Next complicated case: permutations.

- Every permutation can be decomposed into a set of disjoint shifts:-)
- Any permutation of n registers with r shifts can be realized by n-r swaps ...

Next complicated case: permutations.

- Every permutation can be decomposed into a set of disjoint shifts
 :-)
- Any permutation of n registers with r shifts can be realized by n-r swaps ...

Example

$$\psi = R_1 = R_2 \mid R_2 = R_5 \mid R_3 = R_4 \mid R_4 = R_3 \mid R_5 = R_1$$

consists of the cycles (R_1, R_2, R_5) and (R_3, R_4) . Therefore:

$$\psi = R_1 \leftrightarrow R_2;$$

$$R_2 \leftrightarrow R_5;$$

$$R_3 \leftrightarrow R_4;$$

The general case:

- Every register receives its value at most once.
- The assignment therefore can be decomposed into a permutation together with tree-like assignments (directed towards the leaves) ...

Example

$$\psi = R_1 = R_2 \mid R_2 = R_4 \mid R_3 = R_5 \mid R_5 = R_3$$

The parallel assignment realizes the linear register moves for R_1 , R_2 and R_4 together with the cyclic shift for R_3 and R_5 :

$$\psi = R_1 = R_2;$$

$$R_2 = R_4;$$

$$R_3 \leftrightarrow R_5;$$

Interprocedural Register Allocation:

- \rightarrow For every local variable, there is an entry in the stack frame.
- → Before calling a function, the locals must be saved into the stack frame and be restored after the call.
- → Sometimes there is hardware support :-)
 Then the call is transparent for all registers.
- \rightarrow If it is our responsibility to save and restore, we may ...
 - save only registers which are over-written :-)
 - restore overwritten registers only.
- → Alternatively, we save only registers which are still live after the call and then possibly into different registers ⇒ reduction of life ranges :-)

3.2 Instruction Level Parallelism

Modern processors do not execute one instruction after the other strictly sequentially.

Here, we consider two approaches:

- (1) VLIW (Very Large Instruction Words)
- (2) Pipelining

VLIW:

One instruction simultaneously executes up to k (e.g., 4:-) elementary Instructions.

Pipelining:

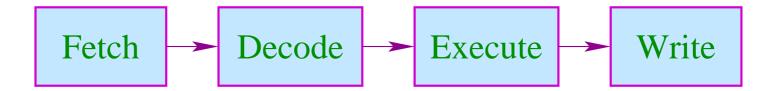
Instruction execution may overlap.

Example:

$$w = (R_1 = R_2 + R_3 \mid D = D_1 * D_2 \mid R_3 = M[R_4])$$

Warning:

- Instructions occupy hardware ressources.
- Instructions may access the same busses/registers \Longrightarrow hazards
- Results of an instruction may be available only after some delay.
- During execution, different parts of the hardware are involved:



• During Execute and Write different internal registers/busses/alus may be used.

We conclude:

Distributing the instruction sequence into sequences of words is amenable to various constraints ...

In the following, we ignore the phases Fetch und Decode :-)

Examples for Constraints:

- (1) at most one load/store per word;
- (2) at most one jump;
- (3) at most one write into the same register.

Example Timing:

Floating-point Operation	3
Load/Store	2
Integer Arithmetic	1

Timing Diagram:

 R_3 is over-written, after the addition has fetched 2 :-)

If a register is accessed simultaneously (here: R_3), a strategy of conflict solving is required ...

Conflicts:

Read-Read: A register is simultaneously read.

⇒ in general, unproblematic :-)

Read-Write: A register is simultaneously read and written.

Conflict Resolution:

- ... ruled out!
- Read is delayed (stalls), until write has terminated!
- Read before write returns old value!

Write-Write: A register is simultaneously written to.

⇒ in general, unproblematic :-)

Conflict Resolutions:

- ... ruled out!
- ...

In Our Examples ...

- simultaneous read is permitted;
- simultaneous write/read and write/write is ruled out;
- no stalls are injected.

We first consider basic blocks only, i.e., linear sequences of assignments

• • •

Idea: Data Dependence Graph

Vertices	Instructions
Edges	Dependencies

Example:

(1)
$$x = x + 1$$
;

$$(2) \quad y = M[A];$$

$$(3) \quad t = z;$$

$$(4) \quad z = M[A+x];$$

$$(5) \quad t = y + z;$$

Possible Dependencies:

```
Definition → Use // Reaching Definitions

Use → Definition // ???

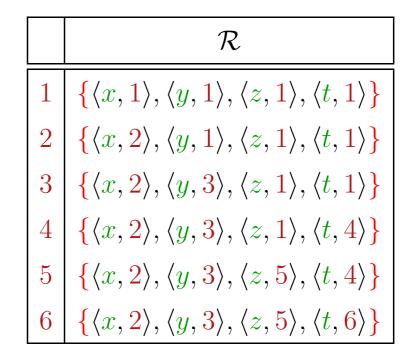
Definition → Definition // Reaching Definitions
```

Reaching Definitions:

