Automata for Associative-Commutative Operators

Kumar Neeraj Verma

TU München

Motivations

- Cryptographic protocols
- XML documents
- Petri nets
- Linear logic

Alice

 $\{Alice, Random_1\}_{pub(Bob)}$

 $\{Alice, Random_1\}_{pub(Bob)}$

 $\{Random_1, Random_2\}_{pub(Alice)}$

 $\{Alice, Random_1\}_{pub(Bob)}$

 $\{Random_1, Random_2\}_{pub(Alice)}$

 $\{Random_2\}_{pub(Bob)}$

 $\{Alice, Random_1\}_{pub(Bob)}$

 $\{Random_1, Random_2\}_{pub(Alice)}$

 ${Random_2}_{pub(Bob)}$

Attack against the protocol found after 17 years!

Cryptographic protocols and tree automata

Dolev-Yao Model [Dolev & Yao, 1983]:

message	term
nonces, identities,	constants
$\{m\}_k$	encrypt(m,k)
$< m_1, m_2 >$	$\texttt{pair}(m_1,m_2)$

 \Rightarrow Use tree automata to model intruder's knowledge.

Cryptographic protocols and tree automata

Dolev-Yao Model [Dolev & Yao, 1983]:

message	term
nonces, identities,	constants
$\{m\}_k$	encrypt(m,k)
$< m_1, m_2 >$	$\texttt{pair}(m_1,m_2)$

 \Rightarrow Use tree automata to model intruder's knowledge.

Non-ideal cryptographic primitives, e.g. modular exponentiation:

$$\alpha^{x.y} = \alpha^{y.x} \qquad \qquad (\alpha^x)^y = \alpha^{x.y} \qquad \dots$$

 \Rightarrow Use equational tree automata

The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

В

The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

Group key $\alpha^{Na.Nb.Nc}$ is then computed by each participant

The IKA.1 protocol [Steiner et al, 2000] for 3 participants:

Group key $\alpha^{Na.Nb.Nc}$ is then computed by each participant

Code messages $\alpha^{x_1...x_n}$ by terms $e(x_1 + ... + x_n)$

 $\Rightarrow + is ACU$

Use automata modulo ACU

The ACU theory

$$\begin{array}{ll} x+(y+z)=(x+y)+z & \mbox{Associativity} \\ x+y=y+x & \mbox{Commutativity} \\ x+0=x & \mbox{Unit} \end{array}$$

An example protocol using XOR [Cortier03]:

An example protocol using XOR [Cortier03]:

 $N_a + K_{ab}$

An example protocol using XOR [Cortier03]:

An example protocol using XOR [Cortier03]:

An example protocol using XOR [Cortier03]:

+ is XOR

Requires tree automata modulo XOR

The XOR theory

The ACU theory, together with the equation

x + x = 0 Nilpotence

Another example: the Abelian Groups theory

The ACU theory, together with the equation

x+(-x)=0 Cancellation

XML Schemas

This is a term with variable arity symbols

 \Rightarrow Represent using associative and associative-commutative symbol

The above document is the term:

biblio (article (author (Knuth) + author (Bendix) + ...) + thesis (...) + ...)

XML Schemas \equiv a class of documents \equiv tree automata Example: a bibliographic database is a list of articles, an article has a list of authors, a title, ...

Represent using tree automata [DalZilioLugiez03, Seidl03]

An example query: search for articles written by Knuth in 1978 with odd number of coauthors

Translate to tree automata

Tree automata as Horn clauses

Automata transitions		
$\delta(O)$	$= q_{even}$	
$\delta(\pmb{S},\pmb{q_{even}})$	$= q_{odd}$	
$\delta(S, q_{odd})$	$= q_{even}$	
$\delta(+, q_{even}, q_{even})$	$= q_{even}$	
$\delta(+, q_{even}, q_{odd})$	$= q_{odd}$	

. . .

Tree automata as Horn clauses

. . .

