Automata for Associative-Commutative Operators

Kumar Neeraj Verma

TU München

Motivations

- Cryptographic protocols
- XML documents
- Petri nets
- Linear logic

Public-key Needham-Schroeder protocol

Bob

Public-key Needham-Schroeder protocol

Bob

Public-key Needham-Schroeder protocol

Public-key Needham-Schroeder protocol

Public-key Needham-Schroeder protocol

Attack against the protocol found after 17 years!

Cryptographic protocols and tree automata

Dolev-Yao Model [Dolev \& Yao, 1983]:

message	term
nonces, identities, ...	constants
$\{m\}_{k}$	encrypt (m, k)
$<m_{1}, m_{2}>$	$\operatorname{pair}\left(m_{1}, m_{2}\right)$
\ldots	\ldots

\Rightarrow Use tree automata to model intruder's knowledge.

Cryptographic protocols and tree automata

Dolev-Yao Model [Dolev \& Yao, 1983]:

message	term
nonces, identities, \ldots	constants
$\{m\}_{k}$	encrypt (m, k)
$<m_{1}, m_{2}>$	pair $\left(m_{1}, m_{2}\right)$
\ldots	\ldots

\Rightarrow Use tree automata to model intruder's knowledge.
Non-ideal cryptographic primitives, e.g. modular exponentiation:

$$
\alpha^{x \cdot y}=\alpha^{y \cdot x}
$$

$$
\left(\alpha^{x}\right)^{y}=\alpha^{x . y}
$$

\Rightarrow Use equational tree automata

Group key agreement protocols

The IKA. 1 protocol [Steiner et al, 2000] for 3 participants:

B

Group key agreement protocols

The IKA. 1 protocol [Steiner et al, 2000] for 3 participants:

$\alpha, \alpha^{N a}$
\qquad

B

Group key agreement protocols

The IKA. 1 protocol [Steiner et al, 2000] for 3 participants:

$\alpha, \alpha^{N a}$

Group key agreement protocols

The IKA. 1 protocol [Steiner et al, 2000] for 3 participants:

Group key agreement protocols

The IKA. 1 protocol [Steiner et al, 2000] for 3 participants:

$\alpha, \alpha^{N a}$
C

A

$$
\alpha^{N b}, \alpha^{N a}, \alpha^{N a . N b}
$$

Group key $\alpha^{N a . N b . N c}$ is then computed by each participant

Group key agreement protocols

The IKA. 1 protocol [Steiner et al, 2000] for 3 participants:

$\alpha, \alpha^{N a}$

A

B

Group key $\alpha^{N a . N b . N c}$ is then computed by each participant
Code messages $\alpha^{x_{1} \ldots x_{n}}$ by terms $e\left(x_{1}+\ldots+x_{n}\right)$
$\Rightarrow+$ is $A C U$
Use automata modulo ACU

The ACU theory

$$
\begin{aligned}
x+(y+z) & =(x+y)+z & & \text { Associativity } \\
x+y & =y+x & & \text { Commutativity } \\
x+0 & =x & & \text { Unit }
\end{aligned}
$$

A protocol using XOR

An example protocol using XOR [Cortier03]:

+ is XOR

Alice

Bob

A protocol using XOR

An example protocol using XOR [Cortier03]:

+ is XOR

Bob

A protocol using XOR

An example protocol using XOR [Cortier03]:

+ is XOR

A protocol using XOR

An example protocol using XOR [Cortier03]:

+ is XOR

A protocol using XOR

An example protocol using XOR [Cortier03]:

+ is XOR

Requires tree automata modulo XOR

The XOR theory

The ACU theory, together with the equation

$$
x+x=0 \quad \text { Nilpotence }
$$

Another example: the Abelian Groups theory

The ACU theory, together with the equation

$$
x+(-x)=0 \quad \text { Cancellation }
$$

XML Schemas

An example XML document:

This is a term with variable arity symbols
\Rightarrow Represent using associative and associative-commutative symbol
The above document is the term:
biblio (article (author (Knuth) + author (Bendix) $+\ldots$) + thesis (...) $+\ldots$)

XML Schemas \equiv a class of documents \equiv tree automata
Example: a bibliographic database is a list of articles, an article has a list of authors, a title, ...

