that extracts all information over x, y in a2 and adds it to
a1. In order to state that these variables are now explicitly stored in a′1, we
rename fundef to a new flag fxy, yielding u′2 � a′2 with u′2 = [fxy 7→ {x, y}] and
a′2 = {x = y, x ∈ [0, 10], fxy = 0}. Now the state after line 5 can be computed as
(u1�a1)tU(A)(u

′
2�a

′
2) = u12�a

′
1 tA a′2 where u12 = u′2 and a′2 is a2 in which fdef

is renamed to fxy. The result a′1tA a′2 = {x = y, x ∈ [0, 10], 0 ≤ fxy ≤ 1} retains
the equality x = y, thereby improving the precision over copying intervals.

Figure 6 illustrates the implementation of the � = t,v,∇ functions that
use copyAndPaste on the child domain of type A. Here, we assume that r =
copyAndPasteD,X(s, a) is defined as r = s uD dropD,χ(a)\X(a) where uD is a

11

greatest lower bound on two abstract states that adds missing dimensions as
needed. The idea is to remove all dimensions from a that should not be copied
before merging the remaining relations over X into s using the meet uD. For
each binary operation �, Eq. 1 shows how the states are made compatible as
described above before applying � on the child domains.

Figure 6 also defines other transfer functions of the Undefined domain. Adding
an unrestricted dimension x using add merely adds a mapping fundef 7→ x to the
undefined mapping (Eq. 2). Removing a variable x using drop needs to check if
x is not stored in a (Eq. 3), or if it was the last variable in its partition (Eq. 4).
Assigning to a variable y computes the set of flags Ψ that must be one to make
the result defined (Eq. 5). If fundef ∈ Ψ then y is always undefined and executing
the assignment on the child is not necessary. If a single flag f suffices to make
y defined, y is added to the partition of f . In the general case, a new flag fy is
created (Eq. 6) that represents the validity of the new partition {y} (Eq. 7).

Applying a test (Eq. 8) partitions the child state a into one where all variables
occurring in the test are defined (ψ = |Φ|) and one where they are possibly
undefined (ψ < |Φ|). Only in the former case, the test is applied.

Analogously to Lemma 2, the following lemma states that with the concrete
domain C as its child domain, the Undefined domain is an abstraction of C.

Lemma 3. With the proposed implementation, domain U(C) is an abstraction
of the concrete domain C.

Proof. Beneath the choice of function copyAndPaste for adding variables, the
implementation only differs from the semantics given in the last section by the
more efficient, but otherwise equivalent handling of flags. It remains to show that
adding dimensions via function copyAndPaste is valid, which holds because for
each domainD, state a and set of variablesX, function λs.copyAndPasteD,X(s, a)
is an X-Adder since dropX(copyAndPasteX(s, a)) = a.

The following theorem states that the given implementation of the Undefined
domain is indeed a sound approximation of the concrete domain.

Theorem 2. Let A be an abstraction of the concrete domain C. Then, with the
proposed implementation, domain U(A) is an abstraction of C.

Proof. Analogously to Theorem 1, the claim follows from Lemma 3.

4 Applications of the Undefined Domain

We now illustrate the utility of the Undefined domain by using examples from
the analysis of function calls and of heap-allocated memory.

4.1 Merging Calls to Functions

For the sake of limiting the memory consumption of an analyzer, it is desirable
to merge the states of certain call sites of a function f into one. To this end,

12

main() {
a(0);
b(1);

}

a(int x) {
f(x);

}

b(int y) {
f(y);

}

f(int z) {
...

}

Fig. 7. Function calls example.

fam ffa

fbm ffb

fam ffa

fbm ffb

main a f

main b f

main

a

b

f

a)

b)

c)

Fig. 8. Combining several call sites into one state.

we use a stack functor domain G(S) (with child state S) that manages a set of
stack frames. Here, G tracks one dedicated active stack frame that represents
the currently executed function f. In order to track to which stack frame the
analysis has to return to when leaving the current function, the state g ∈ G
is a directed graph with stack frames as nodes, where the more recently called
function points to its caller. Consider for example the program in Fig. 7. Here,
function f is called twice. First, it is called by function a, which in turn is called
from main. Figure 8a) shows how the first call path via a forms a linked list of
stack frames, say ga. Figure 8b) shows the graph of stack frames for the second
call to f via b, say gb.

