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Abstract
Flexible records are a powerful concept in type systems that form
the basis of, for instance, objects in dynamically typed languages.
One caveat of using flexible records is that a program may try to
access a record field that does not exist. We present a type infer-
ence algorithm that checks for these runtime errors. The novelty of
our algorithm is that it satisfies a clear notion of completeness: The
inferred types are optimal in the sense that type annotations cannot
increase the set of typeable programs. Under certain assumptions,
our algorithm guarantees the following stronger property: it rejects
a program if and only if it contains a path from an empty record to
a field access on which the field has not been added. We derive this
optimal algorithm by abstracting a semantics to types. The derived
inference rules use a novel combination of type terms and Boolean
functions that retains the simplicity of unification-based type infer-
ence but adds the ability of Boolean functions to express implica-
tions, thereby addressing the challenge of combining implications
and types. By following our derivation method, we show how vari-
ous operations such as record concatenation and branching if a field
exists lead to Boolean satisfiability problems of different complex-
ity. Analogously, we show that more expressive type systems give
rise to SMT problems. On the practical side, we present an imple-
mentation of the select and update operations and give practical
evidence that these are sufficient in real-world applications.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.3.3 [Language Constructs and Fea-
tures]: Polymorphism; F.3.2 [Semantics of Programming Lan-
guages]: Program analysis; F.3.3 [Studies of Program Constructs]:
Type structure

General Terms Languages, Theory, Verification

Keywords type inference, abstract interpretation, expansion, com-
pleteness, row polymorphism, Boolean functions

1. Introduction
One of the productivity advantages of strongly-typed functional
languages is their ability to infer types automatically, thereby al-
lowing for shorter programs that can be written and changed more
rapidly than programs written in explicitly typed languages.
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Type inferences abstract program values with terms consisting
of constructors (such as ·→· for functions) and constants (such as
Int). For the purpose of the inference and polymorphism, type
terms may also contain type variables a. Type variables are a pow-
erful mechanism to state that two or more (sub-)terms are equal.
This power has been used in other contexts, such as Rémy’s in-
ference of record fields where they are called row-variables [19].
Here, a record e : {X : tx, Z : tz, a} contains the set of fields
{X, Z}, where tx and tz denote the types of the fields. Addition-
ally, the row variable a can be replaced by a field and another
row variable, thereby extending the records. For instance, apply-
ing the substitution σ = [a/Y : ty,b] results in the record type
{X : tx,Y : ty, Z : tz,b}. Observe that the possible fields are
interpreted as set. Moreover, a row variable a occurring in two dif-
ferent record types indicates they contain the same set of fields.

However, the possible set of fields does not convey whether a
field is present. Rémy addresses this question by enhancing record
types to {X.fX : tx, Z.fZ : tz, a.fa} where fX , fZ , fa are flag
variables. A flag is unified with a constant Pre if the corresponding
field must be present and with Abs if the field is definitely absent.
Consider the following expression that uses Haskell syntax aug-
mented with constructs for an empty record {} : {a.Abs}, a field
selector #N : {N.Pre : a, b.fb}→a to extract the field N from a
record and a function @{N = e} : {N.fN : a, b.fb}→{N.f ′N : c,

b.fb} that adds or replaces the field N in its argument with e : c:
(note that f ′N is not Pre so that it can still be unified with Abs):

let f s = if some_condition then
let

s’ = @{ foo=42 } s
v = #foo s’

in
s’

else s
in f {}

The function mimics a situation where a record s is used as a
state to which a producer adds a field (here FOO : Int) before a
consumer extracts this value (here into v : Int). This computa-
tion is embedded in the then-branch of a conditional while the
else branch returns the input state unchanged. From the update
@{foo=42}, Rémy’s inference deduces the type s : {FOO.fN :

v, a.fa} and s′ : {FOO.f ′N : Int, a.fa}. Note that the type and
the flag of field FOO are different. The selector function refines
the type of the state to s′ : {FOO.Pre : Int, a.fa} which is also
the type of the whole then-branch. This type is unified with the
type of the else-branch which is that of s. Thus, the flag fN
is unified with Pre (and v with Int), yielding the overall type
f : {FOO.Pre : Int, a.fa}→{FOO.Pre : Int, a.fa}. Note how
unification has propagated the fact that FOO must exist in s’ to
the input of the function. This has the effect that the call f {} is



considered to be type incorrect since, after expanding the row vari-
able r in {}: {r.Abs} to {FOO.Abs : b, a.Abs}, the flag Abs of
FOO clashes with the Pre flag of the argument of f , rejecting the
program with “f expects a field FOO but is called with {}”.

The presented program is a minimal example that illustrates
how more advanced type inferences may yield surprising results
once programs become sufficiently complex. It represents powerful
programming styles that in Haskell or ML require the use of fixed
records whose field carry undefined values when not in use. One
scenario is a state monad whose state is a record. We use this sce-
nario in a DSL [25] where different sub-computations are evaluated
inside each branch of a case-statement. Each sub-computation
may store some intermediate results in the record state, just like the
then-branch does in the example. Another interesting scenario are
compiler passes that compute and store information in the nodes of
an abstract syntax tree. Here, checking that fields in flexible records
exist ensures that an attribute of an AST node is computed before
it is accessed. The example program above illustrates the situation
when certain compiler passes, that communicate by annotating the
AST, are run conditionally. On a broader scale, our inference can
verify that no field in an object is accessed without being set first
in featherweight Java [11] or pure subsets of other object-oriented
languages like Python or JavaScript that are dynamically typed.

Our inference is able to check the program above by modeling
the existence of fields using a Boolean formula and to interpret the
flags fa, . . . as propositional variables. Thus, the type of f consists
of the type term {FOO.fN : Int, a.fa}→{FOO.f ′N : Int, a.f ′a}
and the Boolean formula f ′N→fN ∧f ′a→fa indicating that the field
FOO exists in the result (fN is true) if it existed in the input (and
analogous for any field that the row variable a is instantiated to).
A program has a type error when unification of the type term fails
or if the Boolean function becomes unsatisfiable. The latter can be
checked using a SAT solver. In the example, the function f is ap-
plied to the empty record of type {}: {FOO.f ′′N : b, a.f ′′a }with for-
mula ¬f ′′N ∧¬f ′′a so that the result has type {FOO.f ′N : Int, a.f ′a}
with ¬f ′N ∧ ¬f ′a, indicating that f {} returns a record contain-
ing no accessible field. Specifically, applying the field selector
#FOO : {FOO.fM : c} with formula fM to the result generates
the constraint fM ↔ f ′N which, together with fM and ¬f ′N is un-
satisfiable. Thus, the expression #foo (f {}) is type incorrect.

A novelty of our type system is that row- and type-variables all
carry an additional flag that is used to describe the flow of values.
For instance, the type id : a.fa→a.fb with formula fb→fa of
the identity function states that values “flow” from the input of
id to its output (or, rather, that a field is in the output if it was
in the input). The application id (f {}) instantiates the type
term of id to {FOO.fc : Int, b.fd}→{FOO.f ′c : Int, b.f ′d}.
Additionally, the flow fb→fa is duplicated to f ′c→fc ∧ f ′d→fd
thus stating that the FOO-field exists in the output if it exists in the
input. This duplication of flow information can be done implicitly
by piggy-backing onto the operations on type terms: whenever a
substitution [a/t] is applied, we extract all flags that a is annotated
with (here: fa, fb) and count how many flags the type t contains
(here: two). The flow between the flags of a is duplicated this many
times, which gives the flow between the types t that a is replaced
with. This separation of type terms and flows addresses the open
“implication issue” [26] in monolithic solvers, as discussed next.

1.1 Monolithic Subtyping versus Unification + SAT Solving
Type inference of current functional languages like Haskell and
OCaml translate each mutually recursive group of functions into
a system of constraints [17] using sub-type and/or conditional con-
straints whose satisfiability is ascertained by a potent solver. In this
setting, a type scheme f : ∀~α[D] . τ for a function consists of the

type term τ and a set of constraints D that the quantified vari-
ables ~α have to satisfy. The constraint language can be arbitrarily
powerful. Indeed, Pottier combines row-polymorphism with non-
atomic subtyping where τi in τ1 ≤ τ2 may be a constructor Pre
taking the field type as argument [18]. This language allows him
to type check the introductory example by inferring the type f :
∀a, b, c, d[D] . {FOO : a,b}→{FOO : c, d} with the constraints
D = ∃a2 . a ≤ c ∧ Int ≤ a2 ∧ Pre a2 ≤ c ∧ b ≤ d. By using an
extra element Any with Pre τ ≤ Any and Abs ≤ Any, the subtype
constraints can express that f {} is typeable (with a = Abs and
c = Any), as is f {foo="bad"} (with a = Pre String and
c = Any). Our type inference rejects the latter call since the type
of field FOO is not unifiable. So why consider a weaker inference?