Automata trans	sitions	Но	rn clauses
$\delta(O)$	$= q_{even}$	$q_{even}(O)$	
$\delta(S,q_{even})$	$= q_{odd}$	$q_{odd}(S(x))$	$\Leftarrow q_{even}(x)$
$\delta(S,q_{odd})$	$= q_{even}$	$q_{even}(S(x))$	$\Leftarrow q_{odd}(x)$
$\delta(+, q_{even}, q_{even})$	$= q_{even}$	$q_{even}(+(x,y))$	$\Leftarrow q_{even}(x), q_{even}(y)$
$\delta(+, q_{even}, q_{odd})$	$= q_{odd}$	$q_{odd}(+(x,y))$	$\Leftarrow q_{even}(x), q_{odd}(y)$

Tree automata as Horn clauses

Automata trans	sitions	Ног	rn clauses
$\delta(O)$	$= q_{even}$	$q_{even}(O)$	
$\delta(S, q_{even})$	$= q_{odd}$	$q_{odd}(S(x))$	$\Leftarrow q_{even}(x)$
$\delta(S, q_{odd})$	$= q_{even}$	$q_{even}(S(x))$	$\Leftarrow q_{odd}(x)$
$\delta(+, q_{even}, q_{even})$	$= q_{even}$	$q_{even}(+(x,y))$	$\Leftarrow q_{even}(x), q_{even}(y)$
$\delta(+, q_{even}, q_{odd})$	$= q_{odd}$	$q_{odd}(+(x,y))$	$\Leftarrow q_{even}(x), q_{odd}(y)$

A uniform framework for

 describing various extensions of ordinary automata (e.g. alternating, two-way automata)

- dealing with arbitrary equational theories

Automata queries as Horn clauses

To test membership of term m at state q we add a clause

 $\bot \Leftarrow q(m)$

and check whether \perp can be derived from the clauses.

To test non-emptiness of state q we add clause

 $\bot \Leftarrow q(x)$

To test intersection-non-emptiness of states q_1 and q_2 we add clause

 $\perp \Leftarrow q_1(x), q_2(x)$

Tree automata and cryptographic protocols

Terms represent messages involved in a protocol Set of messages known to intruder is expressed by a tree automaton

 $I_C(\texttt{encrypt}(m,k)) \quad \Leftarrow I_C(m), I_C(k)$ $I_C(pair(x, y)) \leftarrow I_C(x), I_C(y)$ Intruder can form pairs

Intruder can encrypt messages $I_{C_{new}}(x) \leftarrow I_{C_{old}}(x)$ Intruder remembers past messages

Need for two-way tree automata

New clauses needed for modeling cryptographic protocols:

$$\begin{split} I_C(m) & \Leftarrow I_C(ext{encrypt}(m,k)), I_C(k) & ext{Intruder can decrypt messages} \\ I_C(x) & \Leftarrow I_C(ext{pair}(x,y)) & ext{Intruder can unpair messages} \\ I_C(y) & \Leftarrow I_C(ext{pair}(x,y)) \end{split}$$

These clauses destruct terms instead of constructing terms

 \Rightarrow Extend one-way tree automata to two-way tree automata

Sometimes we also need alternation clauses: $P(x) \leftarrow P_1(x), P_2(x)$

Ordinary automata are not expressive enough

Given a regular language L, is the ACU-closure of L regular ?

 $ACU(L) = \{t \mid \exists s \in L \cdot s =_{ACU} t\}$

Ordinary automata are not expressive enough

Given a regular language L, is the ACU-closure of L regular ?

 $ACU(L) = \{t \mid \exists s \in L \cdot s =_{ACU} t\}$

No. The set of terms of the form

 $(\dots((a+b)+a+b)\dots+a+b)$

is regular. Its closure is the set of terms with equal number of occurrences of a and b, which is not regular.

Ordinary automata are not expressive enough

Given a regular language L, is the ACU-closure of L regular ?

 $ACU(L) = \{t \mid \exists s \in L \cdot s =_{ACU} t\}$

No. The set of terms of the form

 $(\dots((a+b)+a+b)\dots+a+b)$

is regular. Its closure is the set of terms with equal number of occurrences of a and b, which is not regular.

Solution: interpret the + operation as a special operation satisfying some equational properties.

Example Consider clauses $q_1(a)$ $q_2(a)$ $q_3(0)$ $q_4(x+y) \Leftarrow q_1(x), q_2(y)$ $q_5(x) \Leftarrow q_3(x), q_4(x)$

In the absence of equational theories, nothing is accepted at q_5 .

```
Example Consider clauses

q_1(a)

q_2(a)

q_3(0)

q_4(x+y) \Leftarrow q_1(x), q_2(y)

q_5(x) \Leftarrow q_3(x), q_4(x)
```

In the absence of equational theories, nothing is accepted at q_5 .

