Problems:

- How can we represent functions $f: \mathbb{D} \to \mathbb{D}$???
- If $\#\mathbb{D} = \infty$, then $\mathbb{D} \to \mathbb{D}$ has infinite strictly increasing chains :-(

Simplification: Copy-Constants

- \rightarrow Conditions are interpreted as ; :-)
- \rightarrow Only assignments x=e; with $e \in Vars \cup \mathbb{Z}$ are treated exactly :-)

Observation:

 \rightarrow The effects of assignments are:

$$[x = e;]^{\sharp} D = \begin{cases} D \oplus \{x \mapsto c\} & \text{if} \quad e = c \in \mathbb{Z} \\ D \oplus \{x \mapsto (D \ y)\} & \text{if} \quad e = y \in Vars \\ D \oplus \{x \mapsto \top\} & \text{otherwise} \end{cases}$$

- \rightarrow Let \mathbb{V} denote the (finite !!!) set of constant right-hand sides. Then variables may only take values from \mathbb{V}^{\top} :-))
- \rightarrow The occurring effects can be taken from

$$\mathbb{D}_f \to \mathbb{D}_f \quad \text{with} \quad \mathbb{D}_f = (Vars \to \mathbb{V}^\top)_\perp$$

 \rightarrow The complete lattice is huge, but finite !!!

Improvement:

- \rightarrow Not all functions from $\mathbb{D}_f \rightarrow \mathbb{D}_f$ will occur :-)
- \rightarrow All occurring functions $\lambda D. \perp \neq M$ are of the form:

$$M = \{x \mapsto (b_x \sqcup \bigsqcup_{y \in I_x} y) \mid x \in Vars\}$$
 where:
 $M D = \{x \mapsto (b_x \sqcup \bigsqcup_{y \in I_x} D y) \mid x \in Vars\}$ für $D \neq \bot$

 \rightarrow Let \mathbb{M} denote the set of all these functions. Then for $M_1, M_2 \in \mathbb{M}$ $(M_1 \neq \lambda D. \perp \neq M_2)$:

$$(M_1 \sqcup M_2) x = (M_1 x) \sqcup (M_2 x)$$

 \rightarrow For k = # Vars , M has height $\mathcal{O}(k^2)$:-)

Improvement (Cont.):

 \rightarrow Also, composition can be directly implemented:

$$(M_{1} \circ M_{2}) x = b' \sqcup \bigsqcup_{y \in I'} y \qquad \text{with}$$

$$b' = b \sqcup \bigsqcup_{z \in I} b_{z}$$

$$I' = \bigcup_{z \in I} I_{z} \qquad \text{where}$$

$$M_{1} x = b \sqcup \bigsqcup_{y \in I} y$$

$$M_{2} z = b_{z} \sqcup \bigsqcup_{y \in I_{z}} y$$

 \rightarrow The effects of assignments then are:

$$[\![x=e;]\!]^{\sharp} = \begin{cases} \operatorname{Id}_{Vars} \oplus \{x \mapsto c\} & \text{if} \quad e=c \in \mathbb{Z} \\ \operatorname{Id}_{Vars} \oplus \{x \mapsto y\} & \text{if} \quad e=y \in Vars \\ \operatorname{Id}_{Vars} \oplus \{x \mapsto \top\} & \text{otherwise} \end{cases}$$

$$[t = 0;]^{\sharp} = \{a_1 \mapsto a_1, \text{ret} \mapsto \text{ret}, [t \mapsto 0]\}$$
$$[a_1 = t;]^{\sharp} = \{a_1 \mapsto t, \text{ret} \mapsto \text{ret}, t \mapsto t\}$$

In order to implement the analysis, we additionally must construct the effect of a call $k = (_, f();, _)$ from the effect of a procedure f:

If
$$\llbracket \operatorname{work} \rrbracket^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

then $H \llbracket \operatorname{work} \rrbracket^{\sharp} = \operatorname{Id}_{\{t\}} \oplus \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1\}$
 $= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$

Now we can perform fixpoint iteration :-)