In the context of Generalized Algebraic Data Types (GADTs),
Pottier has raised an open “implication issue” [26] that relates to
implication constraints D1⇒D2. These implications express that
the subtyping constraints D2 hold if the current solution satisfies
the subtyping constraints D1. Implication constraints are used in
Pottier’s record inference for typing asymmetric record concatena-
tion r3 = r1@ r2 where #N r3 evaluates to #N r2 if N exists in r2
and #N r3 evaluates to #N r1 otherwise. Typing the concatena-
tion of records requires yet another new field state, namely Either τ
with Pre τ ≤ Either τ ≤ Any and Abs ≤ Either τ ≤ Any. The in-
tuition is that a field with type Either τ may not exist, but if it does,
it has type τ . Assuming the record types are ri : {N.ai, bi}, two
conditional constraints describe the behavior of the concatenation:

Dr = ∃d . (Pre d ≤ a2 ∧ a2 ≤ Either d)⇒(Pre d ≤ a3)
∧ (Abs ≤ a2)⇒(a1 ≤ a3)

The two implications reflect the two reduction rules: the first
states that the output contains the content of the field in record r2 if
it definitely (Pre) or possibly exists (Either); the second implication
states that the output record contains the field from the first record
if the field in r2 may be absent, that is, Abs,Either or Any. The
first implication is particularly troublesome for a solver as it is not
monotone: the premise holds only as long as the field in record r2
has a single type d (i.e. a2 ∈ {Pre d,Either d}) but once a2 = Any
the conclusion Pre d ≤ a3 does not hold since it would imply
that r3 definitely contains a field with any type (d is unrestricted
once a2 = Any). Indeed, due to limitations of his solver, Pottier
proposes the following rule that simplifies the first premise [18]:

D′r = ∃d . (a2 ≤ Either d)∧
(Pre d ≤ a2)⇒(Pre d ≤ a3) ∧ (Abs ≤ a2)⇒(a1 ≤ a3)

The requirement a2 ≤ Either d means that the program is re-
jected as soon as any of the fields in r2 has the incompatible type
Any. Thus, {} @ (if c then {f=42} else {f="42"})
is a type error, although the program contains no field selector at
all. Note that Pottier only proposes D′r rules rather than the more
precise Dr rules [18]. The “implication issue” [26] for GADTs
that highlights the difficulty of finding solvable and complete
implication constraints therefore also exists in record inference.
Other reasons that make implications in subtype constraints un-
desirable related to existentially quantified variables such as d in
Dr . These variables can usually not be eliminated until enough in-
formation is available to determine whether the implication holds.
Hence, the size of the constraint system D of a function signature
f : ∀~α[D] . τ is not limited by the variables in τ but may encode
the whole control flow within f . This unsolved set of constraints
has to be reported and understood by the programmer in case of
type errors (which has been used as an argument against implica-
tions [22, Sect. 5.1]) and duplicated when computing an instance
of a function type. Our approach of associating each type variable
and record field with a flag allows us to use a Boolean function
to express implications. Since Boolean functions are closed under



projection onto a subset of variables, the flow information gener-
ated while analyzing the body of a function f can be projected
onto the flag variables in the type of f without losing precision.
For inferences that only require Boolean functions, the obtained
type for a function is thus concise. The separation of type term and
flow information shows that the various inferences in the literature
that improve over Rémy’s work [19] give rise to different Boolean
satisfiability problems. We found the following classes:

• In a language with empty records {}, record selector functions
#f and updates of fields @{f=e}, we observe that all Boolean
functions are two-variable Horn clauses. These can be solved in
linear time. We observe that these operations can be expressed
with atomic subtyping where τi in τ1 ≤ τ2 may only range over
constructors without argument (e.g. Pre and Abs).

• We address further operations on records [2]. We highlight that
asymmetric record concatenation yields multi-variable Horn
clauses which can be solved in linear time [7]. In contrast, sym-
metric record concatenation (where a field may not be present
in both arguments) requires more complex Boolean formulae.

• We discuss type system refinements à la Pottier where fields
only have to have a consistent type if they are accessed. We
illustrate how this more generic type system can be expressed
as an SMT problem with unification constraints as theory.

As far as we know, we are the first to categorize the aforemen-
tioned operations into classes of Boolean satisfiability problems.
Correctness of this classification requires that the type inference
has a notion of optimality, which we address as follows.

1.2 Assessing Completeness by Abstract Interpretation
An optimality of inferred types is often specified by showing that
inference rules compute the principal type, that is, the most general
type that is expressible in the given universe of types. We derive our
type inference by computing an abstract semantics that is backward
complete, a property that ensures that both, the type and the envi-
ronment have the most generic types. This completeness is relative
to a semantics that corresponds to the concrete semantics where the
if-statement is abstracted to a non-deterministic choice. This op-
timal type inference rejects a program if and only if one of its sub-
expressions cannot be given a type from the universe of types (i.e.
type term and Boolean function). We illustrate when the orthog-
onal notion of forward completeness holds, allowing us to define
potentially more efficient inference rules. For instance, we observe
that function application requires no co- and contra-variant flow but
merely equality constraints between flags. Finally, we illustrate the
utility of our weaker type inference by presenting an implementa-
tion with which we have type checked over 22,000 lines of code.

In summary, our paper presents the following contributions:

• It presents a flow-sensitive inference for flexible records with-
out resorting to subtyping constraints.

• We show how abstract interpretation can be used to guarantee
optimality by construction.

• We categorize various language constructs and type universes
for records according to their complexity.

The remainder of the paper is organized as follows: We com-
mence by presenting the type inference algorithm for records. Sec-
tion 3 revisits completeness definitions from the abstract interpreta-
tion literature that are used in Sect. 4 to sketch how the optimal in-
ference rules were derived. Section 5 discusses extensions for other
record operations and more general universes of types. Section 6
discusses our implementation before Sect. 7 presents related work.

e ∈ E programs
N, N1, N2, . . . ∈ L universe of field names

e ::= x | λx . e | e1 e2 | let x = e1 in e2

| 0 | 1 | . . . | {} | @{N = e} | #N

Figure 1. inductive definition of the program syntax

2. Type Inference for Records
After some preliminary definitions, we present a type inference for
the Milner-Mycroft type system that is similar to the classic Damas-
Milner algorithm but additionally admits polymorphic recursion.
We then extend this inference to track flow information and records.

2.1 Preliminaries
Our type inference operates on L(E), an extended λ-calculus de-
fined in Fig. 1. In terms of constructors, only integers c ∈ Z are
handled. For the sake of examples, we will also use polymorphic
lists, such as [0,1,2] : [Int] or [[0]] : [[Int]] but we will not
present inference rules for them. The let-construct allows x to be
recursively used in e1. The last three constructs relate to records: E
may be an empty record, an update/addition of a field and a selector.
The latter two are functions that expect a record as argument.

A Hindley-Milner type inference algorithm for E without flows
of record fields assigns, to each program variable, a type in P:

a,b, . . . ∈ V type variables
t ∈ P polymorphic type expressions
t ::= a | b | . . . | t1→t2 | Int | [t] |

{N1 : t1, . . . Nn : tn, a}

An environment of polymorphic types ρP ⊆ X → P is a
mapping from program variables X to a type P. For convenience,
we write them as X-index vectors such as [x 7→ a, y 7→ a]. The set
of variables that ρP binds is given by dom(ρP) ⊆ X. Let ρP[x 7→
t] denote the environment ρP in which the binding for x ∈ X has
been added or updated to map to type t. A binding to x is removed
by the projection operator ∃x, such that ∃x(ρP[x 7→ t]) = ρP if
x /∈ dom(ρP). Two environments ρ1P, ρ

2
P are unified by applying

a substitution σ = [a/t1, . . .], to one of the environments, written
σ(ρ1P), where σ is the most general unifier σ = mgu(ρ1P, ρ

2
P). If

this unifier does not exist, the type inference fails.

2.2 Inference of Milner-Mycroft Types
Our inference is optimal in the sense that, for each expression, it
computes the most general type expressible in the universe of types,
relative to the types inferred for its sub-expression. Intuitively, we
call an inference optimal if user-supplied type annotations cannot
increase the set of programs that can be type-checked. For instance,
the Damas-Milner algorithm is not optimal since it can type check
a polymorphic recursive function when given a type annotation, but
it cannot infer the type itself. Optimality can be formalized using
the concept of backward-completeness [8, 21] in abstract interpre-
tations. For instance, we have shown that the Milner-Mycroft type
inference [16] is backward-complete and thus optimal [23].

Figure 2 re-formulates the optimal type inference algorithm [23]
using inference rules for E without records. We use judgements of
the form ρP ` e : t; ρ′P where ρP is the input type environment
and e ∈ E the expression to be typed. The result is written t; ρ′P
where t is the type of e and ρ′P is the modified type environment.
We use t; ρP synonymous with ρP[κ 7→ t], that is, we bind the type
t to a special variable κ /∈ X. Hence, t′; ρ′P = σ(t; ρP) applies the
substitution σ to type t and the environment ρP, yielding t′ and ρ′P.



x ∈ Xλ tx = ρP(x)

ρP ` x : tx; ρP
(VAR)

ρP ` e1 : t1; ρ1P ρP ` e2 : t2; ρ2P r fresh
σ = mgu(t1; ρ1P, t2→r; ρ2P) ta→tr; ρ1σP = σ(t1; ρ1P)

ρP ` e1 e2 : tr; ρ
1σ
P

(APP)

∀a1, . . . an . tx = ρP(x) σ = [a1/b1, . . . an/bn] bi fresh
ρP ` x : σ(tx; ρP)

(VAR-LET)
ρP[x 7→ a] ` e : ρ1P, t2 a fresh

ρP ` λx . e : ρ1P(x)→t2; ∃x(ρ1P)
(LAM)

ρ0P = ρP t0 = a, a fresh ρiP[x 7→ ∀(vars(ti) \ vars(ρiP)) . ti] ` e : ti+1; ρi+1
P ∃k . tk = tk+1 ρkP ` e

′ : t; ρ′P
ρP ` let x = e in e′ : t; ∃x(ρ′P)

(LETREC)

ρP ` es : Int; ρcP ρcP ` et : tt; ρ
t
P ρcP ` ee : te; ρ

e
P σ = mgu(tt; ρ

t
P, te; ρ

e
P) tσt ; ρtσP = σ(tt; ρ

t
P)

ρP ` if esthen et else ee : tσt ; ρtσP
(COND)

Figure 2. type inference algorithm with polymorphic recursion

x ∈ Xλ tx =⇑RP(⇓RP(ρR(x)))

ρR|β ` x : tx; ρR|β ∧ *tx+⇒ *ρR(x)+
(VAR)

ρR|β ` e1 : t1; ρ1R|β
1 ρR|β ` e2 : t2; ρ2R|β

2 r.fr fresh
σ = mgu(⇓RP(t1; ρ1R),⇓RP(t2→r.fr; ρ

2
R)) tf ; ρ1σR |β

1σ = applyS(σ, t1; ρ1R|β
1)

ta→tr; ρ2σR |β
2σ = applyS(σ, t2→r.fr; ρ

2
R|β

2)

ρR|β ` e1 e2 : tr; ρ
1σ
R |β

1σ ∧ β2σ ∧ *ρ1σR +X ⇔ *ρ2σR +X ∧ *ta→tr+⇔ *tf+
(APP)