In presence of the equational theory XOR:

a+a is accepted at q_4 . Hence 0 is accepted at q_4 . Hence 0 is accepted at q_5 .

Modeling of group key agreement protocol (1)

For each configuration C:

$$\begin{split} k_C(e(0)) \\ k_C(e(x+y)) &\Leftarrow k_C(e(x)), k_C(y) & \text{intruder} \\ k_C(nil) & \text{intruder} \\ k_C(cons(x,y)) &\Leftarrow k_C(x), k_C(y) & \text{intru} \\ k_C(x) &\Leftarrow k_C(cons(x,y)) & \text{intrud} \\ k_C(y) &\Leftarrow k_C(cons(x,y)) & \text{intrud} \\ \end{split}$$

intruder knows α intruder can exponentiate intruder knows empty list intruder can build lists intruder can read heads intruder can read tails

Modeling of group key agreement protocols (2)

Second step:

B expects a message of the form $x; \alpha^y$ B sends the message $\alpha^{N_b}; \alpha^y; \alpha^{y \cdot N_b}$

translated to clauses:

 $\begin{aligned} &k_{C_2}(e(Nb); e(y); e(y+Nb)) \Leftarrow k_{C_1}(x; e(y)) \\ &k_{C_2}(x) \Leftarrow k_{C_1}(x) \end{aligned}$

Modeling of group key agreement protocols (4)

Secrecy requirement on A's view of the group key:

 $\perp \Leftarrow k_{C_3}(e(x); y), k_{C_3}(e(x+Na))$

Translates to intersection emptiness problem of two-way AC automata (decidable)

Modeling of the protocol using XOR

Translation of the second rule:

 $I_C(x + K_{ab} + N_b) \Leftarrow I_{C'}(x)$

Connections with sets of vectors of integers

Consider constants a, b and symbol +.

The clauses

 $\begin{array}{c} P(a) \\ P(x + a + b + b) \Leftarrow P(x) \end{array}$

with final state P define the language

$$\{na+mb \mid n > 0 \land m = 2n-2\}$$

The Parikh image is the set

$$\{(n,m) \mid n > 0 \land m = 2n - 2\}$$

The formula involved is a Presburger formula: formulas built using variables, 0, 1, +, logical connectives and quantifiers, but no multiplication.

$$\{\boldsymbol{\nu} + x_1\boldsymbol{\nu}_1 + \ldots + x_p\boldsymbol{\nu}_p \mid x_1, \ldots, x_p \in \mathbb{N}\}$$

Semilinear sets \equiv finite union of linear sets \equiv Presburger-definable sets Closed under union, intersection, complementation and projection.

$$\{\boldsymbol{\nu} + x_1\boldsymbol{\nu}_1 + \ldots + x_p\boldsymbol{\nu}_p \mid x_1, \ldots, x_p \in \mathbb{N}\}$$

Semilinear sets \equiv finite union of linear sets \equiv Presburger-definable sets Closed under union, intersection, complementation and projection.

The previous example

$$\{(n,m) \mid n > 0 \land m = 2n - 2\}$$

is described using base (1,0) and period (1,2)

This is also the Parikh image of the regular string language $a(abb)^*$.

$$\{\boldsymbol{\nu} + x_1\boldsymbol{\nu}_1 + \ldots + x_p\boldsymbol{\nu}_p \mid x_1, \ldots, x_p \in \mathbb{N}\}$$

Semilinear sets \equiv finite union of linear sets \equiv Presburger-definable sets Closed under union, intersection, complementation and projection.

The previous example

$$\{(n,m) \mid n > 0 \land m = 2n - 2\}$$

is described using base (1,0) and period (1,2)

This is also the Parikh image of the regular string language $a(abb)^*$.

Parikh's Theorem: The Parikh image of a regular string language is semilinear,

$$\{\boldsymbol{\nu} + x_1\boldsymbol{\nu}_1 + \ldots + x_p\boldsymbol{\nu}_p \mid x_1, \ldots, x_p \in \mathbb{N}\}$$

Semilinear sets \equiv finite union of linear sets \equiv Presburger-definable sets Closed under union, intersection, complementation and projection.

The previous example

$$\{(n,m) \mid n > 0 \land m = 2n - 2\}$$

is described using base (1,0) and period (1,2)

This is also the Parikh image of the regular string language $a(abb)^*$.

