
Advanced Automata Theory

SS 2017

Helmut Seidl

1 / 314



Overview over this Lecture

Part 1: Tree automata for Program Analysis
� functional languages
� logic languages
� cryptographic protocols

2 / 314



Overview over this Lecture

Part 1: Tree automata for Program Analysis
� functional languages
� logic languages
� cryptographic protocols

Part 2: Type Checking for XML Transformations
� Types for XML
� XML Transformations
� Decomposition of XML Transformations

3 / 314



Overview over this Lecture

Part 1: Tree automata for Program Analysis
� functional languages
� logic languages
� cryptographic protocols

Part 2: Type Checking for XML Transformations
� Types for XML
� XML Transformations
� Decomposition of XML Transformations

Part 3: Equivalence Problems
� Straight-line Programs
� Topdown Tree-to-tree Transformations
� Topdown Tree-to-string Transformations

4 / 314



Automaton

• accepts structures

• defines a predicate on structures, or equivalently,

• defines a set of structures

5 / 314



Automaton

• accepts structures

• defines a predicate on structures, or equivalently,

• defines a set of structures

Automata, here: finite-state
// easy to understand
// decidability/tractability
// normal forms
// learning
// equivalence

6 / 314



Examples of structures

7 / 314



Examples of structures

words � finite labeled
// compiler construction (scanners)
// string processing, searching

� infinite labeled
// system behaviors - linear-time logic

8 / 314



Examples of structures

words � finite labeled
// compiler construction (scanners)
// string processing, searching

� infinite labeled
// system behaviors - linear-time logic

trees � finite ranked ordered labeled
// syntax trees
// terms

� finite unranked ordered labeled
// XML, JSON

� infinite ranked unordered labeled
// system behaviors - branching-time logic

� infinite ranked ordered labeled
// monadic second order logic

9 / 314



Transducer

realizes a function/relation on structures.

Variations
� string-to-string (classical)
� tree-to-tree

// program transformations
// NL translations
// syntax-directed computation

� tree-to-string
// XML/JSON transformations

10 / 314



Part 1

Tree Automata for Program Analysis

11 / 314



Motivation

� Program analysis tries to statically infer properties of
the runtime behavior of a program,

12 / 314



Motivation

� Program analysis tries to statically infer properties of
the runtime behavior of a program, e.g.,

• values of variables;

• reachable configurations.

13 / 314



Motivation

� Program analysis tries to statically infer properties of
the runtime behavior of a program, e.g.,

• values of variables;

• reachable configurations.

� Often, such analyses result in tree automata.

14 / 314



Motivation

� Program analysis tries to statically infer properties of
the runtime behavior of a program, e.g.,

• values of variables;

• reachable configurations.

� Often, such analyses result in tree automata.

� A formalism is required to conveniently express and
perform operations on tree automata.

15 / 314



0. Basics

16 / 314



A Tree

f

f f

fb

a b

ba

17 / 314



Trees

Properties
� ranked ordered
� labeled
� finite

18 / 314



Trees

Properties
� ranked ordered
� labeled
� finite

== terms

19 / 314



Automata

� Tree automaton A generalizes word automaton.
� A run of A on tree t is a mapping of the nodes of t to

states

20 / 314



Automata

� Tree automaton A generalizes word automaton.
� A run of A on tree t is a mapping of the nodes of t to

states ...

which locally respects the transition relation

21 / 314



Automata

� Tree automaton A generalizes word automaton.
� A run of A on tree t is a mapping of the nodes of t to

states ...

which locally respects the transition relation

δ ⊆
�

j≥0

Q × Σj × Qj

22 / 314



A Run

f

f f

fb

a b

ba

23 / 314



A Run

f

f f

fb

a b

ba

q

q

p q

p

p

p p

p

24 / 314



A Run

f

f f

fb

a b

ba

q

q

p q

p

p

p p

p

25 / 314



An Example Automaton

A = (Q,Σ, δ,F ) where

Q = {p, q} // set of states
F ⊆ Q = {p} // accepting states
Σ0 = {a, b} // input alphabet of rank
Σ2 = {f} // input alphabet of rank
δ = { (q, a), (p, b),

(p, f , qp), (p, f , pq),
(q, f , qq), (q, f , pp) }

// transitions

26 / 314



Accepting Run

A run is accepting if it assigns an accepting state to the
root.

27 / 314



Accepting Run

A run is accepting if it assigns an accepting state to the
root.