∀a1, . . . an . tx = ρR(x) σ = [a1/b1, . . . an/bn] bi fresh
ρR|β ` x : applyS(σ, tx; ρR|β)

(VAR-LET)
ρR[x 7→ a.fa]|β ` e : t2; ρ1R|β

1 a.fa fresh

ρR|β ` λx . e : ρ1R(x)→t2;∃x(ρ1R)|β1 (LAM)

ρ0R|β
0 = ρR|β t0 = a, a fresh ρiR[x 7→ ∀(vars(ti) \ vars(ρiP)) . ti]|βi ` e : ti+1; ρi+1

R |βi+1

∃k . ⇓RP(tk) =⇓RP(tk+1) ρkR|β
k ` e′ : t; ρ′R|β

′

ρR|β ` let x = e in e′ : t; ∃x(ρ′R)|β′
(LETREC)

ρR|β ` es : Int; ρcR|β
c ρcR|β

c ` et : tt; ρ
t
R|β

t ρcR|β
c ` ee : te; ρ

e
R|β

e σ = mgu(⇓RP(tt; ρ
t
R),⇓RP(te; ρ

e
R))

tσt ; ρtσR |β
tσ = applyS(σ, tt; ρ

t
R|β

t) tσe ; ρeσR |β
eσ = applyS(σ, te; ρ

e
R|β

e) tr =⇑RP(⇓RP(tσt ))

ρR|β ` if esthen et else ee : tr; ρ
tσ
R |β

tσ ∧ βeσ ∧ *ρtσR +X ⇔ *ρeσR +X ∧ *tr+⇒ *tσt + ∧ *tr+⇒ *tσe +
(COND)

tr = {a.fa} a, fa fresh

ρR|β ` {} : tr; ρR|β ∧ ¬fa
(REC-EMPTY)

t = {N.fN : a.fa; b.fb} a, b, fN , fa, f
′
a, fb fresh

ρR|β ` #N : t→a.f ′a; ρR|β ∧ fN ∧ fa↔f ′a
(REC-SELECT)

ρR|β ` e : t; ρ′R|β
′ a, b, fN , f

′
N , fa, fb, f

′
b fresh

ρR|β ` @{N = e} : {N.fN : a.fa; b.fb}→{N.f ′N : t; b.f ′b}; ρ′R|β
′ ∧ fb↔f ′b

(REC-UPDATE)

Figure 3. type inference algorithm with flow of fields

Given this notation, the inference rules for λ- and let-bound
variables (VAR), (VAR-LET), function application (APP), abstrac-
tion (LAM) and conditionals resemble the standard W-algorithm
[6]. The (LETREC)-rule resembles that of Mycroft [16] in that it
computes the type of a recursive function using a fixpoint compu-
tation: The body of the let is checked first with ρ0P in which x is
bound to the most general type ∀a . a since vars(ti) \ vars(ρiP) =
{a}. From the resulting type ti+1 a more precise type scheme is
computed with which the body is examined again until a fixpoint is
reached after k iterations. This fixpoint computation does not termi-
nate for definitions like f x = f 1 x that result in infinite types
Int→Int→ . . .. These simple forms of recursion can be easily de-
tected [16]. Besides these pathological cases, the fixpoint compu-
tation seems to always terminate [12, 23] although the problem is,
in general, undecidable [13].

Note that simpler inference rules à la Damas-Milner [6] that do
not allow for polymorphic recursion may be used for the upcoming
inference of record fields. However, such simpler rules are not
backward-complete and the inferred type terms are thus not optimal
(nor is the Boolean function describing the existence of fields).

2.3 Inference of Record Fields
This section presents the backward-complete inference algorithm
for expressions e ∈ E including the flow of record fields.

We associate a Boolean flag with each record field that indicates
if that field exist. We also associate a flag with each type variable
indicating if record fields exist in types that the variable can be in-
stantiated to. Thus, define record polymorphic types PR as follows:

a,b, . . . ∈ V type variables
fa, fb, . . . ∈ N Boolean flags / propositional variables

t ∈ PR record polymorphic types
t ::= a.fa | b.fb | . . . | t1→t2 | Int | [t] |

{N1.f1 : t1, . . . Nn.fn : tn, a.fa}

In order to re-use the operations on P for PR, we define a
projection ⇓RP (·) : PR → P that strips Boolean variables from
a type so that ⇓RP ({N.fN : [a.fa]; b.fb}) = {N : [a]; b}.
Symmetrically, ⇑RP(·) : P→ PR decorates plain polymorphic types
with fresh propositional variables. For example, the type ⇑RP(⇓RP(t))



has all propositional variables of t renamed to fresh variables. Both
functions ⇓RP(·) and ⇑RP(·) lift naturally to whole environments.

The type inference rules that include the tracking of flows are
presented in Fig. 3. A judgement ρR|β ` e : t; ρ′R|β

′ specifies how
an environment ρR and a Boolean function β are transformed to ρ′R
and β′, respectively. In order to explain the computation of the flow
information, we define some basic notation for Boolean functions.

A Boolean function β is represented in conjunctive normal form
c1∧. . .∧cn where each clause ci is a disjunction of atoms. An atom
is a propositional variable fa, fb, . . . or its negation ¬fa,¬fb, . . ..
We write fa→fb as shorthand for ¬fa ∨ fb and fa↔ fb for fa→
fb ∧ fb→fa. Let 〈f1, . . . fn〉 denote a sequence of propositional
variables. Variable sequences of equal lengths are related using the
lifted implication 〈f1, . . . fn〉 ⇒ 〈f ′1, . . . f ′n〉 ≡ f1→f ′1 ∧ . . . ∧
fn→f ′n. Moreover, define s1 ⇔ s2 ≡ (s1 ⇒ s2) ∧ (s2 ⇒ s1).

We now define a function *t+ that extracts a sequence of all
Boolean variables occurring in a type term t ∈ PR. The purpose of
this function is to create (bi-)implications between the flags of two
types t1, t2 ∈ PR using *t1+ ⇔ *t2+ or *t1+ ⇒ *t2+. Throughout
the inference, it is guaranteed that the two sequences are of the
same length by ensuring that both types contain the same type term,
that is, ⇓RP(t1) =⇓RP(t2). The function is defined as follows:

DEFINITION 1. Let · denote the concatenation of sequences. De-
fine the function * · + : PR → (N ∪ {¬f | f ∈ N})∗ as follows:

*a.fa+ = 〈fa〉
*t1 → t2+ = 〈¬f1, . . .¬fn〉 · *t2+ where 〈f1, . . . fn〉 = *t1+

*Int+ = 〈〉
*[t]+ = *t+

*{N1.f1 : t1, . . . Nn.fn : tn, a.fa}+ = 〈f1, . . . fa〉 ·*t1+ · · · *tn+

Moreover, define *ρR+X to extract the variables of ρR in sequence.

Note that * · + returns atoms, that is, propositional variables and
their negation. The reason for negating the arguments of a function
is to account for the contra-variant position of a function argument.
Co- and contra-variant flow will be illustrated in Sect. 2.4.

Figure 3 shows the inference rules extended with the tracking
of flows. We illustrate the (VAR) and (LAM) rules with an example:

EXAMPLE 1. We infer the type of λx . x in the empty environment
∅|true . The (LAM)-rule requires the type of [x 7→ a.f1]|true ` x
which is computed by the (VAR)-rule. The latter decorates the type
of xwith a new flow tx =⇑RP(⇓RP(ρR(x))), say tx = a.f2. The result
tx; ρP is returned together with the flow true ∧ *tx+ ⇒ *ρR(x)+
where *t+ returns a sequence of all flag in t, here *tx+ = 〈f2〉 and
*ρR(x)+ = 〈f1〉. Thus, the returned flow is f2→f1, indicating that
a record field is in the output of the function if it was in the input.
This flow becomes β1 in the premise of the (LAM)-rule. The result
is a.f1→a.f2; ∅|f2→f1, i.e., λx . x : a.f1→a.f2 with flow f2→f1.

The individual inference rules in Fig. 3 over PR differ from
the simpler rules over P as follows: The (VAR)-rule decorates the
type of x with fresh variables, yielding tx. This type is returned
with β being extended by implications from the flags of tx to
those in ρR(x), indicating that a field is in tx if it is in ρR(x).
The (VAR-LET)-rule strips the flags from the types in order to
obtain the set of variables that need to be instantiated. Since σ
replaces type variables a with types t ∈ P and not with types
in PR, a special function applyS(σ, ρR|β) is called that, for each
occurrence of a, decorates t with fresh flag variables and adjusts
β accordingly. This function will be detailed in the next section.
The rules (LAM) and (LETREC) resemble their P counterparts. The
more complex rules are those that unify types. We first consider
the (APP)-rule. Here, the types of e1 and e2 are inferred and the

results are unified appropriately after stripping off the flags using
⇓RP (·). In order to compute a new Boolean function from β1 and
β2, the the substitution σ is applied twice, yielding β1σ and β2σ .
Since β2σ may contain flow information over variables that are
only mentioned in ρ2σR but not in the returned type environment
ρ1σR , the flow over the flags in ρ2σR is propagated to the flags in ρ1σR
using the sequence implication *ρ1σR +X ⇔ *ρ2σR +X.

Finally, the formula *ta→tr+⇔ *tf+ equates the flow between
the context and the function. Interestingly, we do not need a weaker
sequence implication to obtain an optimal inference: This is sur-
prising because subtyping-based inferences [26] generally assume
that the formal and actual argument of a function are in a sub-
type relationship rather than being equal (analogous for the return
value). However, our derivation shows that they can be equated. We
illustrate the use of bi-implications using an example:

EXAMPLE 2. We show that passing the identity function to itself
returns the identity function. We assume that the type terms are
already unified. Thus, suppose to = (a.f1→a.f2)→(a.f3→a.f4)
with flow βo=f1→f3∧f4→f2 denotes the type of the outer identity
function (which will be derived in Ex. 3) and let ti = a.f5→a.f6
with flow βi = f6→f5 denote that of the argument. We compute the
flow of the return type tr = a.f7→a.f8 using *ti→tr+⇔ *to+:

function to ≡ (a. f1 → a.f2)→(a. f3 → a.f4)
*to+ ¬¬f1 ¬f2 ¬f3 f4

flow m = l l l l
*ti→tr+ ¬¬f5 ¬f6 ¬f7 f8

context ti→tr ≡ (a. f5 → a.f6)→(a. f7 → a.f8)

The combined flow βo ∧ βi ∧ *ti→tr+ ⇔ *to+ implies f8 → f7
since f8 → f4 → f2 → f6 → f5 → f1 → f3 → f7.