Determine for each u which definitions may reach \Longrightarrow can be determined by means of a system of constraints :-)

... in the Example:

1
$$x = x + 1;$$
2
 $y = M[A];$
3
 $t = z;$
4
 $z = M[A + x];$
5
 $t = y + z;$

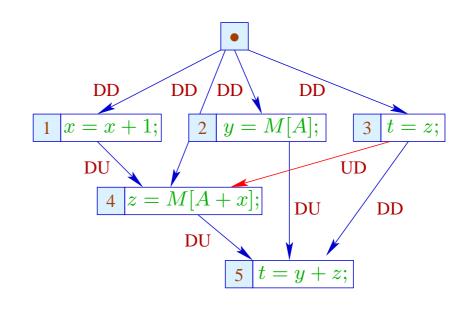


Let U_i , D_i denote the sets of variables which are used or defined at the edge outgoing from u_i . Then:

$$(u_1, u_2) \in DD$$
 if $u_1 \in \mathcal{R}[u_2] \wedge D_1 \cap D_2 \neq \emptyset$
 $(u_1, u_2) \in DU$ if $u_1 \in \mathcal{R}[u_2] \wedge D_1 \cap U_2 \neq \emptyset$

... in the Example:

		Def	Use
1	x = x + 1;	{ <i>x</i> }	$\{x\}$
2	y = M[A];	{ <i>y</i> }	$\{A\}$
3	t=z;	$\{t\}$	$\{z\}$
4	z = M[A+x];	$\{z\}$	$\{A, x\}$
5	t = y + z;	$\{t\}$	$\{y,z\}$



The UD-edge (3,4) has been inserted to exclude that z is over-written before use :-)

In the next step, each instruction is annotated with its (required ressources, in particular, its) execution time.

Our goal is a maximally parallel correct sequence of words.

For that, we maintain the current system state:

$$\Sigma: Vars \to \mathbb{N}$$

 $\Sigma(x) \triangleq \text{expected delay until } x \text{ is available}$

Initially:

$$\Sigma(x) = 0$$

As an invariant, we guarantee on entry of the basic block, that all operations are terminated :-)

Then the slots of the word sequence are successively filled:

- We start with the minimal nodes in the dependence graph.
- If we fail to fill all slots of a word, we insert ; :-)
- After every inserted instruction, we re-compute Σ .

Warning:

- → The execution of two VLIWs can overlap !!!
- → Determining an optimal sequence, is NP-hard ...

Example: Word width k = 2

Word		State			
1	2	x	y	z	t
		0	0	0	0
x = x + 1	y = M[A]	0	1	0	0
t=z	z = M[A + x]	0	0	1	0
		0	0	0	0
t = y + z		0	0	0	0

In each cycle, the execution of a new word is triggered.

The state just records the number of cycles still to be waited for the result :-)

Note:

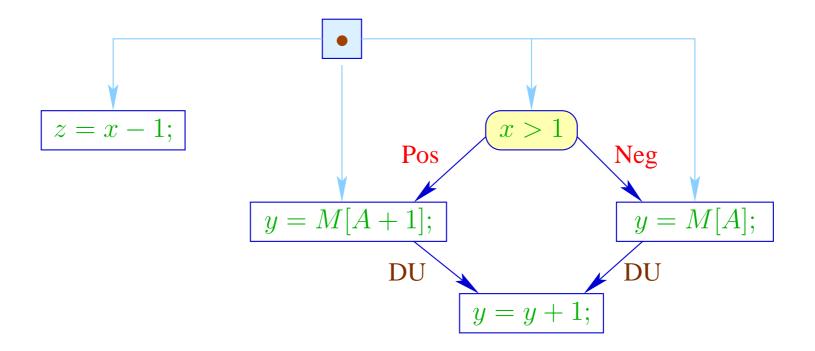
- If instructions put constraints on future selection, we also record these in Σ .
- Overall, we still distinuish just finitely many system states :-)
- The computation of the effect of a VLIW onto Σ can be compiled into a finite automaton !!!
- This automaton, though, could be quite huge :-(
- The challenge of making choices still remains :-(
- Basic blocks usually are not very large
 - ⇒ opportunities for parallelization are limited :-((

Extension 1: Acyclic Code

```
if (x > 1) { y = M[A]; z = x - 1; } else { y = M[A + 1]; z = x - 1; } y = y + 1;
```

The dependence graph must be enriched with extra control-dependencies

• • •



The statement z = x - 1; is executed with the same arguments in both branches and does not modify any of the remaining variables :-)

We could have moved it before the if anyway :-))

The following code could be generated:

	z = x - 1	if $(!(x>0))$ goto A
	y = M[A]	
	$\operatorname{\sf goto}\ B$	
A:	y = M[A+1]	
<i>B</i> :	y = y + 1	

At every jump target, we guarantee the invariant :-(

If we allow several (known) states on entry of a sub-block, we can generate code which complies with all of these.

... in the Example:

	z = x - 1	if $(!(x > 0))$ goto A
	y = M[A]	$oxed{goto} B$
A:	y = M[A+1]	
B:		
	y = y + 1	