Parikh's Theorem: The Parikh image of a regular string language is semilinear, and also the Parikh image of a context-free string language is semilinear.

Consider clauses

$$\begin{array}{c} q(5a) \\ q(x{+}y{+}z) \Leftarrow q(x), q(y), q(z) \end{array}$$

q accepts the language $\{na \mid n = 5 \lor \exists m \cdot n = 15 + 10m\}.$

Consider clauses

$$\begin{array}{c} q(5a) \\ q(x{+}y{+}z) \Leftarrow q(x), q(y), q(z) \end{array}$$

q accepts the language $\{na \mid n = 5 \lor \exists m \cdot n = 15 + 10m\}$.

This can also be represented by the context-free language defined by the grammar

 $\begin{array}{c} q \rightarrow aaaaa \\ q \rightarrow qqq \end{array}$

Consider clauses

$$q(5a)$$

 $q(x+y+z) \Leftarrow q(x), q(y), q(z)$

q accepts the language $\{na \mid n = 5 \lor \exists m \cdot n = 15 + 10m\}$.

This can also be represented by the context-free language defined by the grammar

 $q \rightarrow aaaaa$ $q \rightarrow qqq$

 \Rightarrow If we consider clauses corresponding to ordinary (one=way) tree automata (containing + and other symbols), them modulo theories ACU, XOR and Abelian Groups, the languages are closed under intersection and emptiness is decidable.

Complementation

Consider languages modulo XOR:

 $L_{1} = \{f^{m}(a) + f^{n}(a) \mid m, n \ge 0\}$ $L_{2} = \{0\}$ $L_{1} \setminus L_{2} = \{f^{m}(a) + f^{n}(a) \mid m, n \ge 0 \land m \ne n\}$

 L_1 , L_2 accepted by one-way XOR automata, but not $L_1 \setminus L_2$.

 \Rightarrow One-way *XOR* automata not closed under complementation

Counter-example exists also for the Abelian Groups theory.

For ACU theory, we have closure under complementation.

Elimination of two-wayness

Example With theory XOR, given clauses

$$q(x) \Leftarrow p(f(x))$$
 $p(x+y+z) \Leftarrow p_1(x), p_2(y), p_3(z)$
 $p_1(f(x)) \Leftarrow q_1(x)$
 $p_2(a)$
 $p_3(a)$

we deduce clause

 $q(x) \Leftarrow q_1(x)$

Elimination of two-wayness

Example With theory XOR, given clauses

$$q(x) \Leftarrow p(f(x))$$
 $p(x+y+z) \Leftarrow p_1(x), p_2(y), p_3(z)$
 $p_1(f(x)) \Leftarrow q_1(x)$
 $p_2(a)$
 $p_3(a)$

we deduce clause

 $q(x) \Leftarrow q_1(x)$

In general the second clause may not be present but implied by other clauses.

 \Rightarrow Use Presburger-formula to represent the set of all such formulas.

An undecidability result

Alternation clauses: $q(x) \leftarrow q_1(x), q_2(x)$

encode 2 counter automata

 \Rightarrow emptiness undecidable for alternating automata (for theories ACU and Abelian Groups)

For theory XOR we still have decidability.

Other clauses: Petri nets and VASS

Consider clauses of the form

$$q(a+2b)$$

 $q(x+2a+5b) \Leftarrow q(x)$
 $q(x) \Leftarrow q(x+6b)$

equivalently

$$q(1,2)$$

$$q(x + (2,5)) \Leftarrow q(x)$$

$$q(x) \Leftarrow q(x + (0,6))$$

The last clause can be applied only when $x \ge (0, 6)$.

These clauses can perform subtraction: these define Petri nets or VASS (Vector Addition Systems with States). We can now define non-semilinear sets.

Intersection-emptiness etc. continue to be decidable, but are expensive.

Branching VASS

Suppose we consider subtraction, together with branching addition.

 $q(\nu)$ $q(x + \nu) \Leftarrow q_1(x)$ $q(x) \Leftarrow q_1(x + \nu)$ $q(x + y) \Leftarrow q_1(x), q_2(y)$

The decidability of reachability (membership, intersection-non-emptiness) is open.

Equivalent to decidability of provability in MELL (Multiplicative Exponential Linear Logic).