In order to combine two graphs ga and gb, we follow [10] in qualifying the
graph edges by numeric flags, that is, numeric variables that can take on the
values 0 or 1. Let ga � sa with sa = {x = z = 0, ffa = 1, fam = 1} ∈ S denote
the abstract state (here sa ∈ S are convex polyhedra [4]) on entry to f for the
path in Fig. 8a). In sa, the flag ffa has value one, indicating that the node (stack
frame) of a is the predecessor of the node (stack frame) of f. Analogous for fam
that qualifies the edge between the stack frame of f and of main. Symmetrically,
for the path shown in Fig. 8b) the state is sb = {y = z = 1, ffb = 1, fbm = 1}.

The two graphs ga and gb are merged into the combined graph of stack frames
g in Fig. 8c). In order to capture that the b node is not a predecessor of f in ga, we
add the flag ffb = 0 to sa and analogously we add fbm = 0, yielding s′a = {x =
z = 0, ffa = 1, ffb = 0, fam = 1, fbm = 0}. Symmetrically, we enrich sb to s′b =
{y = z = 1, ffa = 0, ffb = 1, fam = 0, fbm = 1}. Overall, we obtain the state g�
s′a tS s′b = g � {x = >, y = >, 0 ≤ z ≤ 1, z = fbm = ffb = 1− fam = 1− ffa}.

Note that all information within the stack frames, namely x and y is lost.
The Undefined domain can improve this situation: we re-analyze the example
using the domain G(U(S)). The net effect is that in the last step, instead of
g � s′a tS s′b we compute g � (u� s′a) tU(S) (u� s′b) where u ∈ U is the empty
mapping (all variables are defined). By the definition of tU(S) the missing vari-
able x is added to u� s′b giving ub� s′b with ub = [x 7→ fundef] and, analogously,
the left argument becomes ua � s′a with ua = [y 7→ fundef]. Computing the join
ua � s′a tU(S) ub � s′b makes the two undefined states ua and ub compatible to
u = [x 7→ fx, y 7→ fy]. The numeric state s′a is modified by adding fx = 1, fy = 0

13

a)

main() {
int *p;
if (rnd()) {
p = malloc(4);
*p = 3;

} else
p = NULL;

if (p != NULL)
assert *p == 3;

return 0;
}

b)

struct point {int x; int y;} *p;
int n = rnd(0, 100);
for (int i=0; i<n; i++) {
if (p == NULL)
p = malloc(sizeof (*p));

p->x = i;
p->y = i;

}
if (p != NULL)
assert p->x == p->y;

Fig. 9. Heap allocation examples

and copying y = 1 from s′b whereas s′b is modified by adding fx = 0, fy = 1
and copying x = 0 from s′a. The state that f is analyzed with is thus g �

u� {x = 0, y = 1, 0 ≤ z ≤ 1, z = fx = fbm = ffb = 1− fy = 1− fam = 1− ffa}.
The benefit of the Undefined domain is thus that, upon returning from f,

the content of the predecessor stack frames is still available since x = 0, y = 1
is retained in the join of the two call sites. Our analysis infers more intricate
invariants if pointers are passed, since the flags of the Undefined domain form
an equality relation with the points-to flags, as detailed in the next section.

4.2 Application to Heap Analysis

We now detail how the Undefined domain can improve precision in the analy-
sis of programs that use dynamically allocated memory. To this end, consider
the program in Fig. 9a) that contains the conditional statement of Fig. 1 of
the introduction. After executing the then-branch of the first conditional, the
state consists of a dynamically allocated memory region x that contains a single
memory cell of value 3 and a variable p that holds a pointer to region x. We
model pointer expressions as linear combinations of abstract addresses where
the coefficients are numeric flags. For example, the expression c ·&x is a pointer
to l-value x if c = 1 and a NULL pointer if c = 0 holds [10]. Thus, the state is
S1 := {p = c · &x, c = 1, x = 3}. Analogously, after executing the else-branch,
the numeric state is just S2 := {p = 0}.