The other rule that unifies two environments is the (COND)-rule.
Here, the same principle is followed. The only difference is the
generation of the flow of the result type. We take the type tσt of the
then-branch and decorate it with fresh flags, yielding tr . The flow
information *tr+ ⇒ *tσt + ∧ *tr+ ⇒ *tσt + states that tr contains
a field if one of the branches contained the field. The remaining
rules are those for record operations: (REC-EMPTY) returns an
empty record and states that no field exists in any instance of
the row variable a by adding ¬fa to the flow information. The
(REC-SELECT)-rule returns the field of type a and asserts that it
contains the same fields by adding fa↔f ′a to the flow information.
Accessing the field N is only allowed if it exists, so fN is asserted
in the flow β. Finally, (REC-UPDATE) returns a function type where
the input field N may be of any type while the output field may or
may not be required (fN is unrestricted) and is of the type of e. The
type and flow of other fields is not affected, hence the flow fb↔f ′b
is added. Note that the bi-implications fa↔ f ′a and fb↔ f ′b in the
last two rules ensure that all flags in an environment are different.
This ensures that * · + returns sequences without duplicates.

2.4 Applying Substitutions
This section details how ρ′R|β

′ = applyS(σ, ρR|β) is computed,
that is, how a substitution is applied to types with flow information.
The challenge is that a substitution σ ∈ V→ P takes type variables
to terms without flow information. We consider the function cond
that has the PR-type t ≡ a.f1→a.f2→a.f3 with the flow βt =
f3→f1 ∧ f3→f2. The function is defined as follows:

let cond = λx . λy . if 0 then x else y in cond

Now consider applying a substitution σ = [a/{FOO : b, c}] to
the type of cond so that t′ = {FOO : b, c} replaces a three times.
Since each occurrence of t′ may have a different flow information,
we decorate t′ with fresh flags, once for each a it replaces. To this



applyS([a/τ ], ρP|β) =
let 〈f1, . . . fn〉 = flags(a, ρP)

τ1 =⇑RP(⇓RP(τ)) . . . τn =⇑RP(⇓RP(τ))

dup(f ′1 · ~f1, . . . f ′n · ~fn, β) =

dup(~f1, . . . ~fn, expandf1...fn,f ′1...f ′n
(β))

dup(〈〉, . . . 〈〉, β) = ∃f1,...fn(β)
in ρP[a.f1/τ1, . . . a.fn/τn]|dup(*τ1+, . . . , *τn+, β)

Figure 4. Pseudo-code for applying a substitution.

end, we lift t′ ∈ P to PR three times by computing ti =⇑RP (t) =
{FOO.f if : b.f ib , c.f

i
c} for i = 1, 2, 3. The flow between the three

flags of the type variable a must be replicated to f if , f
i
b , f

i
c . Let us

illustrate the flow βt = f3→f1 ∧ f3→f2 at a as follows:

occurrences of a type ti to substitute
a.f1 {FOO.f1

f : b.f1
b , c.f

1
c }

↑ ↑ ↑ ↑
a.f3 {FOO.f3

f : b.f3
b , c.f

3
c }

↓ ↓ ↓ ↓
a.f2 {FOO.f2

f : b.f2
b , c.f

2
c }

The diagram shows the flow of a, namely βt, as vertical arrows.
Three instances of this flow βt are needed, one instance for each
flow variable in the ti as indicated on the right. Thus, the result is
applyS(σ, [cond 7→ t′]|βt) = [cond 7→ t1→t2→t3]|β′t where
β′t = f3

f→f1
f ∧ f3

f→f2
f ∧ f3

b→f1
b ∧ f3

b→f2
b ∧ f3

c→f1
c ∧ f3

c→f2
c .

In general, the flow information is replicated as follows:

DEFINITION 2 (Expansion). We replicate the flow of f1, . . . fn to
f ′1, . . . f

′
n in the Boolean function β = c1∧. . .∧ck∧ck+1∧. . .∧cl.

Without loss of generality, assume that ck+1, . . . cl do not contain
any variables f1, . . . fn. Then define the replicated flow to be
expandf1...fn,f ′1...f ′n

(β) = c1 ∧ . . .∧ ck ∧ σ(c1)∧ . . .∧ σ(ck)∧
ck+1 ∧ . . . ∧ cl where σ = [f1/f

′
1, . . . fn/f

′
n] is a substitution.

Thus, the replication of flows in the current example is given by

expandf1f2f3,f1f f
2
f
f3
f
(

expandf1f2f3,f1b f
2
b
f3
b
(

expandf1f2f3,f1c f2c f3c (βt))) = βt ∧ β′t
An algorithm for applyS is given in Fig. 4. Here, flags extracts

the flags of the n occurrences of a in the input environment ρP. The
n freshly decorated types τ1, . . . τn replace one of each occurrences
of a in the result. The flow is duplicated by passing a vector ~fi to
dup for each τi. The dup function strips the first flag f ′i off each
vector and expands the flow of a to them. Once the flow has been
duplicated for all τi, the original flow is removed from β using a
projection operation ∃f1,...fn(β) on Boolean functions.

Observe that a flag f ∈ *ti+ to which the flag fi of the type
variable is expanded to can be a negated flag, namely if it occurs
in an argument in contra-variant position. In these cases, expand
must replace fi with a negated flag, thereby replicating the contra-
variant behavior. This is illustrated in the following example:

EXAMPLE 3. Consider applying σ = [a/b→b] to the type of the
identity function tid = a.fi→a.fo with flow βid = fo → fi, that
is, compute applyS(σ, [id 7→ tid]|βid) = [id 7→ t′id]|β′id. For the
two occurrences of a we use ti =⇑RP (b→b) = b.f1→b.f2 and
to =⇑RP (b→b) = b.f3→b.f4 so that t′id = ti→to. Note that
*ti+ = 〈¬f1, f2〉 and *to+ = 〈¬f3, f4〉 so that the new flow is
β′id = expandfifo,¬f1¬f3(expandfifo,f2f4(βid)) = βid∧f4→f2
∧ f1→f3. Note that this is the type used in Ex. 2.

We now address how to formally derive the presented inference.

a)
u ∈P(U)

γ
←→
α

p ∈ P

f

y
yf ]

u′ ∈P(U)
γ
←→
α

p′ ∈ P

b)
P(X→ U)

γ
←→
α

(X→ P)⊥yf
yf ]

P(X∪{κ}→U)
γ
←→
α

(X∪{κ} → P)⊥

Figure 5. Abstract interpretation a) in general and b) for types.

3. Abstract Interpretation for Type Inference
This section revisits some of the more relevant concepts of abstract
interpretation with an emphasis on completeness properties.

We illustrate the underlying idea of abstract interpretation [4]
using Fig. 5a). The diagram shows how some abstract property
p ∈ P represents several concrete properties u ⊆ U using an ab-
straction function α : P(U) → P and/or a concretization func-
tion γ : P → P(U). For an imperative program, an abstract in-
terpretation usually tracks one property p ∈ P(U) per program
point. Suppose that p represents the values of a variable. Since
p is a summary, the concrete transformer f operates on a collec-
tion of values and the various concrete transformers are therefore
called the collecting semantics. Each f is approximated by an ab-
stract transformer f ] : P → P. As an example, suppose that the
concrete values {5, 7, 8} ⊆ P(U) denote the possible content
of an integer variable x and that f doubles x. Now assume that
P is the set of intervals, so that the value of x is approximated
by a single interval. The abstract transformer that approximates
f is thus f ]([l, u]) = [2l, 2u]. With these assumptions, the con-
crete result is f({5, 7, 8}) = {10, 14, 16} whereas the abstract
result is f([5, 8]) = [10, 16] since α({5, 7, 8}) = [5, 8]. Note that
the abstract doubling function f ] obeys α ◦ f = f ] ◦ α where
(f ◦ g) = λx . f(g(x)). We say that f ] is backward-complete
[8, 21]. Intuitively, f ] computes the best abstract value, that is,
the smallest interval. On the contrary, f ◦ γ = γ ◦ f ], which is
called forward-completeness [21], does not hold for f ]. For exam-
ple, f(γ([5, 8])) = {10, 12, 14, 16} since γ([5, 8]) = {5, 6, 7, 8}
but γ(f ]([5, 8])) = {10, 11, 12, 13, 14, 15, 16}. Intuitively, f ] is
not exact; the abstraction to intervals forces f ] to approximate the
result of f . It seems that in an ideal analysis, all transfer functions
are forward- and backward-complete. However, suppose we had an
analysis where this is the case and assume, without loss of general-
ity, that P is factored into equivalence classes so that α ◦ γ = id.
Then α ◦ f = id ◦ f ] ◦ α = α ◦ γ ◦ f ] ◦ α. With γ ◦ f ] = f ◦ γ,
the equation changes to α ◦ f = α ◦ f ◦ γ ◦ α. Hence, γ ◦ α must
be the identity which shows that the analysis does not approximate.
Hence, the abstract semantics is undecidable if the concrete seman-
tics is undecidable. An effective analysis must therefore contain
at least one abstract transfer function f ] that is not forward- and
backward-complete at the same time. We derive our type inference
from a concrete semantics in which the if-statement is abstracted
to a non-deterministic choice. We thus seek abstract transformers
that are complete with respect to this abstracted semantics.

