Program Optimization

Exercise Sheet 1

Deadline: November 2, in 02.07.053, before 15:00.

Exercises marked with (P) are discussed and solved together at the lab sessions. Exercises marked with (H) are to be solved independently as homework.

Exercise 1: (P) VoTUM: Available expressions

Go to http://www2.in.tum.de/projects/votum, install VoTUM 0.7.5, and make yourself familiar with the system.

Now consider the following sequence of C statements:

```c
int a, b, c;
c = (a + b);
c = (a - b);
while (a + b < 5)
    b = a + b;
```

Use VoTUM to compute available expressions and perform the optimization to eliminate redundant computations.

Exercise 2: (P) Semantics of Pre- and Post-increments

Assume we have a language L_1 given by the following grammar:

$$
e ::= x \quad \text{Variable} \\
| \quad e \quad \text{Constant} \\
| \quad x+ \quad \text{Post-increment of a variable} \\
| \quad +x \quad \text{Pre-increment of a variable} \\
| \quad e_1 + e_2 \quad \text{Addition of two expressions} \\
| \quad e_1 - e_2 \quad \text{Subtraction of two expressions}
$$

The pre- and post-increments should be familiar from Java (where $x+$ is written $x++$).

In the lecture, expressions had no side-effects, but these increments update the value of a given variable. Therefore, an expression now will both return a value and update the state $\rho \in Env = Var \rightarrow \mathbb{Z}$, so the semantics of an expression has the following type:

$$\llbracket e \rrbracket_1 : Env \rightarrow \mathbb{Z} \times Env \, .$$

Define for each kind of expression $e \in L_1$, the semantic function $\llbracket e \rrbracket_1$. For this, and in the lecture, we use the update operation \oplus, which is defined as follows:

$$(\rho \oplus \{x \mapsto a\})(y) = \begin{cases}
a & \text{if } y = x \\
\rho(y) & \text{otherwise.}
\end{cases}$$
Exercise 3: (H) Translating Pre- and Post-increments 10 Points

Let \(L_2 \) be the language defined by the following grammar:

\[
\begin{align*}
 l &::= e \mid x := e \mid l_1; \ l_2 \\
 e &::= x \mid c \mid e_1 + e_2 \mid e_1 - e_2
\end{align*}
\]

Words generated by the first rule are essentially sequences of expressions and variable assignments. Right-hand sides of assignments are pure, i.e., they do not modify a state.

a) Give the semantics for the language \(L_2 \). For that, define by structural induction a function of the type
\[
[e]_2 : Env \rightarrow \mathbb{Z} \times Env.
\]

The value of a sequence \(l \) is the value of the last expression in the sequence. For example,

\[
[x := 5; \ x + 3]_2 \rho = \langle 8, \rho \oplus \{x \mapsto 5\} \rangle, \quad [1; \ y := 3]_2 \rho = \langle 3, \rho \oplus \{y \mapsto 3\} \rangle.
\]

b) Define a function \(T : L_1 \rightarrow L_2 \) which translates an expression of the language \(L_1 \) to an expression of the language \(L_2 \) that produces the same value and preserves the effect on variables occurring in the original expression (the translation may introduce temporary variables), i.e.,

\[
\forall e \in L_1, \forall \rho, \rho'_1, \rho'_2 \in Env, \forall v_1, v_2 \in \mathbb{Z}:
\]

\[
\langle v_1, \rho'_1 \rangle = [e]_1 \rho \text{ and } \langle v_2, \rho'_2 \rangle = [T(e)]_2 \rho \text{ implies that } v_1 = v_2 \text{ and } \forall x \in \text{Vars}(e), \ \rho'_1 x = \rho'_2 x.
\]

For this, you should define the auxiliary function \(T' : L_1 \times \mathbb{Z} \rightarrow L_2 \). The integer parameter \(i \) indicates the next free temporary variable \(t_i \), in which the result of the computation will be stored. For example,

\[
T'(x++ + (y - +x), 5) =
\]

\[
t_5 := x; \ x := x + 1; \ t_6 := y; \ x := x + 1; \ t_7 := x; \ t_6 := t_6 - t_7; \ t_5 := t_5 + t_6
\]

We can then define \(T(e) = T'(e, 1); t_1 \). You do not have to give a proof of correctness, unless you really want to.

Exercise 4: (H) Computing Available Expressions 5 Points

The following is a control flow graph of the program from exercise 1.

```
1 -> 2 -> 3 -> 4 -> 5
```

```
c := a + b
```

```
c := a - b
```

```
a + b ≤ 5
```

```
b = a + b
```

```
a + b ≥ 5
```

Write down the constraint system and compute for each node \(u \) the set \(A[u] \) of available expressions for this program.