Represent using tree automata [DalZilioLugiez03, SeidI03]

An example query: search for articles written by Knuth in 1978 with odd number of coauthors

Translate to tree automata

Tree automata as Horn clauses

Automata transitions	
$\delta(O)$	$=q_{\text {even }}$
$\delta\left(S, q_{\text {even }}\right)$	$=q_{\text {odd }}$
$\delta\left(S, q_{\text {odd }}\right)$	$=q_{\text {even }}$
$\delta\left(+, q_{\text {even }}, q_{\text {even }}\right)$	$=q_{\text {even }}$
$\delta\left(+, q_{\text {even }}, q_{\text {odd }}\right)$	$=q_{\text {odd }}$

Tree automata as Horn clauses

Automata transitions		Horn clauses	
$\delta(O)$	$=q_{\text {even }}$	$q_{\text {even }}(O)$	
$\delta\left(S, q_{\text {even }}\right)$	$=q_{\text {odd }}$	$q_{\text {odd }}(S(x))$	$\Leftarrow q_{\text {even }}(x)$
$\delta\left(S, q_{\text {odd }}\right)$	$=q_{\text {even }}$	$q_{\text {even }}(S(x))$	$\Leftarrow q_{\text {odd }}(x)$
$\delta\left(+, q_{\text {even }}, q_{\text {even }}\right)$	$=q_{\text {even }}$	$q_{\text {even }}(+(x, y))$	$\Leftarrow q_{\text {even }}(x), q_{\text {even }}(y)$
$\delta\left(+, q_{\text {even }}, q_{\text {odd }}\right)$	$=q_{\text {odd }}$	$q_{\text {odd }}(+(x, y))$	$\Leftarrow q_{\text {even }}(x), q_{\text {odd }}(y)$

Tree automata as Horn clauses

Automata transitions		Horn clauses	
$\delta(O)$	$=q_{\text {even }}$	$q_{\text {even }}(O)$	
$\delta\left(S, q_{\text {even }}\right)$	$=q_{\text {odd }}$	$q_{\text {odd }}(S(x))$	$\Leftarrow q_{\text {even }}(x)$
$\delta\left(S, q_{\text {odd }}\right)$	$=q_{\text {even }}$	$q_{\text {even }}(S(x))$	$\Leftarrow q_{\text {odd }}(x)$
$\delta\left(+, q_{\text {even }}, q_{\text {even }}\right)$	$=q_{\text {even }}$	$q_{\text {even }}(+(x, y))$	$\Leftarrow q_{\text {even }}(x), q_{\text {even }}(y)$
$\delta\left(+, q_{\text {even }}, q_{\text {odd }}\right)$	$=q_{\text {odd }}$	$q_{\text {odd }}(+(x, y))$	$\Leftarrow q_{\text {even }}(x), q_{\text {odd }}(y)$

A uniform framework for

- describing various extensions of ordinary automata (e.g. alternating, two-way automata)
- dealing with arbitrary equational theories

Automata queries as Horn clauses

To test membership of term m at state q we add a clause

$$
\perp \Leftarrow q(m)
$$

and check whether \perp can be derived from the clauses.
To test non-emptiness of state q we add clause

$$
\perp \Leftarrow q(x)
$$

To test intersection-non-emptiness of states q_{1} and q_{2} we add clause

$$
\perp \Leftarrow q_{1}(x), q_{2}(x)
$$

Tree automata and cryptographic protocols

Terms represent messages involved in a protocol
Set of messages known to intruder is expressed by a tree automaton

$$
\begin{aligned}
I_{C}(\text { encrypt }(m, k)) & \Leftarrow I_{C}(m), I_{C}(k) & & \text { Intruder can encrypt messages } \\
I_{C}(\text { pair }(x, y)) & \Leftarrow I_{C}(x), I_{C}(y) & & \text { Intruder can form pairs } \\
I_{C_{\text {new }}}(x) & \Leftarrow I_{C_{\text {old }}}(x) & & \text { Intruder remembers past messages }
\end{aligned}
$$

Need for two-way tree automata

New clauses needed for modeling cryptographic protocols:

$$
\begin{aligned}
I_{C}(m) & \Leftarrow I_{C}(\operatorname{encrypt}(m, k)), I_{C}(k) & & \text { Intruder can decrypt messages } \\
I_{C}(x) & \Leftarrow I_{C}(\operatorname{pair}(x, y)) & & \text { Intruder can unpair messages } \\
I_{C}(y) & \Leftarrow I_{C}(\operatorname{pair}(x, y)) & &
\end{aligned}
$$