We now illustrate how these observations relate to type infer-
ence. Let ρP ∈ (X → P)⊥ = (X → P) ∪ {⊥} be an environment
of polytypes where ⊥ denotes a type error. Given an environment
ρP 6= ⊥, the notation ρP ` e : τ is used to indicate that the expres-
sion e has type τ . Consider a typing rule for function application
e1 e2 which can be written as follows:

ρP ` e1 : t1 ρP ` e2 : t2 t2→tr
.
= t1 tr fresh

ρP ` e1 e2 : tr
(APP)



In order to use this typing rule for type inference, the con-
straint t2→tr

.
= t1 needs to be solved by unification, leading to

a substitution that is applied to ρP and the type tr . This leads to
the inference rule (APP) in Fig. 2 whose conclusion has the form
ρP ` e : τ |ρ′P. Here, the result is the inferred type τ and a modi-
fied environment ρ′P. Rather than handling the type τ explicitly, we
simply bind it to the special symbol κ in the returned environment
ρ′P. Now each inference rule can be written as an abstract trans-
fer function [[e1 e2]]] : (X → P)⊥ → (X ∪ {κ} → P)⊥, that is,
a function from an environment ρP to a new environment where
the type of the expression is bound to κ. The abstraction relation
for these rules is shown in Fig. 5b). Here, the collecting semantics
f : P(X→ U)→P(X ∪ {κ} → U) of each language construct
e ∈ E, that binds the result of evaluating e to κ, is approximated by
a type inference rule f ] : (X→ P)⊥ → (X ∪ {κ} → P)⊥.

Note that an abstract transfer function such as [[e1 e2]]] com-
putes the type of the expression by recursively calling the abstract
transfer functions for its sub-expressions, here e1 and e2. Each
transfer function has a straight-forward translation to a type infer-
ence rule which we illustrate with the following polytype semantics
(instead of [[e1 e2]]] we useH[[e1 e2]] for “Herbrand semantics”):

H[[e1 e2]] = (X→ P)⊥ → (X ∪ {κ} → P)⊥

H[[e1 e2]]ρP =



ρ1σP [κ 7→ tr] if ⊥P 6= ρiP = H[[ei]]ρP, i = 1, 2

and t2 = ρ2P(κ)

and ρ2
′

P = ρ2P[κ 7→ t2 → (r)≡P ]

and ⊥P 6= ρ1σP = gci(ρ1P, ρ
2′

P )

and ta → tr = ρ1σP (κ)
⊥P otherwise

We ignoring type errors⊥P. The computations in the if-guard of
H[[e1 e2]] are rephrased to the premise of the (APP)-rule in Fig. 2.
To this end, note that the next section defines gci in terms of mgu .

The main challenge is to find abstract transformers that are
backward complete. Schmidt observes [21] that backward com-
pleteness, i.e. α ◦ f = f ] ◦ α, is equivalent to the following two
properties:

1. ∀u1, u2 ⊆ U . α(u1) = α(u2) =⇒ α(f(u1)) = α(f(u2))

2. f ] = α ◦ f ◦ γ

With respect to type inference, rule (1.) states that α does not
define a dependent type system: the type α(f(u1)) that results
when executing f does not change if the value u1 is replaced by a
different value u2 that has the same type as u1. Once (1.) is shown,
rule (2.) is a recipe for computing the inference rules. We apply this
idea in the next section to derive backward complete transformers
for programs without records (calledH[[·]]) and with records (called
F [[·]]), yielding the inference rules in Fig. 2 and Fig. 3, respectively.

4. Deriving the Type Inference
This section describes the derivation of the inference rules. The
derivation first abstracts a standard, denotational semantics S[[·]] to
a collecting semantics C1[[·]] and from there to a semantics over sets
of monotypes T [[·]]. The latter semantics is then abstracted twice:
once for polytypes without records H[[·]], and once for polytypes
with flow of record fields F [[·]]. For brevity, we only sketch the
derivation up to the monotype semantics.

4.1 Abstracting Values to Types
Let U denote a universe of program values containing integers,
functions, records and the special error value Ω that represents a
run-time type error. Using this universe, we define a denotational
semantics S[[e]] : (X → U⊥) → U⊥ for each language construct

e ∈ L(E) in Fig. 1. This denotational semantics is a straightforward
extension of Milner’s semantics [15]. We then abstract S[[·]] by re-
placing conditionals with a non-deterministic choice [23], yielding
a collecting semantics C1[[·]] : P((X→ U⊥)→ U⊥).

While it is possible to abstract the collecting semantics directly
to polytypes P [23], we first abstract it to sets of monotypes in order
to have a common basis for a further abstraction to the two sets of
typing rules in Fig. 2 and Fig. 3. Monotypes are defined as follows:

t ∈ M monomorphic type expressions
t ::= t1 → t2 | Int | [t] | {N1 : t1, . . . Nn : tn}

We re-use an abstraction αXM : P(X → U⊥) → P(X → M)
and a concretization γXM : P(X → M) → P(X → U⊥) from
value- to sets of monotype environments as defined in [23]. The
monotype semantics T [[e]] : P(X → M) → P(X ∪ {κ} → M)
follows the convention of binding the result type to κ which is
essential to retain the relation between environment and returned
type. For instance, the monotype semantics of x in the context of
let id = λx . x in . . . is computed as follows:

T [[x]]

(
{[id 7→ Int→Int, x 7→ Int],
[id 7→ [Int]→[Int], x 7→ [Int], . . .}

)
=

{[id 7→ Int→Int, x 7→ Int], κ 7→ Int],
[id 7→ [Int]→[Int], x 7→ [Int], κ 7→ [Int]], . . .}

In order to abstract the collecting semantics, we also need to
bind its result to κ. Thus, instead of C1[[·]], we abstract the function
C[[e]] = λρ̄ . {ρ[κ 7→ Sρ] | S ∈ C1[[e]] ∧ ρ ∈ ρ̄} that has the type
C[[e]] : P(X→ U⊥)→P(X ∪ {κ} → U⊥). Before detailing the
resulting rules in Fig. 6, we observe that they satisfy f ] = α◦f ◦γ:

LEMMA 1. The rules shown in Fig. 6 satisfy T [[e]] = αXM ◦ C[[e]] ◦
γXM , for all e ∈ E.

Proof. By computing T [[e]] for all e ∈ E. In [24]. �

By additionally proving that ∀u1, u2 ⊆ U . α(u1) = α(u2) =⇒
α(f(u1)) = α(f(u2)), backward-completeness of T [[·]] follows:

LEMMA 2. For all ρ̄1, ρ̄2 ⊆ X → U⊥ with αXM(ρ̄1) = αXM(ρ̄2)
and all e ∈ E it follows that αXM(C[[e]]ρ̄1) = αXM(C[[e]]ρ̄2).

Proof. By structural induction over e ∈ E. In [24]. �

The next two sections address the translation of the monotype
semantics to polytypes and to polytypes with flows.

4.2 Abstraction to Polytypes
This section shows that the inference rules in Fig. 2 are backward-
complete abstractions of the monotypes semantics in Fig. 6 by de-
riving them. It also discusses which rules are forward-complete.
Let ground : P → P(M) replace all variables in a polymor-
phic type such that the result is a well-formed monotype, that is,
row-variables are replaced by a (possibly empty) set of fields and
other type variables are replaced by monotypes. For t1, t2 ∈ P
define t1 vP t2 iff ground(t1) ⊆ ground(t2). Let t1≡Pt2 iff
ground(t1) = ground(t2), that is, t1 is equal to t2 modulus the
renaming of type variables. Let (t)≡P denotes the ≡P-equivalence
class of t ∈ P that shares no variables with other equivalence class.

Let t = gci(t1, t2) denote the greatest common instance which
is computed using unification [14] as follows: Rename the variables
in ti, giving t′i, such that t′1, t′2 do not share any variables and
t′i≡Pti for i = 1, 2. Then t = (σt′1)≡P if the most general unifier
σ = mgu(t′1, t

′
2) exists and t = ⊥P otherwise. For example,

gci(([a] → [Int])≡P , ([Int] → a)≡P) = [Int] → [Int] =
σ([a] → [Int]) with σ = mgu([a] → [Int], [Int] → b) =
{a/Int,b/[Int]}. The join lca is not used but would compute



T [[·]] : E→P(X→ M)→P(X ∪ {κ} → M)

T [[x]] ρM =

{
{ρM[κ 7→ t] | ρM ∈ ρM ∧ t ∈ M} ∩ {ρM[x 7→ t0, y1 7→ t1, . . . yn 7→ tn, κ 7→ ρM(x)] | ρM ∈ ρM ∧ ti ∈ M} if x /∈ Xλ
{ρM[κ 7→ ρM(x)] | ρM ∈ ρM} if x ∈ Xλ

T [[λx . e]] ρM = {∃x(ρ′M[κ 7→ t1→t2]) | t1∈ρ′M(x) ∧ t2∈ρ′M(κ) ∧ ρ′M∈ρ′M} with ρ′M = T [[e]]{ρM[x 7→ t1] | t1∈M ∧ ρM∈ρM}
T [[e1 e2]] ρM = {ρM[κ 7→ tr] | ta→tr = ρM(κ) ∧ ρM ∈ (T [[e1]]ρM) ∩ {ρM[κ 7→ ta→tr] | tr ∈ M ∧ ta ∈ ρM(κ) ∧ ρM ∈ T [[e2]]ρM}}
T [[let x = e in e′]] ρM = ∃x(T [[e′]]ρ′M) where ρ′M = gfp⊆{ρM[x7→t]|ρM∈ρM,t∈M}

λρM . {ρM[x 7→ ρM(κ)] | ρM ∈ T [[e]]ρM}
T [[c]] ρM = {ρM[κ→ Int] | ρM ∈ ρM}
T [[{}]] ρM = {ρM[κ→ {}] | ρM ∈ ρM}
T [[@{N = e}]] ρM = {ρM[κ 7→ tr→tu] | tr = {N1 : t1; . . . Nn : tn} ∧ ti ∈ M ∧ tu = tr[N 7→ ρM(κ)] ∧ ρM ∈ T [[e]] ρM}
T [[#N]] ρM = {ρM[κ 7→ tr→ti] | tr = {N1 : t1; . . . Nn : tn} ∧ ∃i . Ni = N ∧ ρM ∈ ρM}
T [[if es then et else ee]] ρM = {ρM | Int = ρ′M(κ) ∧ ρ′M ∈ T [[es]]ρM ∧ ρM ∈ T [[et]]ρM}

∩ {ρM | Int = ρ′M(κ) ∧ ρ′M ∈ T [[es]]ρM ∧ ρM ∈ T [[ee]]ρM}

Figure 6. abstract transfer functions on set of monotype environments

the least common anti-instance using anti-unification. We lift gci,
lca, and vP to environments of polytypes (X → P) as gci, lca,
and vP . We identify vectors that are equal modulus renaming of
variables, written (X → P)≡P and add a bottom element ⊥P. The
resulting set (X→ P)⊥≡P forms the following complete lattice:

〈(X→ P)⊥≡P ,vP , lca,gci, [x 7→ (a)≡P ]x∈X,⊥P〉
Note that the top element [x 7→ (a)≡P ]x∈X maps each x to a

different type. In order to relate sets of monotype environments to
a polytype environment, we use lca : P(X→ M)→ (X→ P)⊥≡P

with lca(∅) = ⊥P. Also, use ground : (X → P)⊥≡P → P(X →
M) with ground(⊥P) = ∅. The following is a Galois connection:

〈P(X→ M),⊆〉
ground
←↩�
lca

〈(X→ P)⊥≡P ,vP 〉

We compute the polytype semantics H[[e]] := lca ◦ T [[e]] ◦
ground for each e ∈ E, yielding the rules in Fig. 2 as follows.

