Automata for Associative-Commutative Operators

Kumar Neeraj Verma

TU Munchen

Motivations

e Cryptographic protocols
e XML documents
e Petri nets

e Linear logic

Public-key Needham-Schroeder protocol

Public-key Needham-Schroeder protocol

{Alice, Random }pup(Bob)

Y

Bob

Public-key Needham-Schroeder protocol

{Alice, Random }pup(Bob)

-
!

{Randomy, Randoms }pub(Alice)

Public-key Needham-Schroeder protocol

{Alice, Random }pup(Bob)

-
!

{Randomy, Randoms }pub(Alice)

{Randoms } pub(Bob)

Y

Bob

Public-key Needham-Schroeder protocol

{Alice, Random }pup(Bob)

-
!

{Randomy, Randoms }pub(Alice)

{ Randomsy }pub(Bob)

Y

Attack against the protocol found after 17 years!

Cryptographic protocols and tree automata

Dolev-Yao Model [Dolev & Yao, 1983]:

message term

nonces, identities, ... | constants
{m} encrypt(m, k)
< my,mg > pair(mai,mo)

= Use tree automata to model intruder’'s knowledge.

Cryptographic protocols and tree automata

Dolev-Yao Model [Dolev & Yao, 1983]:

message term

nonces, identities, ... | constants
{m} encrypt(m, k)
< my,mg > pair(mai,mo)

= Use tree automata to model intruder’'s knowledge.
Non-ideal cryptographic primitives, e.g. modular exponentiation:
a®¥ = V7 (ax)y — %Y

= Use equational tree automata

Group key agreement protocols
The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

Group key agreement protocols
The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

Na

Y

Group key agreement protocols
The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

Group key agreement protocols

The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

Group key agreement protocols
The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

Na.Nb.Nc ;

Group key « Is then computed by each participant

Group key agreement protocols
The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

Na.Nb-Ne i then computed by each participant

Group key «
Code messages a”'*» by terms e(x1 + ...+ xy,)
= + is ACU

Use automata modulo ACU

The ACU theory

r+(y+2z)=(x+y)+2z Associativity
r+y=y+zx Commutativity
r+0=x Unit

A protocol using XOR

An example protocol using XOR [Cortier03]:
+ is XOR

Bob

A protocol using XOR

An example protocol using XOR [Cortier03]:
+ is XOR

Na + Kab

Y

A protocol using XOR

An example protocol using XOR [Cortier03]:
+ is XOR

Na + Kab

Y

Nb""_Na

A protocol using XOR

An example protocol using XOR [Cortier03]:
+ is XOR

Na + Kab

Y

Nb""_Na

Sap + Np

Y

Bob

A protocol using XOR

An example protocol using XOR [Cortier03]:

+ is XOR
Na + Kab

Y

Nb""_Na

Sap + Np

Y

Alice "

Requires tree automata modulo XOR

The XOR theory

The ACU theory, together with the equation

r+x=0 Nilpotence

Another example: the Abelian Groups theory

The ACU theory, together with the equation

r+(—x)=0 Cancellation

XML Schemas
biblio

An example XML document: / \\\‘

article thesis

/N

author author title

|

Knuth Bendix
This is a term with variable arity symbols
= Represent using associative and associative-commutative symbol

The above document is the term:

biblio (article (author (Knuth) + author (Bendix) + ...) + thesis (...) + ...

XML Schemas = a class of documents = tree automata

Example: a bibliographic database is a list of articles, an article has a list of authors, a
title, ...

Represent using tree automata [DalZilioLugiez03, Seidl03]

An example query: search for articles written by Knuth in 1978 with odd number of
coauthors

Translate to tree automata

Tree automata as Horn clauses

Automata transitions
0(0) = Qeven
(S, Geven) = odd
(S, Godd) = (even
O(+, Gevens Geven) = Qeven
O(+, Geven, Godd) = Godd

Tree automata as Horn clauses

Automata transitions Horn clauses
0(0) = Geven | Qeven(O)
(S, Geven) = Godd | Goda(S()) < Geven ()
0(S, Godd) = Geven | Geven(S(T)) < odd()
0(+; Gevens Qeven) = Qeven | Geven(F(2,9)) < deven (%), Geven(y)
0(+, Gevens Qodd) = Godd | Godd(+(2,Y)) < Geven(T), Goda(y)

Tree automata as Horn clauses

Automata transitions Horn clauses
5(0) = Geven | Geven(O)
0(S, Geven) = Godd | Goda(S()) < Geven ()
0(S, Godd) = Geven | Geven(S(T)) < odd()
0(+; Gevens Qeven) = Qeven | Geven(F(2,9)) < deven (%), Geven(y)
0(+, Gevens Qodd) = Godd | Godd(+(2,Y)) < Geven(T), Goda(y)

A uniform framework for

— describing various extensions of ordinary automata (e.g. alternating, two-way
automata)
— dealing with arbitrary equational theories

Automata queries as Horn clauses

To test membership of term m at state ¢ we add a clause
L <=q(m)

and check whether | can be derived from the clauses.