In order to join the resulting states S1 and S2 of both branches, they are
made compatible by extending state S2: the numeric variable x is introduced
and the pointer expression stored for p is extended with c · &x with flag c = 0,
resulting in state S′2 := {p = c · &x, c = 0, x ∈ Z}. Approximating the join
S1 t S′2 in the Polyhedra domain yields a state {p = c · &x, c ∈ [0, 1], x ∈ Z},
thus losing the information that c = 1 implies x = 3.

Using the Undefined domain, the state after the then-branch is ∅� S1 with
child state S1 and an empty mapping from program variables to flags. Similarly,
the state after the else-branch is ∅�S2. When both states are made compatible,
a new flag f is introduced in both states that indicates whether variable x is

14

U instructions time memory variables undef. flags warnings
heap 1 3 12 19 19.0 14 1 0

7 12 18 17.8 13 – 1
heap 2 3 24 35 23.2 23 2 0

7 24 32 21.7 21 – 1
call stack 1 3 114 450 42.0 50 2 0

7 76 377 41.9 48 – 7
call stack 2 3 254 641 42.0 74 2 0

7 178 416 42.6 72 – 7
call stack 3 3 153 718 42.4 66 4 0

7 76 422 41.9 48 – 7
call stack 4 3 128 702 42.2 54 2 0

7 88 920 42.5 52 – 8
call stack 5 3 173 1455 47.3 75 4 0

7 90 709 42.0 54 – 8

Fig. 10. Evaluation of our implementation

defined. The value of x is copied from S1 to S2 by the copyAndPaste operation.
The joined state is now {f 7→ {x}}�{p = c ·&x, c = f, f ∈ [0, 1], x = 3}. Since
the child domain expresses the invariant f = c, the information that c = 1
implies x = 3 is maintained. Analogously, c = 0 implies that *p is unbounded,
reflecting the fact that an uninitialized memory location can hold any value and
thereby guaranteeing that the analysis is still sound.

Figure 9b) shows a similar scenario where the Undefined domain is able to
preserve the relation between the contents of a possibly nonexisting memory
region during a fixpoint computation. There, a struct is allocated on the heap
inside a loop and the variables in the struct are assigned the same value. After
the loop, if the pointer to the struct exists, the program tests that the equality
between the struct members still holds.

5 Implementation and Experimental Results

We evaluated the Undefined domain in our analyzer for machine code [9], using
a domain stack G(U(P (A(C(I))))) where G maintains stack frames and dynam-
ically allocated memory, U is the Undefined domain as described in Sect. 3, and
P tracks points-to sets of variables. The remaining domains are numeric; they
track affine equalities A, congruences C and intervals I. In order to estimate
the performance of the Undefined domain, we also evaluated the examples with
domain stack G(P (A(C(I))), that is, without domain U .

Our tool analyzes Intel assembler programs and translates each x86 instruc-
tion into a sequence of instructions over an intermediate representation (IR)
[9]. The stack domain G recognizes function boundaries by observing the stack
pointer whenever the control flow changes through a jump, call or return instruc-
tion. An x86 return instruction is translated into a read access to the previous
stack frame in order to retrieve the return address and a jump to this address.

15

The Undefined domain is thereby key to infer a precise address since, for Fig. 8,
stack frames a and b are both read and joined before the jump is executed.

Figure 10 shows the experimental results. Column U indicates whether the
Undefined domain is used, followed by the number of machine instructions in
the program that were analyzed; columns time and memory show the runtime in
milliseconds and the memory consumption in megabytes, averaged over several
runs on a 3.2 GHz Core i7 Linux machine. The next column shows the total
number of variables tracked, followed by the number of flag variables used by
the Undefined domain and the number of warnings emitted by the analyzer.

The first two lines show the heap example from Fig. 9a) that has been dis-
cussed in Sect. 4.2. Our implementation using the Undefined domain is able to
verify the assertion in the program. Without the Undefined domain it raises a
warning as the value of the heap allocated variable is lost. The next two lines
show the heap example from Fig. 9b) where our analysis is able to verify an as-
sertion in the program only when using the Undefined domain as the relational
information between the struct members is lost otherwise.

