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Motivations

• Cryptographic protocols

• XML documents

• Petri nets

• Linear logic



Public-key Needham-Schroeder protocol

Alice Bob

-
{Alice, Random1}pub(Bob)

�
{Random1, Random2}pub(Alice)

-
{Random2}pub(Bob)

Attack against the protocol found after 17 years!
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Cryptographic protocols and tree automata

Dolev-Yao Model [Dolev & Yao, 1983]:

message term

nonces, identities, . . . constants

{m}k encrypt(m, k)

< m1, m2 > pair(m1, m2)

. . . . . .

⇒ Use tree automata to model intruder’s knowledge.

Non-ideal cryptographic primitives, e.g. modular exponentiation:

αx.y = αy.x (αx)y = αx.y . . .

⇒ Use equational tree automata
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Group key agreement protocols

The IKA.1 protocol [Steiner et al, 2000] for 3 participants:
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α, αNa
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αNb.Nc, αNa.Nc
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@I

αNb.Nc, αNa.Nc

Group key αNa.Nb.Nc is then computed by each participant

Code messages αx1...xn by terms e(x1 + . . . + xn)

⇒ + is ACU

Use automata modulo ACU
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The ACU theory

x+(y+z)=(x+y)+z Associativity

x+y=y+x Commutativity

x+0=x Unit



A protocol using XOR

An example protocol using XOR [Cortier03]:

+ is XOR

Alice Bob

-
Na + Kab

�
Nb + Na

-
Sab + Nb

Requires tree automata modulo XOR
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The XOR theory

The ACU theory, together with the equation

x+x=0 Nilpotence

Another example: the Abelian Groups theory

The ACU theory, together with the equation

x+(−x)=0 Cancellation



XML Schemas

An example XML document:

biblio

�
�	

article

�
�	

author

?
Knuth

?
author

?
Bendix

@
@R

title

. . .

. . .

@
@R

thesis

PPPPPPq. . .

This is a term with variable arity symbols

⇒ Represent using associative and associative-commutative symbol

The above document is the term:

biblio (article (author (Knuth) + author (Bendix) + . . . ) + thesis (. . . ) + . . . )



XML Schemas ≡ a class of documents ≡ tree automata

Example: a bibliographic database is a list of articles, an article has a list of authors, a

title, . . .

Represent using tree automata [DalZilioLugiez03, Seidl03]

An example query: search for articles written by Knuth in 1978 with odd number of

coauthors

Translate to tree automata



Tree automata as Horn clauses

Automata transitions

Horn clauses

δ(O) = qeven

qeven(O)

δ(S, qeven) = qodd

qodd(S(x)) ⇐ qeven(x)

δ(S, qodd) = qeven

qeven(S(x)) ⇐ qodd(x)

δ(+, qeven, qeven) = qeven

qeven(+(x, y)) ⇐ qeven(x), qeven(y)

δ(+, qeven, qodd) = qodd

qodd(+(x, y)) ⇐ qeven(x), qodd(y)

. . .

A uniform framework for

– describing various extensions of ordinary automata (e.g. alternating, two-way

automata)

– dealing with arbitrary equational theories
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Automata queries as Horn clauses

To test membership of term m at state q we add a clause

⊥ ⇐ q(m)

and check whether ⊥ can be derived from the clauses.

To test non-emptiness of state q we add clause

⊥ ⇐ q(x)

To test intersection-non-emptiness of states q1 and q2 we add clause

⊥ ⇐ q1(x), q2(x)



Tree automata and cryptographic protocols

Terms represent messages involved in a protocol

Set of messages known to intruder is expressed by a tree automaton

IC(encrypt(m, k)) ⇐ IC(m), IC(k) Intruder can encrypt messages

IC(pair(x, y)) ⇐ IC(x), IC(y) Intruder can form pairs

ICnew
(x) ⇐ ICold

(x) Intruder remembers past messages



Need for two-way tree automata

New clauses needed for modeling cryptographic protocols:

IC(m) ⇐ IC(encrypt(m, k)), IC(k) Intruder can decrypt messages

IC(x) ⇐ IC(pair(x, y)) Intruder can unpair messages

IC(y) ⇐ IC(pair(x, y))

These clauses destruct terms instead of constructing terms

⇒ Extend one-way tree automata to two-way tree automata

Sometimes we also need alternation clauses: P (x) ⇐ P1(x), P2(x)



Ordinary automata are not expressive enough

Given a regular language L, is the ACU-closure of L regular ?

ACU(L) = {t | ∃s ∈ L · s =ACU t}

No. The set of terms of the form

(. . . ((a+b)+a+b) . . .+a+b)

is regular. Its closure is the set of terms with equal number of occurrences of a and b,

which is not regular.

Solution: interpret the + operation as a special operation satisfying some equational

properties.
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Example Consider clauses

q1(a)

q2(a)

q3(0)

q4(x+y) ⇐ q1(x), q2(y)

q5(x) ⇐ q3(x), q4(x)

In the absence of equational theories, nothing is accepted at q5.