The language L(A) of a tree automaton A is the set of
trees for which there is an accepting run of A.

28 / 314



Accepting Run

A run is accepting if it assigns an accepting state to the
root.

The language L(A) of a tree automaton A is the set of
trees for which there is an accepting run of A.

A language T is regular if T = L(A) for some tree
automaton A.

29 / 314



Clauses

Alternative representation:

state unary predicate
symbol constructor
transition Horn clause

30 / 314



Clauses

Alternative representation:

state unary predicate
symbol constructor
transition Horn clause

q(a) ⇐
p(b) ⇐
p(f (X ,Y )) ⇐ q(X ), p(Y )
p(f (X ,Y )) ⇐ p(X ), q(Y )
q(f (X ,Y )) ⇐ q(X ), q(Y )
q(f (X ,Y )) ⇐ p(X ), p(Y )

31 / 314



Decision Problems

32 / 314



Decision Problems

Emptiness: linear time, P-complete
Folklore

33 / 314



Decision Problems

Emptiness: linear time, P-complete
Folklore

Tree Problem, fixed automaton: uniform-NC1-complete
under DLOG-reductions

34 / 314



Decision Problems

Emptiness: linear time, P-complete
Folklore

Tree Problem, fixed automaton: uniform-NC1-complete
under DLOG-reductions

Tree Problem, uniform: LOGCFL-complete under
LOGSPACE-reductions

Lohrey, RTA2001

35 / 314



Decision Problems

Emptiness: linear time, P-complete
Folklore

Tree Problem, fixed automaton: uniform-NC1-complete
under DLOG-reductions

Tree Problem, uniform: LOGCFL-complete under
LOGSPACE-reductions

Lohrey, RTA2001
Equivalence: DEXPTIME-complete under

LOGSPACE-reductions
S., 1990

36 / 314



Deterministic Automata

� The example TA is (complete and) bottom-up
deterministic.

37 / 314



Deterministic Automata

� The example TA is (complete and) bottom-up
deterministic.

� For every TA, an equivalent TA can be constructed
which is bottom-up deterministic.

38 / 314



Deterministic Automata

� The example TA is (complete and) bottom-up
deterministic.

� For every TA, an equivalent TA can be constructed
which is bottom-up deterministic.

� The example TA is not top-down deterministic.

39 / 314



Deterministic Automata

� The example TA is (complete and) bottom-up
deterministic.

� For every TA, an equivalent TA can be constructed
which is bottom-up deterministic.

� The example TA is not top-down deterministic.
� Is there a top-down deterministic TA which is

equivalent to the example TA ?

40 / 314



The Powerset Construction
Let A = (Q,Σ, δ,F ) denote a TA.

41 / 314



The Powerset Construction
Let A = (Q,Σ, δ,F ) denote a TA.

Idea
For each tree t , collect the set B ⊆ Q of states at the root
for which there is a run of A.

42 / 314



The Powerset Construction
Let A = (Q,Σ, δ,F ) denote a TA.

Idea
For each tree t , collect the set B ⊆ Q of states at the root
for which there is a run of A.

Define P(A) = (P(Q),Σ,P(δ),P(F )) where

� P(Q) is the powerset of Q;
� P(F ) = {B ∈ P(Q) | B ∩ F �= ∅}
� (B, f ,B1 . . .Bk) ∈ P(δ) iff

B = {q ∈ Q | ∃ q1 ∈ B1, . . . , , qk ∈ Bk . (q, f , q1 . . . qk) ∈ δ}

Then P(A) is bottom-up deterministic.

43 / 314



Correctness

For every tree t and every subset B ⊆ Q, the following
statements are equivalent:

1. There is a run of P(A) for t with B at the root;
2. B equals the set of all q ∈ Q so that there is a run of

A for t with q at the root.

44 / 314



Correctness

For every tree t and every subset B ⊆ Q, the following
statements are equivalent:

1. There is a run of P(A) for t with B at the root;
2. B equals the set of all q ∈ Q so that there is a run of

A for t with q at the root.

Proof Induction over the structure of t .

45 / 314



Correctness

For every tree t and every subset B ⊆ Q, the following
statements are equivalent:

1. There is a run of P(A) for t with B at the root;
2. B equals the set of all q ∈ Q so that there is a run of

A for t with q at the root.

Proof Induction over the structure of t .

Corollary
L(A) = L(P(A)).

