Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$.

Assume $x_i^{(d)}$ is the value of x_i after the *d*-th RR-iteration.

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$.

Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

$$(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)} \quad :-)$$

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$.

Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

- $(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)} \quad :-)$
- (2) $x_i^{(d)} \sqsubseteq z_i$ for every solution (z_1, \dots, z_n) :-)

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$.

Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

- $(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)} \quad :-)$
- (2) $x_i^{(d)} \sqsubseteq z_i$ for every solution (z_1, \dots, z_n) :-)
- (3) If RR-iteration terminates after d rounds, then $(x_1^{(d)}, \dots, x_n^{(d)})$ is a solution :-))

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!!

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!!

Good:

- \rightarrow *u* before *v*, if $u \rightarrow^* v$;
- → entry condition before loop body :-)

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!!

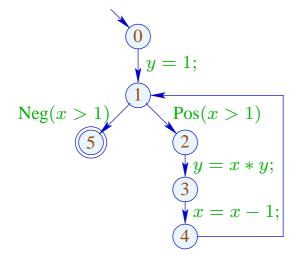
Good:

- \rightarrow *u* before *v*, if $u \rightarrow^* v$;
- → entry condition before loop body :-)

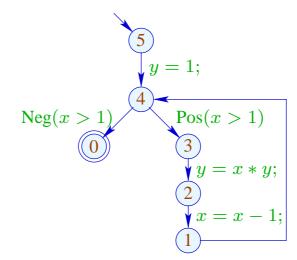
Bad:

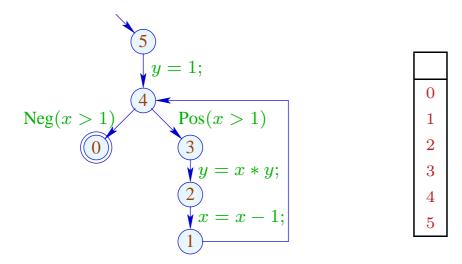
e.g., post-order DFS of the CFG, starting at start :-)

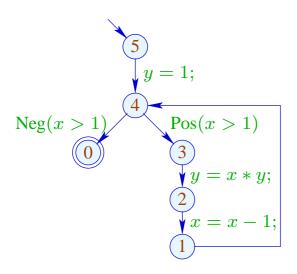
Good:



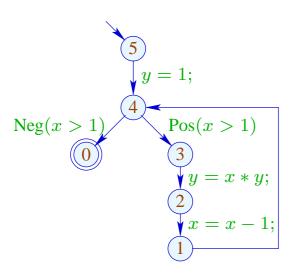
Bad:



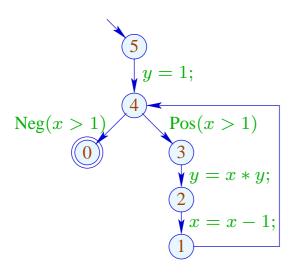




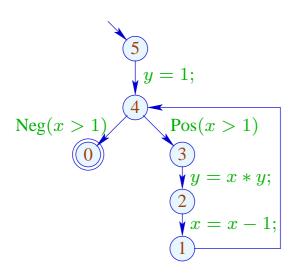
	1
0	Expr
1	{1}
2	$\{1, x - 1, x > 1\}$
3	Expr
4	{1}
5	Ø



	1	2
0	Expr	$\{1, x > 1\}$
1	{1}	{1}
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$
3	Expr	$\{1, x > 1\}$
4	{1}	{1}
5	Ø	Ø



	1	2	3
0	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$
1	{1}	{1}	{1}
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$	$\{1, x > 1\}$
3	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$
4	{1}	{1}	{1}
5	Ø	Ø	Ø



	1	2	3	4
0	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$	
1	{1}	{1}	{1}	
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$	$\{1, x > 1\}$	dito
3	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$	
4	{1}	{1}	{1}	
5	Ø	Ø	Ø	

⇒ significantly less efficient :-)

Final Question:

Why is a (or the least) solution of the constraint system useful ???

Final Question:

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice \mathbb{D} , consider systems:

$$\mathcal{I}[start] \supseteq d_0$$

$$\mathcal{I}[v] \supseteq [k]^{\sharp} (\mathcal{I}[u]) \qquad k = (u, _, v) \text{ edge}$$

where $d_0 \in \mathbb{D}$ and all $[\![k]\!]^{\sharp} : \mathbb{D} \to \mathbb{D}$ are monotonic ...

Final Question:

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice \mathbb{D} , consider systems:

$$\mathcal{I}[start] \supseteq d_0$$

$$\mathcal{I}[v] \supseteq [k]^{\sharp} (\mathcal{I}[u]) \qquad k = (u, _, v) \text{ edge}$$

where $d_0 \in \mathbb{D}$ and all $[\![k]\!]^{\sharp} : \mathbb{D} \to \mathbb{D}$ are monotonic ...