Consider computing H[[x]] from Fig. 6. The simple rule for
λ-bound variables can be translated to polytypes by computing
H[[x]]ρP = lca({ρM[κ 7→ ρM(x)] | ρM ∈ ground(ρP)}) =
ρP[κ 7→ ρP(x)]. Recall that t; ρP is synonymous with ρP[κ 7→ t]
and, hence, the (VAR)-rule in Fig. 2 follows. In the case for let-
bound variables, the set intersection computes an instance of x.
Here, y1, . . . yn are variables that have been added to the environ-
ment after x (x is in scope of yi). The corresponding polytype rule
is H[[x]]ρP = gci(ρP[κ 7→ a], ρP[x 7→ a0, y1 7→ a1, . . . yn 7→
an, κ 7→ ρP(x)]) since an intersection ∩ on monotypes translates
to unification gci on polytypes. Consider an example:

EXAMPLE 4. When inferring the recursive call to g in the program
f x = let g y = if null [x,y] then g 7 else. . .
the test null [x,y]makes the types of x and y equal, so that the
environment is ρP = [f 7→ b→c, x 7→ b, g 7→ b→d, y 7→ b]. Now
H[[g]]ρP = gci(ρP[κ 7→ a], ρP[g 7→ a0, y 7→ a1, κ 7→ ρP(g)])

is computed as follows (note that the definition of gci requires the
type variables of one of its arguments to be renamed):

f x g y κ

H[[g]]ρP = gci

(
〈 b→c , b , b→d , b , a 〉≡P ,
〈 b→c , b , a0 , a1, b→d 〉≡P

)
= gci

(
〈 b→c , b , b→d , b , a 〉,
〈 e→f , e , g , h , e→j 〉

)
= 〈 b→c , b , b→d , b , b→j 〉≡P

The returned type b→j is an instance of g. Note that the com-
putation above is equivalent to computing free variables when con-

model : PR ×M→P(N)

model(a.fa, t) = {fa | t ∩M{} = ∅}
model(t1→t2, t′1→t′2) = ∪i=1,2 model(ti, t′i)
model(Int, Int) = ∅
model([a.fa], σ, p̄) = {[t] | t ∈ model(a.fa, t, p̄)}
model({N1.f1 : t1, . . . Nn.fn : tn, a.fa}, f̄) =⋃

i=1,...n{{fi} ∪ model(ti, t′i) | ∃t′i ∈ M . Ni : t′i ∈ f̄}
∪{fa | ∀N /∈ {N1, . . . Nn} .∃t′ ∈ M . N : t′ ∈ f̄}

Figure 7. extraction of flags that hold for the given monotype

structing a type scheme: in both cases a set of type variables in
the environment at g (namely X = vars(ρP(f)) ∪ vars(ρP(x)))
is gathered and the variables vars(ρP(g)) \ X in ρP(g) are those
variables that can be instantiated.

Thus, the derived rules compute the set of type variables X that
are to be instantiated at the usage site rather than the definition
site. In order to keep with the tradition of using type schemes,
the (LET)-rule in Fig. 2 computes the set X and stores a type
scheme ∀X . t in the environment which the (VAR-LET)-rule uses
to create a fresh instance. Although the set X will be different in
the two approaches, the set of instantiated variables will eventually
be equal once a fixpoint is reached. Hence, the two approaches are
equivalent in term of the computed types.

The translation of the abstraction rule λx . e requires the type
of e which is expressed as premise ρP[x 7→ a] ` e in rule (LAM)
of Fig. 2. The type of an application e1 e2 is an intersection of
two environments which translates to a meet gci of two polytype
environments which, in turn, is made explicit in the (APP)-rule by
computing the most general unifier. The rule for let computes the
greatest fixpoint for x starting with the most general type a. When
using type schemes, this translates to binding x to ∀a . a as done
in the (LET)-rule. Finally, the conditional rule is an intersection of
two symmetric types, one for each branch. Note that the condition
is restricted to be Int which is only shown once in the (COND)-rule
of Fig. 2. The meet is again expressed using mgu . This completes
the translation of the derived monotype semantics to polytypes.

By construction, the obtained inference rules are optimal:

LEMMA 3. (Optimality) ∀e ∈ E,H[[e]] = lca ◦ T [[e]] ◦ ground.

Together with Lemma 1 it follows that type annotations cannot
improve the inferred result. Moreover, the abstract transformers
soundly approximate the collecting semantics:

LEMMA 4 (Soundness). For all ρ ∈ X → U⊥ and e ∈ E without
record constructs,H[[e]](lca(αXM({ρ}))) vP lca(αXM(C[[e]]{ρ})).



Note that the approximation is vP-lower since the P-lattice is
constructed so that the type error is the smallest element ⊥P. In
particular, well-typed programs do not go wrong in the sense that
whenever Ω ∈ C1[[e]]{ρ} thenH[[e]](lca(αXM({ρ}))) = ⊥P.

4.3 Abstraction to Polytypes with Flow
Let [[·]] : B → P(P(N)) denote the set of all propositional
variable sets that satisfy a Boolean formula and define β1 |= β2
if [[β1]] ⊆ [[β2]]. Then 〈B⊥, |=,∨,∧, true,⊥B〉 is a complete lattice
where true is an empty formula and⊥B a formula with no models.

We combine Boolean functions and record polymorphic types
PR using a reduced cardinal power constructionDD1

2 [5, Sect. 10.2]
where D1 = B and D2 = PR. Here, a domain element f ∈ DD1

2 is
a monotone function: if β1 |= β2 then f(β1) vP f(β2). Intuitively,
the Boolean function β refines the environment ρR = f(β) by
stating which record field exists. For presentational reasons, we use
a tuple of domains PR B B that is isomorphic to DD1

2 .
For reasons of legibility, we write 〈tR, β〉 ∈ PR B B instead

of tR|β. We relate types 〈tR, β〉 with a set of monotypes using
model in Fig. 7 that takes a record type tR ∈ PR and one monotype
t′ ∈ ground(⇓RP (tR)) and returns those flags in tR for which t′

contains the corresponding record field. Here, M{} ⊂ M denotes
monotypes containing only empty records. Abstracting from a set
of monotypes t̄ ⊆P(M) is then defined by αR : P(M)→ PR as
αR(t̄) = 〈tR, β〉 where tR =⇑RP(lca(t̄)) and [[β]] = {model(tR, t) |
t ∈ t̄}. Symmetrically, the concretization γR : PR → P(M) is
defined by γR(〈tR, β〉) = {t ∈ ground(⇓RP(tR)) | model(tR, t) ∈
[[β]]}. For example, γR(〈a.fa,¬fa〉) = {t ∈ M | t ∈ M{}} and
γR(〈{N.fa : b.fb, c.fc}, fa ∧ ¬fc〉) = {{N : t} | t ∈ M}.

We lift αR and γR to environments, giving αXR , γXR . Let ρ1R vR

ρ2R if γXR (ρ1R) ⊆ γXR (ρ2R) and ρ1R≡Rρ
2
R if ρ1R vR ρ

2
R and ρ2R vR

ρ1R. The following Galois connection

〈P(X→ M),⊆〉
γXR←↩�
αX
R

〈((X→ PR)B B)⊥≡R ,vR〉

replaces the simpler abstraction to polytypes in Sect. 4.2 that was
based on ground and lca only. We now use the following lattice:

〈((X→ PR)B B)⊥≡R ,vR,tR,uR, [x 7→ 〈a.fa, true〉≡R ]x∈X,⊥R〉
Here, tR and uR operate on both, type terms and Boolean

functions. The meet 〈ρR, β〉 := 〈ρxR, β
x〉 uR 〈ρyR, β

y〉 is computed
by first computing a unifier σ = mgu(⇓RP (ρxR),⇓RP (ρyR)) for types
and adjusting the flows to applyS(σ, ρxR|β

x) = ρxσR |β
xσ and to

applyS(σ, ρyR|β
y) = ρyσR |β

yσ . Since the two environments ρxσR
and ρyσR may contain different Boolean flags, we equate them and
conjoin both flows, so that β = βxσ ∧ βyσ ∧ *ρxσR + ⇔ *ρyσR +.
Since we do not require the join tR, we will not define it here.

We now consider abstracting the monotype semantics in Fig. 6
into a flow semantics F by computing F [[e]] = γXR ◦ T [[e]] ◦ αXR .

We first discuss the derivation of the new record operations. In
the record update and selector all fields N1, . . . Nn except field Ni
are abstracted by lca to a single row variable. For the empty record,
all fields are summarized. These rules add ¬fa, fN and f ′N as flow
information, depending the field being present or absent.

