Idea:

### Worklist Iteration

If an unknown  $x_i$  changes its value, we re-compute all unknowns which depend on  $x_i$ . Technically, we require:

 $\rightarrow$  the lists  $Dep f_i$  of unknowns which are accessed during evaluation of  $f_i$ . From that, we compute the lists:

$$I[x_i] = \{x_j \mid x_i \in Dep f_j\}$$

i.e., a list of all  $x_j$  which depend on the value of  $x_i$ ;

- $\rightarrow$  the values  $D[x_i]$  of the  $x_i$  where initially  $D[x_i] = \bot$ ;
- $\rightarrow$  a list W of all unknowns whose value must be recomputed ...

## The Algorithm:

```
W = [x_1, \dots, x_n];
           while (W \neq []) {
                   x_i = \operatorname{extract} W;
                   t = f_i \operatorname{eval};
                   t = D[x_i] \sqcup t;
                   if (t \neq D[x_i]) {
                          D[x_i] = t;
                         W = \operatorname{append} I[x_i] W;
where: eval x_j = D[x_j]
```

# Example:

$$x_1 \supseteq \{a\} \cup x_3$$
  
 $x_2 \supseteq x_3 \cap \{a, b\}$   
 $x_3 \supseteq x_1 \cup \{c\}$ 

|       | I              |  |  |
|-------|----------------|--|--|
| $x_1$ | $\{x_3\}$      |  |  |
| $x_2$ | Ø              |  |  |
| $x_3$ | $\{x_1, x_2\}$ |  |  |

# Example:

$$x_1 \supseteq \{a\} \cup x_3$$
  
 $x_2 \supseteq x_3 \cap \{a, b\}$   
 $x_3 \supseteq x_1 \cup \{c\}$ 

|       | I                         |  |  |
|-------|---------------------------|--|--|
| $x_1$ | $\{x_3\}$                 |  |  |
| $x_2$ | Ø                         |  |  |
| $x_3$ | $\left\{x_1, x_2\right\}$ |  |  |

| $D[x_1]$     | $D[x_2]$     | $D[x_3]$  | W               |
|--------------|--------------|-----------|-----------------|
| Ø            | Ø            | Ø         | $x_1, x_2, x_3$ |
| { <u>a</u> } | Ø            | Ø         | $x_2, x_3$      |
| { <u>a</u> } | Ø            | Ø         | $x_3$           |
| { <u>a</u> } | Ø            | $\{a,c\}$ | $x_1, x_2$      |
| $\{a,c\}$    | Ø            | $\{a,c\}$ | $x_3, x_2$      |
| $\{a,c\}$    | Ø            | $\{a,c\}$ | $x_2$           |
| $\{a,c\}$    | { <b>a</b> } | $\{a,c\}$ | []              |

### Theorem

Let  $x_i \supseteq f_i(x_1, \ldots, x_n)$ ,  $i = 1, \ldots, n$  denote a constraint system over the complete lattice  $\mathbb{D}$  of hight h > 0.

(1) The algorithm terminates after at most  $h \cdot N$  evaluations of right-hand sides where

$$N = \sum_{i=1}^{n} (1 + \# (\underline{\textit{Dep } f_i})) \qquad // \text{ size of the system :-)}$$

(2) The algorithm returns a solution. If all  $f_i$  are monotonic, it returns the least one.

### **Proof:**

### Ad (1):

Every unknown  $x_i$  may change its value at most h times :-) Each time, the list  $I[x_i]$  is added to W. Thus, the total number of evaluations is:

$$\leq n + \sum_{i=1}^{n} (h \cdot \# (I[x_i]))$$

$$= n + h \cdot \sum_{i=1}^{n} \# (I[x_i])$$

$$= n + h \cdot \sum_{i=1}^{n} \# (Dep f_i)$$

$$\leq h \cdot \sum_{i=1}^{n} (1 + \# (Dep f_i))$$

$$= h \cdot N$$

### Ad (2):

We only consider the assertion for monotonic  $f_i$ .

Let  $D_0$  denote the least solution. We show:

- $D_0[x_i] \supseteq D[x_i]$  (all the time)
- $D[x_i] \not\supseteq f_i \text{ eval } \Longrightarrow x_i \in W$  (at exit of the loop body)
- On termination, the algo returns a solution :-))

### Discussion:

- In the example, fewer evaluations of right-hand sides are required than for RR-iteration :-)
- The algo also works for non-monotonic  $f_i$ :-)
- For monotonic  $f_i$ , the algo can be simplified:

$$|t = D[x_i] \sqcup t; | \Longrightarrow \quad [;]$$

• In presence of widening, we replace:

$$t = D[x_i] \sqcup t; \implies t = D[x_i] \sqcup t;$$

• In presence of Narrowing, we replace:

$$\boxed{t = D[x_i] \sqcup t;} \implies \boxed{t = D[x_i] \sqcap t;}$$

## Warning:

- The algorithm relies on explicit dependencies among the unknowns. So far in our applications, these were obvious. This need not always be the case :-(
- We need some strategy for extract which determines the next unknown to be evaluated.
- It would be ingenious if we always evaluated first and then accessed the result ... :-)

⇒ recursive evaluation ...

### Idea:

If during evaluation of  $f_i$ , an unknown  $x_j$  is accessed,  $x_j$  is first solved recursively. Then  $x_i$  is added to  $I[x_j]$  :-)

```
eval x_i x_j = solve x_j; I[x_j] = I[x_j] \cup \{x_i\}; D[x_j];
```

→ In order to prevent recursion to descend infinitely, a set *Stable* of unknown is maintained for which solve just looks up their values :-)

Initially,  $Stable = \emptyset$  ...