	1
7	$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$ $\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$ $\{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$ $\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$
9	$\left\{ a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t \right\}$
10	$ \left\{ a_1 \mapsto a_1, ret \mapsto a_1, t \mapsto t \right\} $
8	$\left\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\right\}$

$$[[(8,...,9)]^{\sharp} \circ [[8]]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \circ$$

$$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

$$= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

	2
7	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$
9	$\{a_1 \mapsto a_1, ret \mapsto a_1 \sqcup ret, t \mapsto t\}$
10	$\{a_1 \mapsto a_1, ret \mapsto a_1, t \mapsto t\}$
8	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$

$$[[(8,...,9)]^{\sharp} \circ [[8]]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \circ$$

$$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

$$= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

If we know the effects of procedure calls, we can put up a constraint system for determining the abstract state when reaching a program point:

$$egin{aligned} \mathcal{R}[\mathsf{main}] & \sqsupseteq & \mathsf{enter}^\sharp \ d_0 \ \mathcal{R}[f] & \sqsupseteq & \mathsf{enter}^\sharp \ (\mathcal{R}[u]) & k = (u,f();,_) \ \mathsf{call} \ \mathcal{R}[v] & \sqsupseteq & \mathcal{R}[f] & v & \mathsf{entry} \ \mathsf{point} \ \mathsf{of} & f \ \mathcal{R}[v] & \sqsupseteq & \llbracket k
rbracket^\sharp \ (\mathcal{R}[u]) & k = (u,_,v) \ \mathsf{edge} \end{aligned}$$

$$\begin{array}{|c|c|c|} \hline 0 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \hline 1 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \hline 2 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \hline 3 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \hline 4 & \{a_1 \mapsto 0, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \hline 5 & \{a_1 \mapsto 0, \mathsf{ret} \mapsto 0, t \mapsto 0\} \\ \hline 6 & \{a_1 \mapsto 0, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \hline \end{array}$$

Discussion:

- At least copy-constants can be determined interprocedurally.
- For that, we had to ignore conditions and complex assignments :-(
- In the second phase, however, we could have been more precise :-)
- The extra abstractions were necessary for two reasons:
 - (1) The set of occurring transformers $\mathbb{M} \subseteq \mathbb{D} \to \mathbb{D}$ must be finite;
 - (2) The functions $M \in \mathbb{M}$ must be efficiently implementable :-)
- The second condition can, sometimes, be abandoned ...

Observation:

Sharir/Pnueli, Cousot

- → Often, procedures are only called for few distinct abstract arguments.
- → Each procedure need only to be analyzed for these :-)
- → Put up a constraint system:

Discussion:

- This constraint system may be huge :-(
- We do not want to solve it completely!!!
- It is sufficient to compute the correct values for all calls which occur, i.e., which are necessary to determine the value $[\![main(), a_0]\!]^{\sharp} \longrightarrow We$ apply our local fixpoint algorithm :-))
- The fixpoint algo provides us also with the set of actual parameters $a \in \mathbb{D}$ for which procedures are (possibly) called and all abstract values at their program points for each of these calls :-)

Let us try a full constant propagation ...

	a_1	ret	a_1	ret
0	Т	T	Т	Т
1	Т	T	T	T
2	Т	T		
3	Т	T	Т	T
4	Т	T	0	T
7	0	T	0	T
8	0	T	上	
9	0	T	0	T
10	0	T	0	0
5	Т	T	0	0
main()	Т	T	0	1

Discussion:

- In the Example, the analysis terminates quickly :-)
- If D has finite height, the analysis terminates if each procedure is only analyzed for finitely many arguments :-))
- Analogous analysis algorithms have proved very effective for the analysis of Prolog :-)
- Together with a points-to analysis and propagation of negative constant information, this algorithm is the heart of a very successful race analyzer for C with Posix threads :-)

(2) The Call-String Approach:

Idea:

- → Compute the set of all reachable call stacks!
- \rightarrow In general, this is infinite :-(
- \rightarrow Only treat stacks up to a fixed depth d precisely! From longer stacks, we only keep the upper prefix of length d:-)
- \rightarrow Important special case: d = 0.
 - → Just track the current stack frame ...