These clauses destruct terms instead of constructing terms
\Rightarrow Extend one-way tree automata to two-way tree automata

Sometimes we also need alternation clauses: $P(x) \Leftarrow P_{1}(x), P_{2}(x)$

Ordinary automata are not expressive enough

Given a regular language L, is the ACU-closure of L regular ?

$$
A C U(L)=\left\{t \mid \exists s \in L \cdot s=_{A C U} t\right\}
$$

Ordinary automata are not expressive enough

Given a regular language L, is the ACU-closure of L regular ?

$$
A C U(L)=\left\{t \mid \exists s \in L \cdot s={ }_{A C U} t\right\}
$$

No. The set of terms of the form

$$
(\ldots((a+b)+a+b) \ldots+a+b)
$$

is regular. Its closure is the set of terms with equal number of occurrences of a and b, which is not regular.

Ordinary automata are not expressive enough

Given a regular language L, is the ACU-closure of L regular ?

$$
A C U(L)=\left\{t \mid \exists s \in L \cdot s={ }_{A C U} t\right\}
$$

No. The set of terms of the form

$$
(\ldots((a+b)+a+b) \ldots+a+b)
$$

is regular. Its closure is the set of terms with equal number of occurrences of a and b, which is not regular.

Solution: interpret the + operation as a special operation satisfying some equational properties.

Example Consider clauses

$$
\begin{aligned}
& q_{1}(a) \\
& q_{2}(a) \\
& q_{3}(0) \\
& q_{4}(x+y) \Leftarrow q_{1}(x), q_{2}(y) \\
& q_{5}(x) \Leftarrow q_{3}(x), q_{4}(x)
\end{aligned}
$$

In the absence of equational theories, nothing is accepted at q_{5}.

Example Consider clauses

$q_{1}(a)$
$q_{2}(a)$
$q_{3}(0)$
$q_{4}(x+y) \Leftarrow q_{1}(x), q_{2}(y)$
$q_{5}(x) \Leftarrow q_{3}(x), q_{4}(x)$
In the absence of equational theories, nothing is accepted at q_{5}.
In presence of the equational theory $X O R$:
$a+a$ is accepted at q_{4}.
Hence 0 is accepted at q_{4}.
Hence 0 is accepted at q_{5}.

Modeling of group key agreement protocol (1)

For each configuration C :

$$
\begin{aligned}
& k_{C}(e(0)) \\
& k_{C}(e(x+y)) \Leftarrow k_{C}(e(x)), \\
& k_{C}(n i l) \\
& k_{C}(\operatorname{cons}(x, y)) \Leftarrow k_{C}(x), \\
& k_{C}(x) \Leftarrow k_{C}(\operatorname{cons}(x, y)) \\
& k_{C}(y) \Leftarrow k_{C}(\operatorname{cons}(x, y))
\end{aligned}
$$

intruder knows α intruder can read tails

$$
k_{C}(e(x+y)) \Leftarrow k_{C}(e(x)), k_{C}(y) \quad \text { intruder can exponentiate }
$$

$$
k_{C}(n i l) \quad \text { intruder knows empty list }
$$

$$
k_{C}(\operatorname{cons}(x, y)) \Leftarrow k_{C}(x), k_{C}(y) \quad \text { intruder can build lists }
$$

$$
k_{C}(x) \Leftarrow k_{C}(\operatorname{cons}(x, y)) \quad \text { intruder can read heads }
$$

Modeling of group key agreement protocols (2)

Second step:

B expects a message of the form $x ; \alpha^{y}$
B sends the message $\alpha^{N_{b}} ; \alpha^{y} ; \alpha^{y \cdot N_{b}}$
translated to clauses:
$k_{C_{2}}(e(N b) ; e(y) ; e(y+N b)) \Leftarrow k_{C_{1}}(x ; e(y))$
$k_{C_{2}}(x) \Leftarrow k_{C_{1}}(x)$

Modeling of group key agreement protocols (4)