We now address the computation of flows for fields that are
not explicitly set or extracted. Observe that each type equation
in Fig. 6 extends the vectors ρM with a binding to κ that rep-
resents some or all of the types that the result of the concrete
semantics may take on. In case all types are computed, then all
fields that are not explicitly mentioned remain the same and bi-
implications can be used to describe their flow. This is the case
if the type equation f ] is forward-complete, that is, if f ◦ γ =

γ ◦ f ] [21]. Here, γ = γXM ◦ γXR and the concrete semantics
is the single denotation S[[e]] which, when lifted to sets, is f =
λρ̄ . {S[[e]] ρ | ρ ∈ ρ̄}. By Lemma 1, the abstract semantics f ] =
T [[e]] is equivalent to f ] = α ◦ C[[e]]ρ̄ ◦ γ =: α ◦ fcol ◦ γ.
Hence, the inference is forward-complete if f ◦γ = γ ◦α◦fcol ◦γ.
Now consider the outermost language construct of an expression e
under the assumption that sub-computations in e return forward-
complete results. The construct is not forward-complete if either
f 6= fcol or if γ ◦ α is applied to value for which γ ◦ α is not
the identity. By construction, f = fcol holds for all language con-
structs except for conditionals since they are abstracted to a non-
deterministic choice. This motivates the two sequence implications
between output and the two branches in the (COND)-rule of Fig. 3.
By definition of α [23], the κ-bound value is abstracted to the best
type which, by construction, is computed by the equations in Fig. 6.
However, α uses a restriction on λ-bound variables so that the type
semantics T [[x]]ρM = {ρM[κ 7→ ρM(x)] | ρM ∈ ρM} that accesses
a λ-bound variable is a proper approximation of the concrete se-
mantics S[[x]] ρ = ρ(x), hence the monotype semantics T [[x]] is
not forward complete. Due to this approximation, the set of mono-
types bound to κ is smaller than the optimal solution. Thus, if a
record field exists in the result bound to κ it must exists in x. This
is expressed in the (VAR)-rule of Fig. 3 by the implication from the
result tx to ρP(x). While the (VAR)-rule for λ-bound variables is
not forward complete, it is still backward complete, thus, the type
inferred for a λ-bound variable cannot be improved by adding a
type signature. We therefore have:

LEMMA 5 (Optimality). F [[e]] = γXR ◦ T [[e]] ◦ αXR for all e ∈ E.

LEMMA 6 (Soundness). For all e ∈ E and ρ ∈ X → U⊥,
F [[e]](αXR (αXM({ρ}))) vP α

X
R (αXM(C1[[e]]{ρ})).

4.4 Lack of Forward-Completeness
Each abstract transformer on sets of monotype environments com-
putes the best type expressible in X → M, that is, T [[e]] =
αXM ◦ C[[e]] ◦ γXM . Applying γXM to each side of the equation yields
γXM ◦T [[e]] = γXM ◦αXM ◦C[[e]]◦γXM . Thus, T [[e]] is forward complete
(γ◦f ] = f ◦γ) if γXM ◦αXM does not impose an approximation of the
result. Alas, the αXM that we used to derive T [[·]] restricts the type
of λ-bound variables to be monomorphic [23] so that γXM ◦αXM im-
poses an approximation for T [[x]] when x is λ-bound. For instance,
consider the following program that we will call p:

let g proj xs ys = proj xs && proj ys in g null

Here, the infix function && is of type Bool→Bool→Bool and
null : [a]→Bool. The collecting semantics C[[p]]{ρ∅} (where
ρ∅ ∈ X is an empty concrete environment) computes a func-
tion in κ that can be applied to two lists of different types.
Hence, computing the type of the collecting semantics of p yields
lca(αXM(C[[p]]{ρ∅})) = [κ 7→ [a]→[b]→Bool]. However, the type
is computed as H[[p]](lca(αXM({ρ∅}))) = [κ 7→ [a]→[a]→Bool]
because the incompleteness of the abstract transformer for λ-bound
variables approximates the collecting semantics by forcing proj
to have the same type in all uses in g. Interestingly, this incomplete-
ness does not surface if each function argument is only used once.
Thus, suppose that E′ ⊂ E is the set of all programs where each
λ-bound variable is use at most once, then both type inferences are
complete:

LEMMA 7 (Completeness). For all e ∈ E′ and ρ ∈ X → U⊥,
F [[e]](αXR (αXM({ρ}))) = αXR (αXM(C[[e]]{ρ})). For e ∈ E′ without
records,H[[e]](lca(αXM({ρ}))) = lca(αXM(C[[e]]{ρ})).



This incompleteness also affects the flow inference for record
fields. Consider the following variant p′ of the program above
where the identity function id has the type derived in Ex. 1:

let g proj xs ys = #foo (proj xs) &&
#bar (proj ys) in g id

The type of the collecting semantics is αXR (αXM(C[[p′]]{ρ∅})) =
〈[κ 7→{FOO.f1 : Bool, a.fa}→{BAR.f2 : Bool, b.fb}→Bool], β〉
where β ≡ f1 ∧ f2. The flow semantics F [[p′]]αXR (αXM({ρ∅})) =
〈[κ 7→ {BAR.f1 : Bool, FOO.f2 : Bool, a.fa}→{BAR.f3 : Bool,

FOO.f4 : Bool, a.f ′a}→Bool], β〉 where β ≡ f1 ∧ f2 ∧ f3 ∧ f4.
Thus, the function can only be applied to records that contain both
fields. The transformer is approximate in that it adds implications
between the uses of proj and the formal argument, thereby cre-
ating spurious flow information, namely from the result of the first
use of proj to the argument of the second use of proj, thereby
propagating that the FOO-field is required by #foo to the argument
ys (and vice-versa for #bar and xs). No spurious flow is inferred
when flow information only travels from the formal arguments to
the usage site, that is, when no function is passed as argument that
is applied to a record. Hence, we conclude:

OBSERVATION 1. Under the assumption that conditionals are ab-
stracted to non-deterministic choices and that no argument is a
function expecting a record or that such functions are only used
once, our inference rejects a program if and only if it contains a
path from an empty record to a field access on which the field has
not been added.

5. Extensions
The inference rules in Fig. 3 only create atoms fa, ¬fa and two
variable Horn clauses fa→ fb. Moreover, expansion on Boolean
functions only duplicates clauses (after renaming them), thereby
also only creating two-variable Horn clauses. Satisfiability can
therefore be checked in linear time using a 2-SAT solver. Indeed, it
is folklore that solvers with atomic subtyping can express this type
system by using constraints of the form false ⊆ true , a ⊆ b for
each clause fb→fa, c

.
= true for each clause fc, and d

.
= false for

each clause ¬fd. Our approach of separating the flow information
from type terms has the advantage that no complex subtyping con-
straints are required to model the passing of arguments. This makes
our approach attractive to solvers that rely on cheap unification for
type terms, such as the one in Haskell [22].

What about other language constructs for records, such as those
proposed by Cardelli and Mitchell [2]? By deriving backward-
complete inference rules from the concrete semantics, the con-
straint language necessary for implementing various operations be-
comes evident. We require backward-complete rules since incom-
plete rules could suggest that a weaker constraint language suffices.

For instance, the removal of a record field or the renaming of a
field can be implemented with 2-variable Horn clauses. Typing the
(so-called asymmetric) concatenation of two records e1 @ e2 with
type {N.a.f1

a , b.f
1
b } and {N.a.f2

a ,b.f
2
b } requires that the output

record {N.a.fa, b.fb} contains a field if one of the input records
contains a field. Thus, the flow information is fa→(f1

a ∨f2
a )∧fb→

(f1
b ∨f2

b ) which cannot be simplified to clauses with two variables.
However, consider inverting the meaning of a flag so that ¬fa
states that a field exists and fa states that it does not. Then each
atom in the clauses above is inverted and the constraint for record
concatenation is (f1

a ∧ f2
a→fa) ∧ (f1

b ∧ f2
b )→fb. These multi-

variable Horn clauses can also be solved in linear time [7], thereby
showing that record concatenation can be implemented efficiently.
Now consider symmetric record concatenation e1 @@ e2 where
it is a type error if a field exists in both records. With the types

for ei as given above and using the original interpretation of flags,
an optimal transformer must assert ¬(f1

a ∧ f2
a ) ≡ ¬f1

a ∨ ¬f2
a

(analogous for f ib). In the inverted setting, this constraint becomes
f1
a ∨ f2

a which is not in Horn form. Although satisfiability and
existential projection can be computed using a SAT solver [1], it is
questionable if this operation justifies this increase in complexity.

Since GADTs were proposed, there has been an increased in-
terest in inferring each branches of a conditional under a different
typing assumption. A very simple instance of this idea is given by
the construct e ≡ when N in x then e1 else e2 that evaluates
e1 if the record x contains the field N. In order to honor the infor-
mation gained from the test, the type of x must be different in e1
than in e2 since x always contains N in e1 but it never contains N
in e2. As with the normal conditional, we abstract the concrete se-
mantics to a non-deterministic choice except that the information
whether a field is present is retained. The result is the first type in-
ference rule in Fig. 8 that resembles the (COND)-rule except that
flag ff which indicates if the field existed in x is used to generate
flow information that depends on ff : The returned flow consists
of the required flow to make the two environments compatible and
the flow ff→(*tr+ ⇒ *tσt +) ∧ ¬ff→(*tr+ ⇒ *tσe +) qualifying
the set of records in the output, depending on whether N was in x.
Note that this complex construct can implement simpler ones such
as field renaming or concatenation (for a fixed number of fields).
Satisfiability of the generated flow requires a generic SAT solver.

In the context of GADTs and in many proposed record opera-
tions [2, 18, 26], the type term should not be constant but change
depending on the current branch of a conditional or the existence
of a record field. For instance, suppose that the semantics of the
when-statement should be not be abstracted to a non-deterministic
choice but that the result type may change, depending on whether
N is in the record or not. To this end, we require a third domain
of conditional unification constraints of the form ta =β tb where
ta, tb ∈ P and β ∈ B is a Boolean function. In the example of
the when-statement, a transformer of the semantics that is not
abstracted to a non-deterministic choice (i.e. one that is forward-
complete) is shown as the second rule in Fig. 8. In contrast to the
first rule, the types of the two branches are not unified but kept
as conditional unification constraints tr =ff tt ∧ tr =¬ff te. A
program is type correct if the there is a truth assignment for the
Boolean formulae so that the type terms, including the conditional
constraints whose Boolean formula is true, are unifiable. In other
words, the shown problem can be solved by an SMT solver with
a theory of unification constraints. However, as far as we know,
no state-of-the-art SMT solver features a theory of unification con-
straints. The only implementation we are aware of uses the back-
tracking capabilities of Prolog [20]. Future work has to determine
how efficiently a theory of unification constraints can be imple-
mented, possibly based on similar backtracking techniques.