### The Function solve:

```
solve x_i = if(x_i \not\in Stable) {
                         Stable = Stable \cup \{x_i\};
                         t = f_i \text{ (eval } x_i);
                         t = D[x_i] \sqcup t;
                         if (t \neq D[x_i]) {
                                 W = I[x_i]; \quad I[x_i] = \emptyset;
                                 D[x_i] = t;
                                 Stable = Stable \backslash W;
                                 app solve W;
```



Helmut Seidl, TU München ;-)

## Example:

Consider our standard example:

$$x_1 \supseteq \{a\} \cup x_3$$
 $x_2 \supseteq x_3 \cap \{a, b\}$ 
 $x_3 \supseteq x_1 \cup \{c\}$ 

A trace of the fixpoint algorithm then looks as follows:

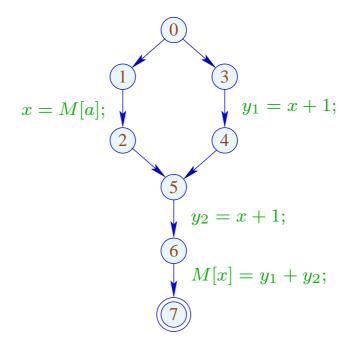
solve  $x_2$ eval  $x_2$   $x_3$ solve  $x_3$ eval  $x_3 x_1$ solve  $x_1$ eval  $x_1$   $x_3$ solve  $x_3$ stable!  $I[x_3] = \{x_1\}$  $D[x_1] = \{a\}$  $I[x_1] = \{x_3\}$  $\Rightarrow \{a\}$  $D[x_3] = \{a, c\}$  $I[x_3] = \emptyset$ solve  $x_1$ eval  $x_1$   $x_3$ solve  $x_3$ stable!  $I[x_3] = \{x_1\}$  $\Rightarrow \{a,c\}$  $D[x_1] = \{\overline{a,c}\}$  $I[x_1] = \emptyset$ solve  $x_3$ eval  $x_3 x_1$ solve  $x_1$ stable!  $I[x_1] = \{x_3\}$  $\Rightarrow \{a,c\}$ ok  $I[x_3] = \{x_1, x_2\}$  $\Rightarrow \{a,c\}$ 

 $D[x_2] = \{a\}$ 

- $\rightarrow$  Evaluation starts with an interesting unknown  $x_i$  (e.g., the value at stop)
- $\rightarrow$  Then automatically all unknowns are evaluated which influence  $x_i$ :-)
- → The number of evaluations is often smaller than during worklist iteration ;-)
- → The algorithm is more complex but does not rely on pre-computation of variable dependencies :-))
- → It also works if variable dependencies during iteration change !!!
  - ⇒ interprocedural analysis

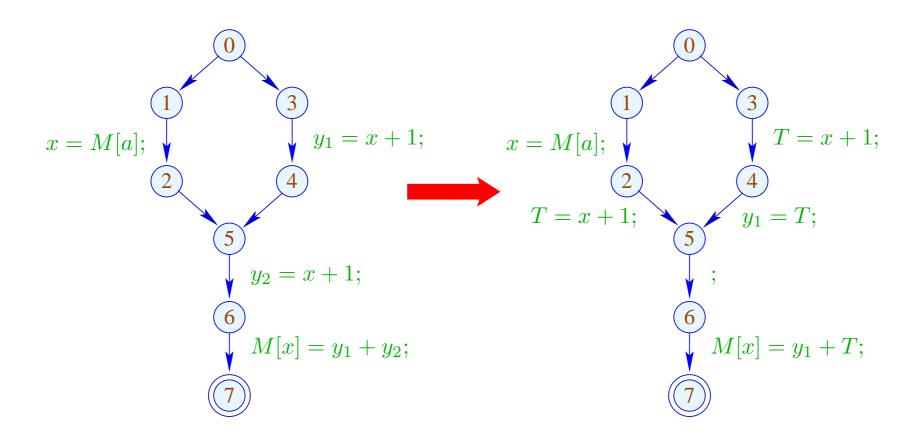
## 1.7 Eliminating Partial Redundancies

## Example:



- // x+1 is evaluated on every path ...
- // on one path, however, even twice :-(

# Goal:



### Idea:

- (1) Insert assignments  $T_e = e$ ; such that e is available at all points where the value of e is required.
- (2) Thereby spare program points where *e* either is already available or will definitely be computed in future.
  - Expressions with the latter property are called very busy.
- (3) Replace the original evaluations of e by accesses to the variable  $T_e$ .

→ we require a novel analysis :-))

An expression e is called busy along a path  $\pi$ , if the expression e is evaluated before any of the variables  $x \in Vars(e)$  is overwritten.

// backward analysis!

e is called very busy at u, if e is busy along every path  $\pi: u \to^* stop$ .

An expression e is called busy along a path  $\pi$ , if the expression e is evaluated before any of the variables  $x \in Vars(e)$  is overwriten.

// backward analysis!

e is called very busy at u, if e is busy along every path  $\pi: u \to^* stop$ .

Accordingly, we require:

$$\mathcal{B}[\underline{u}] = \bigcap \{ \llbracket \pi 
rbracket^\sharp \emptyset \mid \pi : \underline{u} o^* \underline{stop} \}$$

where for  $\pi = k_1 \dots k_m$ :

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_1 \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_m \rrbracket^{\sharp}$$