→ Monotonic Analysis Framework

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[\mathbf{v}] = \bigsqcup \{ \llbracket \mathbf{\pi} \rrbracket^{\sharp} d_0 \mid \pi : \mathbf{start} \to^* \mathbf{v} \}$$

Wanted: MOP (Merge Over all Paths)

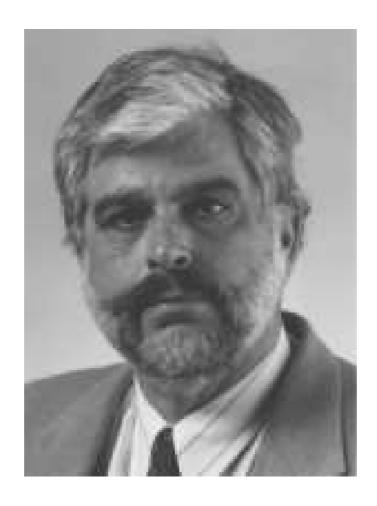
$$\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* v \}$$

Theorem

Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then:

$$\mathcal{I}[v] \supseteq \mathcal{I}^*[v]$$
 for every v



Jeffrey D. Ullman, Stanford

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^\sharp d_0 \mid \pi : start \to^* v \}$$

Theorem

Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then:

$$\mathcal{I}[{\color{red} v}] \; \supseteq \; \mathcal{I}^*[{\color{red} v}] \qquad \qquad \text{for every} \quad {\color{red} v}$$

In particular: $\mathcal{I}[v] \supseteq \llbracket \pi \rrbracket^{\sharp} d_0$ for every $\pi : start \to^* v$

Foundation: $\pi = \epsilon$ (empty path)

Foundation:
$$\pi = \epsilon$$
 (empty path)

Then:

$$\llbracket \boldsymbol{\pi} \rrbracket^{\sharp} d_0 = \llbracket \boldsymbol{\epsilon} \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[\underline{start}]$$

Foundation:
$$\pi = \epsilon$$
 (empty path)

Then:

$$\llbracket \pi \rrbracket^{\sharp} d_0 = \llbracket \epsilon \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[\underline{start}]$$

Step: $\pi = \pi' k$ for $k = (u, _, v)$ edge.

Foundation:
$$\pi = \epsilon$$
 (empty path)

Then:

$$\llbracket \pi \rrbracket^{\sharp} d_0 = \llbracket \epsilon \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[\underline{start}]$$

Step:
$$\pi = \pi' k$$
 for $k = (u, _, v)$ edge.

Then:

Disappointment:

Are solutions of the constraint system just upper bounds ???

Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes :-(

Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

```
In general: yes :-( With the notable exception when all functions [\![k]\!]^{\sharp} are distributive ... :-)
```

- distributive, if $f(\coprod X) = \coprod \{f \ x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

- distributive, if $f(\coprod X) = \coprod \{f \mid x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples:

• $f x = x \cap a \cup b$ for $a, b \subseteq U$.

- distributive, if $f(\bigsqcup X) = \bigsqcup \{ f \ x \mid x \in X \}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples:

• $f x = x \cap a \cup b$ for $a, b \subseteq U$.

Strictness: $f \emptyset = a \cap \emptyset \cup b = b = \emptyset$ whenever $b = \emptyset$:-(

- distributive, if $f(\coprod X) = \coprod \{f \mid x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples:

• $f x = x \cap a \cup b$ for $a, b \subseteq U$.

Strictness: $f \emptyset = a \cap \emptyset \cup b = b = \emptyset$ whenever $b = \emptyset$:-(**Distributivity:**

$$f(x_1 \cup x_2) = a \cap (x_1 \cup x_2) \cup b$$
$$= a \cap x_1 \cup a \cap x_2 \cup b$$
$$= f x_1 \cup f x_2 \qquad :-)$$

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}, \quad \text{inc } x = x + 1$

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}, \quad \operatorname{inc} x = x + 1$ Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(

• $\mathbb{D}_1=\mathbb{D}_2=\mathbb{N}\cup\{\infty\}$, $\operatorname{inc} x=x+1$ Strictness: $f\perp=\operatorname{inc} 0=1 \neq \perp$:-(

Distributivity: $f(\bigsqcup X)=\bigsqcup\{x+1\mid x\in X\}$ for $\emptyset\neq X$:-)

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $\operatorname{inc} x = x + 1$ Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(

Distributivity: $f(\sqcup X) = \sqcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$:-)

•
$$\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$$
, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $\operatorname{inc} x = x + 1$ Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(

Distributivity: $f(\sqcup X) = \sqcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$:-)

• $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$:

Strictness: $f \perp = 0 + 0 = 0$:-)

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $\operatorname{inc} x = x + 1$ Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(

Distributivity: $f(\sqcup X) = \sqcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$:-)

• $\mathbb{D}_1=(\mathbb{N}\cup\{\infty\})^2$, $\mathbb{D}_2=\mathbb{N}\cup\{\infty\}$, $f(x_1,x_2)=x_1+x_2$:

Strictness: $f\perp=0+0=0$:-)

Distributivity:

$$f((1,4) \sqcup (4,1)) = f(4,4) = 8$$

 $\neq 5 = f(1,4) \sqcup f(4,1)$:-)

Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

From that follows:

$$f b = f (a \sqcup b)$$

$$= f a \sqcup f b$$

$$\Longrightarrow f a \sqsubseteq f b : -)$$

Assumption: all v are reachable from start.