The type system by Pottier [18] in which a record field becomes
unaccessible when its type is inconsistent (not unifiable) can be
obtained by altering the rule for record updates that determines
the type of a field. To this end, note that the flag fN in the (REC-
UPDATE)-rule in Fig 3 will be true if the record field is eventually
accessed. Thus, in order to express that a field must have a unifiable
type only if it is accessed, we set the field to a fresh type variable
c and track the conditional equation c =fN t. Together with the
rules for record concatenation, the resulting type system repairs the
incompleteness in Pottier’s type inference illustrated in Sect. 1.

Besides the completeness issues, we observed in Sect. 1 that the
use of implication constraints may lead to large types that make the
instantiation of a function type costly and error messages hard to
understand. A desirable property of an abstract domain is therefore
that it is closed under eliminating existentially quantified variables
which allows that the information inferred for a function f can be



ρR|β ` x : {N.ff : tf , a.fa}; ρsR|β
s ρsR|β

s ∧ ff ` e1 : tt; ρ
st
R |β

st ρsR|β
s ∧ ff ` e2 : te; ρ

se
R |β

se tr =⇑RP(⇓RP(tσt ))

σ = mgu(⇓RP(tt; ρ
st
R ),⇓RP(te; ρ

se
R )) tσt ; ρtσR |β

tσ = applyS(σ, tt; ρ
t
R|β

t) tσe ; ρeσR |β
eσ = applyS(σ, te; ρ

e
R|β

e)

ρR|β ` when N in x then e1 else e2 : tr; ρ
eσ
R |β

tσ ∧ βeσ ∧ *ρtσR +X ⇔ *ρeσR +X ∧ ff→(*tr+⇒ *tσt +) ∧ ¬ff→(*tr+⇒ *tσe +)
(FCOND)

ρR|β ` x : {N.ff : tf , a.fa}; ρsR|β
s ρsR|β

s ∧ ff ` e1 : tt; ρ
st
R |β

st ρsR|β
s ∧ ff ` e2 : te; ρ

se
R |β

se tr = a.fa
σ = mgu(⇓RP(ρstR ),⇓RP(ρseR )) ρtσR |β

tσ = applyS(σ, ρtR|β
t) ρeσR |β

eσ = applyS(σ, ρeR|β
e)

ρR|β ` when N in x then e1 else e2 : tr; ρ
eσ
R |β

tσ ∧ βeσ ∧ *ρtσR +X ⇔ *ρeσR +X ∧ ff→*tσt + ∧ ¬ff→*tσe + | tr =ff tt ∧ tr =¬ff te

Figure 8. type inference rules for when N in x then e1 else e2 ∈ E and concatenation

decoder lines time w/o fields time w. fields
Atmel AVR 1468 0.18s 0.32s
Atmel AVR + Sem 5166 1.55s 3.01s
Intel x86 9315 6.11s 15.65s
Intel x86 + Sem 18124 15.42s 27.38s

Figure 9. inference times on Ubuntu Linux, 3.4 GHz Intel Core i7

represented without resorting to information from local variables or
the body of f . Type terms are trivially closed under projection since
computing the gci implicitly propagates all information to the type
of the function f . With respect to Boolean functions, projection
can be computed using resolution or more dedicated algorithms [1].
More challenging are conditional constraints t1 =β t2 where t1, t2
may contain type variables that are not mentioned in the type of
the function f . These cannot, in general, be eliminated. However,
the type of f from Sect. 1 can be compactly represented with the
type term {FOO.fN : b, a.fa}→{FOO.f ′N : b, a.f ′a}, the flow
f ′N→fN ∧ f ′a→fa, and the conditional constraint b =f ′

N
Int.

6. Implementation
We implemented the type inference with record flows in an open-
source DSL used to decode assembler instructions and to translate
these instructions into an intermediate language, thus giving them a
semantics [25]. The motivation for using an optimal type inference
was to avoid the complexity of type annotations, both, for the im-
plementor and the user. The compiler is written in Standard ML and
was evaluated when translated with MLton. We benchmarked the
type inference with five specifications shown as “decoder” in Fig. 9.
The last row shows the time for the Intel decoder and a semantic
specification for 440 of the 896 instructions. By commenting out
the functions that add clauses to a Boolean function, we obtain the
running times without record fields (3rd column) instead of with
(4th column). It shows that the 2-SAT solver is not the biggest bot-
tleneck but that applying substitutions is equally expensive. Note
that our solver is resolution based and needs quadratic time in the
worst case, even though 2-SAT problems are solvable in linear time.
Flexible records are used inside a built-in state monad. As such, we
never had the need for record concatenation or the need that fields
become unaccessible when their type is incompatible, as done by
Pottier [18]. One problem we came across was that we needed to
store a monadic action inside the state of the monad itself. How-
ever, extracting this monad and running it will unify the type of
the field holding the monad with the monad type itself. This leads
to an occurs check since both monad states share at least the same
row variable. Reporting this field as unaccessible, as in Pottier’s
system, would have turned the type term error into an access to a
non-existent field which would be even harder to understand. Our
solution was to define an operator to remove a record field.

The implementation mostly follows the rules in Fig. 3. The re-
sulting inference is therefore quite slow as calculating gci on two

environments must descend simultaneously into the two environ-
ments. There is one optimization: each time we add an entry to an
environment, we tag the environment with a fresh version. If gci is
called on two environment with the same version number, it returns
one of the identical environments without descending further.

Computing expandf1...fn,f ′1...f ′n
(β) is implemented as per

Def. 2. Interestingly, expand on Boolean functions is sensitive to
stale variables: Suppose β ≡ fa→fb then expandfafb,fa′fb′

(β) =

β ∧ fa′→fb
′. However, suppose β also contains fc ↔ fa where

fc is associated with a dead type variable. In this case, it will
not be found during substitution and we accidentally compute
expandfafb,fa′fb′

(β) = β ∧ fa′→fb′ ∧ fc↔ fa
′ thereby mak-

ing fa and fa′ equal. Since this phenomenon only manifests itself
in reasonably complex programs, it was difficult to debug. How-
ever, the test program satisfied Observation 1 and, hence, we were
clearly observing a bug and not an incompleteness of the inference.

7. Discussion and Related Work
Cousot [3] proposed to use his abstract interpretation framework
[5] in order to systematically construct type inferences (and thus
type systems) by abstracting the language semantics. We build on
this work. However, Cousot uses a concretization γ to define the
Hindley-Milner system. This suffices to show soundness but is in-
sufficient for discussing completeness. In earlier work, we defines
an abstraction α that makes the difference between λ- and let-
bound variables explicit, thereby showing that the Milner-Mycroft
inference [16] is backward complete [23]. Backward-completeness
means that each rule computes the best type environment and type.
For rules that do not modify the environment, this property corre-
sponds to computing the principal type. In general, the best envi-
ronment and type is obtained when allowing polymorphic recursion
[16]. A stronger property that has been called “principal typing” (in
contrast to principal types) [12, 28] stipulates that the type and en-
vironment inferred for a whole program are best. Our inference has
this property when none of the inference rules approximate their
result which - as discussed in Sect. 4.4 – is the case when each
λ-bound function is used as most once.

By specifying a type inference of a language by the universe of
types and requiring a backward-complete type inference, there is
neither ambiguity of what types must be inferable nor a prescription
of the employed algorithm. However, given that the lattice of type
terms 〈P,vP〉 has infinite descending chains, the seemingly only
work on using abstract interpretation for type inference addresses
how to apply widening to ensure termination of the fixpoint com-
putation [3, 10]. Even then, neither Gori et al. [10] nor Jim [12]
found any type correct program that required many iterations to
type check [10] which coincides with our experience.

Our work proposed to separate type terms and the tracking
of constraints into two domains rather than using a unified con-
straint language that allows various analyses X to be plugged into
a generic solver HM(X) [22]. An advantage of choosing separate
domains before addressing which language constructs to support



allows us to pick only domains that are closed under projection
and that are condensing [8], thereby avoiding difficulties such as
the “implication issue” highlighted by Pottier [26]. Our construc-
tion could also be relevant when certain domains must be excluded
for performance reasons (e.g. general subtyping). For instance, the
inference for GADTs has been addressed many times before a so-
lution was found that could use normal unification for most parts
of the program [22] rather than sub-typing. This solution is incom-
plete and even rejects programs that do not use GADTs [27]. Inter-
estingly, backward-completeness which requires polymorphic re-
cursion becomes more important in the presence of advanced type
systems [22, 26]. For instance, a function that that uses a default
value if none is supplied requires polymorphic recursion as follows:
let f = λx .when N in x then . . . else f(@{N = 42} s).

While combining several abstract domains for type inference is
rare [23], Boolean functions have been used to implement program
analyses that piggy-back on already inferred type terms: Glynn
et al. use a so-called shape mapping to map type terms to a con-
straint language that is then interpreted as a Boolean function [9].
Instantiation in their work performs the equivalent of expansion on
Boolean formulae. By encoding this complex operation into our
applyS function and using it throughout the type inference, our ap-
proach transparently transforms the Boolean formula during the in-
ference of the type terms. Since our rules modify type terms and
Boolean formulae at once, debugging and assessing completeness
of the inference can be done on a rule-by-rule basis. For instance,
we observed that stale variables in the Boolean formula must be
removed for the correctness of expansion (see Sect. 6), whereas
Glynn et al. are seemingly not aware of this as they merely state that
the removal of stale variables “is applied aggressively” [9, Sect. 5].

7.1 Conclusion
We extended a type inference for the Hindley-Milner type system to
one that infers row-polymorphic records as well as the information
if a record field exists or not. The algorithm is based on a separation
of type terms and Boolean functions. This separation of concerns
not only provides the basis for an efficient implementation but also
illustrates the cost of record operations addressed in the literature.
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