In presence of the equational theory XOR:

a+a is accepted at q4.

Hence 0 is accepted at q4.

Hence 0 is accepted at q5.
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Modeling of group key agreement protocol (1)

For each configuration C:

kC(e(0)) intruder knows α

kC(e(x+y)) ⇐ kC(e(x)), kC(y) intruder can exponentiate

kC(nil) intruder knows empty list

kC(cons(x, y)) ⇐ kC(x), kC(y) intruder can build lists

kC(x) ⇐ kC(cons(x, y)) intruder can read heads

kC(y) ⇐ kC(cons(x, y)) intruder can read tails



Modeling of group key agreement protocols (2)

Second step:

B expects a message of the form x; αy

B sends the message αNb ; αy; αy.Nb

translated to clauses:

kC2
(e(Nb); e(y); e(y+Nb)) ⇐ kC1

(x; e(y))

kC2
(x) ⇐ kC1

(x)



Modeling of group key agreement protocols (4)

Secrecy requirement on A’s view of the group key:

⊥ ⇐ kC3
(e(x); y), kC3

(e(x+Na))

Translates to intersection emptiness problem of two-way AC automata (decidable)



Modeling of the protocol using XOR

Alice Bob

-
Na + Kab

�
Nb + Na

-
Sab + Nb

Translation of the second rule:

IC(x+Kab+Nb) ⇐ IC′(x)



Connections with sets of vectors of integers

Consider constants a, b and symbol +.

The clauses

P (a)

P (x+a+b+b) ⇐ P (x)

with final state P define the language

{na + mb | n > 0 ∧ m = 2n − 2}

The Parikh image is the set

{(n, m) | n > 0 ∧ m = 2n − 2}

The formula involved is a Presburger formula:

formulas built using variables, 0, 1, +, logical connectives and quantifiers,

but no multiplication.



A base ν ∈ N
p and periods ν1, . . . , νk ∈ N

p define a linear set

{ν + x1ν1 + . . . + xpνp | x1, . . . , xp ∈ N}

Semilinear sets ≡ finite union of linear sets ≡ Presburger-definable sets

Closed under union, intersection, complementation and projection.

The previous example

{(n, m) | n > 0 ∧ m = 2n − 2}

is described using base (1, 0) and period (1, 2)

This is also the Parikh image of the regular string language a(abb)∗.

Parikh’s Theorem: The Parikh image of a regular string language is semilinear,

and also the Parikh image of a context-free string language is semilinear.
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Consider clauses

q(5a)

q(x+y+z) ⇐ q(x), q(y), q(z)

q accepts the language {na | n = 5 ∨ ∃m · n = 15 + 10m}.

This can also be represented by the context-free language defined by the grammar

q → aaaaa

q → qqq

⇒ If we consider clauses corresponding to ordinary (one=way) tree automata

(containing + and other symbols), them modulo theories ACU, XOR and Abelian

Groups, the languages are closed under intersection and emptiness is decidable.
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Complementation

Consider languages modulo XOR:

L1 = {fm(a)+fn(a) | m, n ≥ 0}

L2 = {0}

L1 \ L2 = {fm(a)+fn(a) | m, n ≥ 0 ∧ m 6= n}

L1, L2 accepted by one-way XOR automata, but not L1 \ L2.

⇒ One-way XOR automata not closed under complementation

Counter-example exists also for the Abelian Groups theory.

For ACU theory, we have closure under complementation.



Elimination of two-wayness

Example With theory XOR, given clauses

q(x) ⇐ p(f(x))

p(x + y + z) ⇐ p1(x), p2(y), p3(z)

p1(f(x)) ⇐ q1(x)

p2(a)

p3(a)

we deduce clause

q(x) ⇐ q1(x)

In general the second clause may not be present but implied by other clauses.

⇒ Use Presburger-formula to represent the set of all such formulas.
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An undecidability result

Alternation clauses: q(x) ⇐ q1(x), q2(x)

encode 2 counter automata

⇒ emptiness undecidable for alternating automata

(for theories ACU and Abelian Groups)

For theory XOR we still have decidability.



Other clauses: Petri nets and VASS

Consider clauses of the form

q(a+2b)

q(x + 2a + 5b) ⇐ q(x)

q(x) ⇐ q(x + 6b)

equivalently

q(1, 2)

q(x + (2, 5)) ⇐ q(x)

q(x) ⇐ q(x + (0, 6))

The last clause can be applied only when x ≥ (0, 6).

These clauses can perform subtraction: these define Petri nets or VASS (Vector Addition

Systems with States). We can now define non-semilinear sets.

Intersection-emptiness etc. continue to be decidable, but are expensive.



Branching VASS

Suppose we consider subtraction, together with branching addition.

q(ν)

q(x + ν) ⇐ q1(x)

q(x) ⇐ q1(x + ν)

q(x + y) ⇐ q1(x), q2(y)

The decidability of reachability (membership, intersection-non-emptiness) is open.

Equivalent to decidability of provability in MELL (Multiplicative Exponential Linear

Logic).