Assumption: all v are reachable from start. Then:

Theorem Kildall 1972

If all effects of edges $[\![k]\!]^\sharp$ are distributive, then: $\mathcal{I}^*[v]=\mathcal{I}[v]$ for all v .

Gary A. Kildall (1942-1994).

Has developed the operating system CP/M and GUIs for PCs.

Assumption: all v are reachable from start. Then:

Theorem Kildall 1972

If all effects of edges $[\![k]\!]^\sharp$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.

Assumption: all v are reachable from start. Then:

Theorem Kildall 1972

If all effects of edges $[\![k]\!]^\sharp$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v .

Proof:

It suffices to prove that \mathcal{I}^* is a solution :-)

For this, we show that \mathcal{I}^* satisfies all constraints :-))

(1) We prove for *start*:

$$\mathcal{I}^*[start] = \bigsqcup \{ \llbracket \pi \rrbracket^\sharp d_0 \mid \pi : start \to^* start \}$$

$$\supseteq \llbracket \epsilon \rrbracket^\sharp d_0$$

$$\supseteq d_0 :-)$$

(1) We prove for *start*:

(2) For every $k = (u, \underline{\ }, \underline{\ })$ we prove:

$$\mathcal{I}^{*}[v] = \bigsqcup\{\llbracket\pi\rrbracket^{\sharp} d_{0} \mid \pi : start \to^{*} v\}$$

$$\supseteq \bigsqcup\{\llbracket\pi'k\rrbracket^{\sharp} d_{0} \mid \pi' : start \to^{*} u\}$$

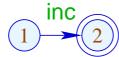
$$= \bigsqcup\{\llbracketk\rrbracket^{\sharp} (\llbracket\pi'\rrbracket^{\sharp} d_{0}) \mid \pi' : start \to^{*} u\}$$

$$= \llbracketk\rrbracket^{\sharp} (\bigsqcup\{\llbracket\pi'\rrbracket^{\sharp} d_{0} \mid \pi' : start \to^{*} u\})$$

$$= \llbracketk\rrbracket^{\sharp} (\mathcal{I}^{*}[u])$$
since $\{\pi' \mid \pi' : start \to^{*} u\}$ is non-empty :-)

Caveat:

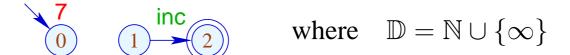
Reachability of all program points cannot be abandoned! Consider:



$$\begin{array}{ccc}
 & \text{inc} \\
\hline
0 & 1 & 2
\end{array} \quad \text{where} \quad \mathbb{D} = \mathbb{N} \cup \{\infty\}$$

Caveat:

• Reachability of all program points cannot be abandoned! Consider:



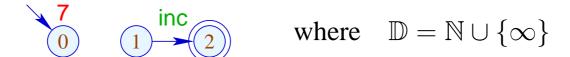
Then:

$$\mathcal{I}[2] = \operatorname{inc} 0 = 1$$

$$\mathcal{I}^*[2] = \coprod \emptyset = 0$$

Caveat:

• Reachability of all program points cannot be abandoned! Consider:



Then:

$$\mathcal{I}[2] = \operatorname{inc} 0 = 1$$
 $\mathcal{I}^*[2] = \bigsqcup \emptyset = 0$

• Unreachable program points can always be thrown away :-)

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \backslash b = ((a \cup x_1) \cap (a \cup x_2)) \backslash b$$
$$= ((a \cup x_1) \backslash b) \cap ((a \cup x_2) \backslash b)$$

→ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \backslash b = ((a \cup x_1) \cap (a \cup x_2)) \backslash b$$
$$= ((a \cup x_1) \backslash b) \cap ((a \cup x_2) \backslash b)$$

- → If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)
- → If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP
 :-)

1.2 Removing Assignments to Dead Variables

Example:

1:
$$x = y + 2;$$

$$2: y = 5;$$

$$3: x = y + 3;$$

The value of x at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable x dead at these program points :-)

Note:

- \rightarrow Assignments to dead variables can be removed ;-)
- \rightarrow Such inefficiencies may originate from other transformations.

Note:

- \rightarrow Assignments to dead variables can be removed ;-)
- \rightarrow Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along the path π starting at u relative to a set X of variables either:

if $x \in X$ and π does not contain a definition of x; or:

if π can be decomposed into: $\pi = \pi_1 k \pi_2$ such that:

- k is a use of x; and
- π_1 does not contain a definition of x.