To test non-emptiness of state ¢ we add clause
L <= q(x)

To test intersection-non-emptiness of states ¢; and ¢, we add clause

1L <= qi(x),q2(x)

Tree automata and cryptographic protocols

Terms represent messages involved in a protocol
Set of messages known to intruder is expressed by a tree automaton

Ic(encrypt(m,k)) < Ico(m), (k) Intruder can encrypt messages
Io(pair(x,y)) <= Io(x),Ic(y) Intruder can form pairs
(

Ie, () < Ic,, () Intruder remembers past messages

Need for two-way tree automata

New clauses needed for modeling cryptographic protocols:

Ic(m) <= Ic(encrypt(m,k)),[c(k) Intruder can decrypt messages

Io(x) < Io(pair(z,y)) Intruder can unpair messages

(
Ie(y) <« lo(pair(z,y))
These clauses destruct terms instead of constructing terms

= Extend one-way tree automata to two-way tree automata

Sometimes we also need alternation clauses: P(x) < Pi(x), P> (x)

Ordinary automata are not expressive enough

Given a regular language L, is the ACU-closure of L regular 7

ACU(L)={t|dse€ L -s=4cv t}

Ordinary automata are not expressive enough

Given a regular language L, is the ACU-closure of L regular 7
ACU(L)={t|dse€ L -s=4cv t}
No. The set of terms of the form

(...((a+b)+a+b)...+a+D)

is regular. Its closure is the set of terms with equal number of occurrences of a and b,

which is not regular.

Ordinary automata are not expressive enough

Given a regular language L, is the ACU-closure of L regular 7
ACU(L) ={t|ds € L-s=4cu t}
No. The set of terms of the form

(...((a+b)+a+D)...+a+Db)

is regular. Its closure is the set of terms with equal number of occurrences of a and b,

which is not regular.

Solution: interpret the + operation as a special operation satisfying some equational

properties.

Example Consider clauses

q1(a)

q2(a)

QS(O)

qa(z+y) <= q1(2), ¢2(y)
q5(x) <= q3(2), qa()

In the absence of equational theories, nothing is accepted at ¢s.

Example Consider clauses

q1(a)

q2(a)

QS(O)

qa(z+y) <= q1(2), ¢2(y)
q5(x) <= q3(2), qa()

In the absence of equational theories, nothing is accepted at ¢s.

In presence of the equational theory XOR:
a-+a is accepted at ¢ .
Hence O is accepted at ¢4.
Hence O is accepted at ¢s.

Modeling of group key agreement protocol (1)

For each configuration C"

ke (e(0)) intruder knows «
ko(e(r+y)) < ko(e(x)), ko(y) intruder can exponentiate
ko (nil) intruder knows empty list
ko(cons(z,y)) < ko(x), ko (y) intruder can build lists
ko(x) < ko(cons(x,y)) intruder can read heads
ko(y) < ko(cons(z,y)) intruder can read tails

Modeling of group key agreement protocols (2)

Second step:

B expects a message of the form x; oV
B sends the message oVv; a¥; V-V

translated to clauses:

ko, (e(Nb);e(y); e(y+Nb)) <= ke, (z5e(y))
kCz ($) <~ kCl ($)

Modeling of group key agreement protocols (4)

Secrecy requirement on A's view of the group key:

L <= ko, (e(r);y), ke, (e(x+Na))

Translates to intersection emptiness problem of two-way AC' automata (decidable)

Modeling of the protocol using XOR

Na + Kab

Y

Nb"'“Na

Sab + Np

Y

Translation of the second rule:

Io(x4+Kap+Ny) <= 1o ()

Connections with sets of vectors of integers
Consider constants a, b and symbol +.

The clauses
P(a)
P(z+a+b+b) < P(x)
with final state P define the language

{na4+mb|n>0Am=2n—2}
The Parikh image is the set

{(n,m) | n>0Am=2n—2}

The formula involved is a Presburger formula:
formulas built using variables, 0, 1, +, logical connectives and quantifiers,

but no multiplication.