46 / 314



Remark

• The construction is inherently exponential.

• A practical implementation will only consider those
subsets B ⊆ Q which occur at the root of some tree.

47 / 314



Remark

• The construction is inherently exponential.

• A practical implementation will only consider those
subsets B ⊆ Q which occur at the root of some tree.

• What about the topdown constructions ?

48 / 314



The Dual Powerset Construction

Define P�(A) = (P�(Q),Σ,P�(δ),F ) where

� P�(Q) is the powerset of Q;
� (B, a) ∈ P�(δ) iff ∃ q ∈ B. (q, a) ∈ δ;

49 / 314



The Dual Powerset Construction

Define P�(A) = (P�(Q),Σ,P�(δ),F ) where

� P�(Q) is the powerset of Q;
� (B, a) ∈ P�(δ) iff ∃ q ∈ B. (q, a) ∈ δ;
� (B, f ,B1 . . .Bk) ∈ P�(δ) iff for i = 1, . . . , k ,

Bi = {qi ∈ Q | ∃ q ∈ B, q1, . . . , qi−1, qi+1, . . . , qk ∈ Q.
(q, f , q1 . . . qk) ∈ δ}

50 / 314



The Dual Powerset Construction

Define P�(A) = (P�(Q),Σ,P�(δ),F ) where

� P�(Q) is the powerset of Q;
� (B, a) ∈ P�(δ) iff ∃ q ∈ B. (q, a) ∈ δ;
� (B, f ,B1 . . .Bk) ∈ P�(δ) iff for i = 1, . . . , k ,

Bi = {qi ∈ Q | ∃ q ∈ B, q1, . . . , qi−1, qi+1, . . . , qk ∈ Q.
(q, f , q1 . . . qk) ∈ δ}

This automaton is topdown deterministic (possibly
partial).

51 / 314



The Dual Powerset Construction

Define P�(A) = (P�(Q),Σ,P�(δ),F ) where

� P�(Q) is the powerset of Q;
� (B, a) ∈ P�(δ) iff ∃ q ∈ B. (q, a) ∈ δ;
� (B, f ,B1 . . .Bk) ∈ P�(δ) iff for i = 1, . . . , k ,

Bi = {qi ∈ Q | ∃ q ∈ B, q1, . . . , qi−1, qi+1, . . . , qk ∈ Q.
(q, f , q1 . . . qk) ∈ δ}

This automaton is topdown deterministic (possibly
partial).

It is not necessarily equivalent to A ...

52 / 314



The Example

Q = {p, q}
Σ = {a, b, f}
δ = { (q, a), (p, b),

(p, f , qp), (p, f , pq),
(q, f , qq), (q, f , pp) }

F = {p}

53 / 314



The Example

Q = {p, q}
Σ = {a, b, f}
δ = { (q, a), (p, b),

(p, f , qp), (p, f , pq),
(q, f , qq), (q, f , pp) }

F = {p}
P�(Q) = {{p}, {p, q}}
P�(δ) = { ({p, q}, a), ({p}, b), ({p, q}, b)

({p}, f , {p, q}{p, q})
({p, q}, f , {p, q}{p, q}) }

q0 = {p}

54 / 314



The Example

Q = {p, q}
Σ = {a, b, f}
δ = { (q, a), (p, b),

(p, f , qp), (p, f , pq),
(q, f , qq), (q, f , pp) }

F = {p}
P�(Q) = {{p}, {p, q}}
P�(δ) = { ({p, q}, a), ({p}, b), ({p, q}, b)

({p}, f , {p, q}{p, q})
({p, q}, f , {p, q}{p, q}) }

q0 = {p}

... accepts t = f (a, a) ??

55 / 314



Path

f

f f

fb

a b

ba

56 / 314



Path

f

f f

fb

a b

ba

�f , 1��f , 2� b

57 / 314



Homogenuity

L is homogeneous iff

t ∈ L iff path(t) ⊆ path(L)

58 / 314



Homogenuity

L is homogeneous iff

t ∈ L iff path(t) ⊆ path(L)

� {f(a,b),f(b,a),f(a,a),f(b,b)} is homogeneous,

59 / 314



Homogenuity

L is homogeneous iff

t ∈ L iff path(t) ⊆ path(L)

� {f(a,b),f(b,a),f(a,a),f(b,b)} is homogeneous,
� {f(a,b),f(b,a)} is not.

60 / 314