Secrecy requirement on A 's view of the group key:

$$
\perp \Leftarrow k_{C_{3}}(e(x) ; y), k_{C_{3}}(e(x+N a))
$$

Translates to intersection emptiness problem of two-way $A C$ automata (decidable)

Modeling of the protocol using $X O R$

Translation of the second rule:
$I_{C}\left(x+K_{a b}+N_{b}\right) \Leftarrow I_{C^{\prime}}(x)$

Connections with sets of vectors of integers

Consider constants a, b and symbol + .
The clauses

$$
\begin{gathered}
P(a) \\
P(x+a+b+b) \Leftarrow P(x)
\end{gathered}
$$

with final state P define the language

$$
\{n a+m b \mid n>0 \wedge m=2 n-2\}
$$

The Parikh image is the set

$$
\{(n, m) \mid n>0 \wedge m=2 n-2\}
$$

The formula involved is a Presburger formula:
formulas built using variables, $0,1,+$, logical connectives and quantifiers, but no multiplication.

A base $\nu \in \mathbb{N}^{p}$ and periods $\nu_{1}, \ldots, \nu_{k} \in \mathbb{N}^{p}$ define a linear set

$$
\left\{\nu+x_{1} \nu_{1}+\ldots+x_{p} \nu_{p} \mid x_{1}, \ldots, x_{p} \in \mathbb{N}\right\}
$$

Semilinear sets \equiv finite union of linear sets \equiv Presburger-definable sets Closed under union, intersection, complementation and projection.

A base $\nu \in \mathbb{N}^{p}$ and periods $\nu_{1}, \ldots, \nu_{k} \in \mathbb{N}^{p}$ define a linear set

$$
\left\{\nu+x_{1} \nu_{1}+\ldots+x_{p} \nu_{p} \mid x_{1}, \ldots, x_{p} \in \mathbb{N}\right\}
$$

Semilinear sets \equiv finite union of linear sets \equiv Presburger-definable sets Closed under union, intersection, complementation and projection.

The previous example

$$
\{(n, m) \mid n>0 \wedge m=2 n-2\}
$$

is described using base $(1,0)$ and period $(1,2)$
This is also the Parikh image of the regular string language $a(a b b)^{*}$.

A base $\nu \in \mathbb{N}^{p}$ and periods $\nu_{1}, \ldots, \nu_{k} \in \mathbb{N}^{p}$ define a linear set

$$
\left\{\nu+x_{1} \nu_{1}+\ldots+x_{p} \nu_{p} \mid x_{1}, \ldots, x_{p} \in \mathbb{N}\right\}
$$

Semilinear sets \equiv finite union of linear sets \equiv Presburger-definable sets Closed under union, intersection, complementation and projection.

The previous example

$$
\{(n, m) \mid n>0 \wedge m=2 n-2\}
$$

is described using base $(1,0)$ and period $(1,2)$
This is also the Parikh image of the regular string language $a(a b b)^{*}$.

Parikh's Theorem: The Parikh image of a regular string language is semilinear,

A base $\nu \in \mathbb{N}^{p}$ and periods $\nu_{1}, \ldots, \nu_{k} \in \mathbb{N}^{p}$ define a linear set

$$
\left\{\nu+x_{1} \nu_{1}+\ldots+x_{p} \nu_{p} \mid x_{1}, \ldots, x_{p} \in \mathbb{N}\right\}
$$

Semilinear sets \equiv finite union of linear sets \equiv Presburger-definable sets Closed under union, intersection, complementation and projection.

The previous example

$$
\{(n, m) \mid n>0 \wedge m=2 n-2\}
$$

is described using base $(1,0)$ and period $(1,2)$
This is also the Parikh image of the regular string language $a(a b b)^{*}$.

Parikh's Theorem: The Parikh image of a regular string language is semilinear, and also the Parikh image of a context-free string language is semilinear.

Consider clauses

$$
\begin{gathered}
q(5 a) \\
q(x+y+z) \stackrel{ }{\Leftarrow} q(x), q(y), q(z)
\end{gathered}
$$

q accepts the language $\{n a \mid n=5 \vee \exists m \cdot n=15+10 m\}$.

Consider clauses

$$
\begin{gathered}
q(5 a) \\
q(x+y+z) \stackrel{\Leftarrow(x), q(y), q(z)}{\Leftarrow}
\end{gathered}
$$

q accepts the language $\{n a \mid n=5 \vee \exists m \cdot n=15+10 m\}$.