A base v € NP and periods v, ..., € NP define a linear set

{v+azimn+...+apvy | 21,...,2p €N}

Semilinear sets = finite union of linear sets = Presburger-definable sets

Closed under union, intersection, complementation and projection.

A base v € NP and periods v, ..., € NP define a linear set

{v+azimn+...+apvy | 21,...,2p €N}

Semilinear sets = finite union of linear sets = Presburger-definable sets

Closed under union, intersection, complementation and projection.

The previous example
{(n,m) | n>0Am=2n—2}

is described using base (1,0) and period (1, 2)

This is also the Parikh image of the regular string language a(abb)*.

A base v € NP and periods v, ..., € NP define a linear set

{v+azimn+...+apvy | 21,...,2p €N}

Semilinear sets = finite union of linear sets = Presburger-definable sets

Closed under union, intersection, complementation and projection.

The previous example
{(n,m) | n>0Am=2n—2}

is described using base (1,0) and period (1, 2)

This is also the Parikh image of the regular string language a(abb)*.

Parikh’s Theorem: The Parikh image of a regular string language is semilinear,

A base v € NP and periods v, ..., € NP define a linear set

{v+azimn+...+apvy | 21,...,2p €N}

Semilinear sets = finite union of linear sets = Presburger-definable sets

Closed under union, intersection, complementation and projection.

The previous example
{(n,m) | n>0Am=2n—2}

is described using base (1,0) and period (1, 2)

This is also the Parikh image of the regular string language a(abb)*.

Parikh’s Theorem: The Parikh image of a regular string language is semilinear,

and also the Parikh image of a context-free string language is semilinear.

Consider clauses
q(5a)
q(z+y+2) < q(x),q(y), ¢(2)

q accepts the language {na |n =5V dm-n =154 10m}.

Consider clauses
q(5a)
q(z+y+2) < q(x),q(y), ¢(2)

q accepts the language {na |n =5V dm-n =154 10m}.

This can also be represented by the context-free language defined by the grammar

q — aaaaa

4 — 449

Consider clauses
q(5a)
q(z+y+2) < q(x),q(y), ¢(2)

q accepts the language {na |n =5V dm-n =154 10m}.

This can also be represented by the context-free language defined by the grammar

q — aaaaa

4 — 449

= If we consider clauses corresponding to ordinary (one=way) tree automata
(containing + and other symbols), them modulo theories ACU, XOR and Abelian
Groups, the languages are closed under intersection and emptiness is decidable.

Complementation

Consider languages modulo XOR:

Ly ={f™(a)+f"(a) | m,n = 0}

Ly = {0}

Ly \ Ly = {f™(a)+f"(a) | m,n = 0Am #n}

Ly, Ly accepted by one-way XOR automata, but not L \ Lo.
= One-way X OR automata not closed under complementation
Counter-example exists also for the Abelian Groups theory.

For ACU theory, we have closure under complementation.

Elimination of two-wayness

Example With theory XOR, given clauses

q(x) < p(f(z))
ple+y+z) < pi(x),p2(y), ps(2)
pi(f(2)) < a(x)
p2(a)
ps(a)
we deduce clause
q(x) <= q1()

Elimination of two-wayness

Example With theory XOR, given clauses

q(x) < p(f(z))
ple+y+z) < pi(x),p2(y), ps(2)
pi(f(x)) < q1 ()
p2(a)
ps(a)
we deduce clause
¢(7) < q1(z)

In general the second clause may not be present but implied by other clauses.

= Use Presburger-formula to represent the set of all such formulas.

An undecidability result

Alternation clauses: ¢(x) < q1(x), g2(x)

encode 2 counter automata

= emptiness undecidable for alternating automata
(for theories ACU and Abelian Groups)

For theory XOR we still have decidability.

Other clauses: Petri nets and VASS

Consider clauses of the form
q(a+2b)
q(z + 2a + 5b) < q(x)
q(r) < q(x + 6b)

equivalently
q(1,2)
9(x +1(2,5)) <= q(z)
Q(x> — Q(aj + (07 6))

The last clause can be applied only when = > (0, 6).

These clauses can perform subtraction: these define Petri nets or VASS (Vector Addition
Systems with States). We can now define non-semilinear sets.

Intersection-emptiness etc. continue to be decidable, but are expensive.

Branching VASS

Suppose we consider subtraction, together with branching addition.

q(v)
q(x +v) < q(x)
q(r) <= qi(x +v)
q(r+y) <= q(x),q2(y)

The decidability of reachability (membership, intersection-non-emptiness) is open.

Equivalent to decidability of provability in MELL (Multiplicative Exponential Linear
Logic).

