
Compiler Construction

Dr. Michael Petter, Raphaela Palenta SS 2016
Exercise Sheet 10

Assignment 10.1. Type Checking vs. Type Inference
Explain the difference between type checking and type inference.

Assignment 10.2. Type Checking
This exercise is about checking the types of expressions given in our C-like language.
Make sure to only use the rules given in the lecture and to write down every step in a
tree structure.

1. Given the declarations Γ := {int x, int a[]}, check whether the statement int y =
x + a[42]; is well-typed.

2. Given the declarations Γ := {int y, double a[], struct {double a[]; } g, int (∗f)(double)},
check whether the statement int x = f(g.a[y + 2]); is well-typed.

Assignment 10.3. Subtyping
Consider the following C structs:

struct A {
A f (B, C) ;
C g (C) ;

}

struct B {
B f (A, D) ;
A g (D) ;

}

struct C {
C f (B, B) ;
D g (A) ;

}

struct D {
D f (B, B) ;
D g (B) ;
int a ;

}
We are going to use the non-standard subtyping rules for C structures which have

been introduced in the lecture. Let ≤ be the type comparison operator, that is, for two
types A and B the following holds:

A ≤ B ⇔ A is a subtype of B (1)

Now, proof the assertions below either right or wrong:

1. A ≤ B

2. A ≤ C

1


