
Compiler Construction

Dr. Michael Petter, Raphaela Palenta SS 2016
Exercise Sheet 9

This exercise sheet is about implementing the Visitor Pattern and building a symbol
table for MiniJava programs. In order to make the exercise interesting, MiniJava is enhan-
ced with local declarations at the beginning of compound statements. Thus, the following
program is considered to be a valid MiniJava program:
int i , j , k , n ;
i = read () ;
k = −1;
j = read () ;
n = 0 ;
while (j >= −k) {

int k , j ;
i f (i > j)

i = i − k ;
else

j = j % i ;
n = (n − k) ∗ 2 − 1 ;

}
wr i t e (i) ;

The attached project provides a Lexer and a Parser for MiniJava. The project contains
classes to represent the nodes of the AST of a MiniJava program. The example main
program reads a file given on the command line and provides you with the corresponding
AST. It is recommended that you start by running the program using a graphical debugger
and the example from above and click through the AST to get familiar with the different
classes.
Assignment 9.1. Visitor
Your first task is to implement the Visitor Pattern in order to allow client code to traverse
a MiniJava AST. As a reminder, implementing the Visitor Pattern consists of the following
steps:

1. implementing an accept() method for every class to be visited,

2. implementing a Visitor class that contains a visit() method for every class to be
visited,

3. and implementing the visit() methods (only a visit instead of a pre and post
method is needed) in such a way that the AST is traversed from left to right.

Test your visitor by counting the number of integer constants in a MiniJava program.

Assignment 9.2. Symbol Table
We are going to use the visitor for the contruction of the symbol table. In the course of
this, we represent the symbol table data using pointers: Each identifier obtains a reference
to its declaration. Hence, your first task is to add a reference to Decl objects in the
Expr.Identifier class.

1

Next, implement a visitor for calculating the symbol table data. Your visitor class
needs to be derived from the visitor class implemented for the first exercise. As you know
from the lecture, the state of the visitor contains a map that maps each identifier to
a stack of its currently active scopes. Make sure that your visitor reports a meaningful
error message through an exception in case the MiniJava program refers to an undeclared
variable.

Finally, test your implementation using a graphical debugger.

2