This can also be represented by the context-free language defined by the grammar

$$
\begin{gathered}
q \rightarrow a a a a a \\
q \rightarrow q q q
\end{gathered}
$$

Consider clauses

$$
\begin{gathered}
q(5 a) \\
q(x+y+z) \stackrel{\Leftarrow(x), q(y), q(z)}{\Leftarrow}
\end{gathered}
$$

q accepts the language $\{n a \mid n=5 \vee \exists m \cdot n=15+10 m\}$.

This can also be represented by the context-free language defined by the grammar

$$
\begin{gathered}
q \rightarrow a a a a a \\
q \rightarrow q q q
\end{gathered}
$$

\Rightarrow If we consider clauses corresponding to ordinary (one=way) tree automata (containing + and other symbols), them modulo theories ACU, XOR and Abelian Groups, the languages are closed under intersection and emptiness is decidable.

Complementation

Consider languages modulo XOR:
$L_{1}=\left\{f^{m}(a)+f^{n}(a) \mid m, n \geq 0\right\}$
$L_{2}=\{0\}$
$L_{1} \backslash L_{2}=\left\{f^{m}(a)+f^{n}(a) \mid m, n \geq 0 \wedge m \neq n\right\}$
L_{1}, L_{2} accepted by one-way $X O R$ automata, but not $L_{1} \backslash L_{2}$.
\Rightarrow One-way $X O R$ automata not closed under complementation

Counter-example exists also for the Abelian Groups theory.

For ACU theory, we have closure under complementation.

Elimination of two-wayness

Example With theory XOR, given clauses

$$
\begin{gathered}
q(x) \Leftarrow p(f(x)) \\
p(x+y+z) \Leftarrow p_{1}(x), p_{2}(y), p_{3}(z) \\
p_{1}(f(x)) \Leftarrow q_{1}(x) \\
p_{2}(a) \\
p_{3}(a)
\end{gathered}
$$

we deduce clause

$$
q(x) \Leftarrow q_{1}(x)
$$

Elimination of two-wayness

Example With theory XOR, given clauses

$$
\begin{gathered}
q(x) \Leftarrow p(f(x)) \\
p(x+y+z) \Leftarrow p_{1}(x), p_{2}(y), p_{3}(z) \\
p_{1}(f(x)) \Leftarrow q_{1}(x) \\
p_{2}(a) \\
p_{3}(a)
\end{gathered}
$$

we deduce clause

$$
q(x) \Leftarrow q_{1}(x)
$$

In general the second clause may not be present but implied by other clauses.
\Rightarrow Use Presburger-formula to represent the set of all such formulas.

An undecidability result

Alternation clauses: $q(x) \Leftarrow q_{1}(x), q_{2}(x)$ encode 2 counter automata
\Rightarrow emptiness undecidable for alternating automata (for theories $A C U$ and Abelian Groups)

For theory XOR we still have decidability.

Other clauses: Petri nets and VASS

Consider clauses of the form

$$
\begin{gathered}
q(a+2 b) \\
q(x+2 a+5 b) \Leftarrow q(x) \\
q(x) \Leftarrow q(x+6 b)
\end{gathered}
$$

equivalently

$$
\begin{gathered}
q(1,2) \\
q(x+(2,5)) \Leftarrow q(x) \\
q(x) \Leftarrow q(x+(0,6))
\end{gathered}
$$

The last clause can be applied only when $x \geq(0,6)$.

These clauses can perform subtraction: these define Petri nets or VASS (Vector Addition Systems with States). We can now define non-semilinear sets.

Intersection-emptiness etc. continue to be decidable, but are expensive.

Branching VASS

Suppose we consider subtraction, together with branching addition.

$$
\begin{gathered}
q(\nu) \\
q(x+\nu) \Leftarrow q_{1}(x) \\
q(x) \Leftarrow q_{1}(x+\nu) \\
q(x+y) \Leftarrow q_{1}(x), q_{2}(y)
\end{gathered}
$$

The decidability of reachability (membership, intersection-non-emptiness) is open.

Equivalent to decidability of provability in MELL (Multiplicative Exponential Linear Logic).

