... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(

1.9 Eliminating Partially Dead Code

Example:

x+1 need only be computed along one path ;-(

Idea:

Problem:

- The definition x = e; $(x \notin Vars_e)$ may only be moved to an edge where e is safe ;-)
- The definition must still be available for uses of x;-)

 \Longrightarrow

We define an analysis which maximally delays computations:

... where:

$$Use_e = \{y = e'; \mid y \in Vars_e\}$$

 $Def_x = \{y = e'; \mid y \equiv x \lor x \in Vars_{e'}\}$

... where:

$$Use_e = \{y = e'; | y \in Vars_e\}$$

$$Def_x = \{y = e'; | y \equiv x \lor x \in Vars_{e'}\}$$

For the remaining edges, we define:

Warning:

We may move y = e; beyond a join only if y = e; can be delayed along all joining edges:

Here, T = x + 1; cannot be moved beyond 1 !!!

We conclude:

- The partial ordering of the lattice for delayability is given by "⊇".
- At program start: $D_0 = \emptyset$. Therefore, the sets $\mathcal{D}[u]$ of at u delayable assignments can be computed by solving a system of constraints.
- We delay only assignments a where a a has the same effect as a alone.
- The extra insertions render the original assignments as assignments to dead variables ...

Transformation 7:

Note:

Transformation T7 is only meaningful, if we subsequently eliminate assignments to dead variables by means of transformation T2 :-)

In the example, the partially dead code is eliminated:

	\mathcal{D}
0	Ø
1	$\{T = x + 1;\}$
2	$\{T = x + 1;\}$
3	\emptyset
4	Ø

	\mathcal{D}
0	Ø
1	$\{T = x + 1;\}$
2	$\{T = x + 1;\}$
3	\emptyset
4	Ø

	\mathcal{L}
0	$\{x\}$
1	$\{x\}$
2	$\{x\}$
2'	$\{x,T\}$
3	\emptyset
4	Ø

Remarks:

- After T7, all original assignments y = e; with $y \notin Vars_e$ are assignments to dead variables and thus can always be eliminated :-)
- By this, it can be proven that the transformation is guaranteed to be non-degradating efficiency of the code :-))
- Similar to the elimination of partial redundancies, the transformation can be repeated :-}

Conclusion:

- → The design of a meaningful optimization is non-trivial.
- → Many transformations are advantageous only in connection with other optimizations :-)
- → The ordering of applied optimizations matters !!
- → Some optimizations can be iterated !!!

... a meaningful ordering:

T4	Constant Propagation
	Interval Analysis
	Alias Analysis
T6	Loop Rotation
T1, T3, T2	Available Expressions
T2	Dead Variables
T7, T2	Partially Dead Code
T5, T3, T2	Partially Redundant Code

2 Replacing Expensive Operations by Cheaper Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$

	Multiplications	Additions
naive	$\frac{1}{2}n(n+1)$	n
re-use	2n-1	n
Horner-Scheme	n	n

Idea:

$$f(x) = (\dots((a_n \cdot x + a_{n-1}) \cdot x + a_{n-2}) \dots) \cdot x + a_0$$

- (2) Tabulation of a polynomial f(x) of degree n:
 - \rightarrow To recompute f(x) for every argument x is too expensive :-)
- \rightarrow Luckily, the *n*-th differences are constant !!!

$$f(x) = 3x^3 - 5x^2 + 4x + 13$$

n	$\int f(n)$	Δ	Δ^2	Δ^3
0	13	2	8	18
1	15	10	26	
2	25	36		·
3	61			•
4				

Here, the n-th difference is always

$$\Delta_h^n(f) = n! \cdot a_n \cdot h^n \qquad (h \text{ step width})$$

Costs:

- n times evaluation of f;
- $\frac{1}{2} \cdot (n-1) \cdot n$ subtractions to determine the Δ^k ;
- n additions for every further value :-)

 \Longrightarrow

Number of multiplications only depends on n:-))

Simple Case:
$$f(x) = a_1 \cdot x + a_0$$

- ... naturally occurs in many numerical loops :-)
- The first differences are already constant:

$$f(x+h) - f(x) = a_1 \cdot h$$

• Instead of the sequence: $y_i = f\left(x_0 + i \cdot h\right), \quad i \geq 0$ we compute: $y_0 = f\left(x_0\right), \quad \Delta = a_1 \cdot h$ $y_i = y_{i-1} + \Delta, \quad i > 0$

... or, after loop rotation:

```
i=i_0; if (i < n) do \{ A = A_0 + b \cdot i; M[A] = \dots; i = i + h; \} while (i < n);
```


... and reduction of strength:

Warning:

- The values b, h, A_0 must not change their values during the loop.
- i, A may be modified at exactly one position in the loop :-(
- One may try to eliminate the variable i altogether:
 - \rightarrow i may not be used else-where.
 - \rightarrow The initialization must be transformed into: $A = A_0 + b \cdot i_0$.
 - The loop condition i < n must be transformed into: A < N for $N = A_0 + b \cdot n$.
 - \rightarrow b must always be different from zero !!!

Approach:

Identify

```
... loops;
```

... iteration variables;

... constants;

... the matching use structures.

Loops:

... are identified through the node v with back edge $(_,_,v)$:-)

For the sub-graph G_v of the cfg on $\{w \mid v \Rightarrow w\}$, we define:

$$\mathsf{Loop}[v] = \{w \mid w \to^* v \text{ in } G_v\}$$

	\mathcal{P}
0	{0}
1	$\{0,1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

	\mathcal{P}
0	{0}
1	$\{0,1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

	\mathcal{P}
0	{0}
1	$\{0,1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

We are interested in edges which during each iteration are executed exactly once:

Graph-theoretically, this is not easily expressible :-(

Edges k could be selected such that:

- the sub-graph $G = \text{Loop}[v] \setminus \{(\underline{\ }, \underline{\ }, \underline{\ }v)\}$ is connected;
- the graph $G \setminus \{k\}$ is split into two unconnected sub-graphs.

Edges k could be selected such that:

- the sub-graph $G = \text{Loop}[v] \setminus \{(\underline{\ }, \underline{\ }, \underline{\ }v)\}$ is connected;
- the graph $G \setminus \{k\}$ is split into two unconnected sub-graphs.

On the level of source programs, this is trivial:

do
$$\{s_1 \dots s_k\}$$
 while $(e);$

The desired assignments must be among the s_i :-)