Next follows the call stack example of Sect. 4.1, followed by variations with
more functions and call paths. Call stack examples 4 and 5 differ in that they
use pointers to stack variables to pass parameter values. Note that the call stack
examples exhibited shorter runtimes without the Undefined domain, because
precision loss made it impossible to resolve the return addresses, so that the
examples could only partially be analyzed. This is reflected in the number of
analyzed instructions. For the same reason the number of total variables in the
call stack of example 3 and 5 without the domain are much lower than with the
Undefined domain. The examples show that the additional variables that are
necessary as flags for the Undefined domain are only few compared to the total
number of variables in the program.

6 Related Work

We addressed the challenge of tracking the content of memory that does not
exist in all traces. Many existing analyses use some ad-hoc methods to approxi-
mate what we have put on a sound mathematical basis: the ability to store both,
precise and undefined values for variables in a single state. For instance, recency
abstraction [1] implicitly retains the defined value when the state is joined. When
a purely logic description is used [7, 8], the distinction between defined and unde-
fined content is simply expressed using disjunction. In Astrée [2], disjunction is
expressed using the decision tree domain that tracks two separate child domains
depending on the value of a flag. The effect is similar to standard path-sensitive
analyses in that tracking two states duplicates analysis time. More sophisticated
analyses merge states on different paths if a finite abstraction determines that
they are similar [5]. Future work will determine whether this technique can be
implemented as a combinator in our domain stack.

The Undefined domain partially allows the encoding of conditional invariants.
While this problem has been studied for logical domains [6], we provide a solution

16

that enables existing numeric domains to infer certain conditional invariants,
e.g. those guarded by the existence of objects. For overly complex invariants,
our approach exploits the ability of numeric domains to gradually lose precision.

7 Conclusion

We addressed the task of storing a single state in cases where a piece of memory is
non-existent in some of the traces. We introduced a generic functor domain that
generalizes this approach to existent memory regions with undefined content. We
illustrated the power of this domain by defining a specific instance, namely the
Undefined domain, that improves precision in common program analysis tasks.
Its novel copy-and-paste operation even retains relational information.

References

1. G. Balakrishnan and T. Reps. Recency-Abstraction for Heap-Allocated Storage.
In K. Yi, editor, Static Analysis Symposium, volume 4134 of LNCS, pages 221–239,
Seoul, Korea, 2006. Springer.

2. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A Static Analyzer for Large Safety-Critical Software. In Programming
Language Design and Implementation, San Diego, California, USA, June 2003.
ACM.

3. P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, D. Monniaux, and X. Rival.
Combination of Abstractions in the ASTRÉE Static Analyzer. In M. Okada and
I. Satoh, editors, Asian Computing Science Conference, volume 4435 of LNCS,
pages 272–300, Tokyo, Japan, December 2006. Springer.

4. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Constraints among
Variables of a Program. In Principles of Programming Languages, pages 84–97,
Tucson, Arizona, USA, January 1978. ACM.

5. M. Das, S. Lerner, and M. Seigle. ESP: Path-Sensitive Program Verification in
Polynomial Time. ACM SIGPLAN Notices, 37(5):57, May 2002.

6. S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified
logical domains. In Principles of Progamming Languages, pages 235–246, San
Diego, California, USA, January 2008. ACM.

7. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Logic in Computer Science, pages 55–74, Copenhagen, Denmark, 2002. IEEE.

8. M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic.
Transactions on Programming Languages and Systems, 24(3):217–298, 2002.

9. A. Sepp, B. Mihaila, and A. Simon. Precise Static Analysis of Binaries by Extract-
ing Relational Information. In M.Pinzger and D. Poshyvanyk, editors, Working
Conference on Reverse Engineering, Limerick, Ireland, October 2011. IEEE.

10. H. Siegel and A. Simon. FESA: Fold- and Expand-based Shape Analysis. In
Compiler Construction, volume 7791 of LNCS, pages 82–101, Rome, Italy, March
2013. Springer.

11. A. Venet. Abstract Cofibered Domains: Application to the Alias Analysis of Un-
typed Programs. In Static Analysis Symposium, LNCS, pages 366–382, London,
UK, 1996. Springer.

