Thereby, the set of all defined or used variables at an edge $k = (_, lab, _)$ is defined by:

<table>
<thead>
<tr>
<th>lab</th>
<th>used</th>
<th>defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Pos (e)</td>
<td>$\text{Vars} (e)$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Neg (e)</td>
<td>$\text{Vars} (e)$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$x = e;$</td>
<td>$\text{Vars} (e)$</td>
<td>${x}$</td>
</tr>
<tr>
<td>$x = M[e];$</td>
<td>$\text{Vars} (e)$</td>
<td>${x}$</td>
</tr>
<tr>
<td>$M[e_1] = e_2;$</td>
<td>$\text{Vars} (e_1) \cup \text{Vars} (e_2)$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
A variable \(x \) which is not live at \(u \) along \(\pi \) (relative to \(X \)) is called \textit{dead} at \(u \) along \(\pi \) (relative to \(X \)).

\textbf{Example:}

\[x = y + 2; \quad y = 5; \quad x = y + 3; \]

\[
\begin{array}{c}
0 \quad 1 \quad 2 \quad 3 \\
\end{array}
\]

where \(X = \emptyset \). Then we observe:

<table>
<thead>
<tr>
<th></th>
<th>live</th>
<th>dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{y}</td>
<td>{x}</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>{x, y}</td>
</tr>
<tr>
<td>2</td>
<td>{y}</td>
<td>{x}</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>{x, y}</td>
</tr>
</tbody>
</table>
The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).
The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u?
The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u?

Idea:

For every edge $k = (u, _, v)$, define a function $[k]^\#$ which transforms the set of variables which are live at v into the set of variables which are live at u...
Let \(L = 2^{V_{\text{ars}}} \).

For \(k = (_, \text{lab}, _) \), define \([k]^\# = [\text{lab}]^\# \) by:

\[
\begin{align*}
[_];]^\# L &= L \\
[\text{Pos}(e)]^\# L &= [\text{Neg}(e)]^\# L = L \cup V_{\text{ars}}(e) \\
[x = e;]^\# L &= (L \setminus \{x\}) \cup V_{\text{ars}}(e) \\
[x = M[e];]^\# L &= (L \setminus \{x\}) \cup V_{\text{ars}}(e) \\
[M[e_1] = e_2;]^\# L &= L \cup V_{\text{ars}}(e_1) \cup V_{\text{ars}}(e_2)
\end{align*}
\]
Let \(L = 2^{\text{Vars}} \).

For \(k = (__, \text{lab}, __) \), define \([k]^\# = [\text{lab}]^\#\) by:

\[
\begin{align*}
[_]^\# L &= L \\
[\text{Pos}(e)]^\# L &= [\text{Neg}(e)]^\# L = L \cup \text{Vars}(e) \\
[x = e;]^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[x = M[e];]^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[M[e_1] = e_2;]^\# L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]

\([k]^\#\) can again be composed to the effects of \([\pi]^\#\) of paths \(\pi = k_1 \ldots k_r\) by:

\(\[\pi]^\# = [k_1]^\# \circ \ldots \circ [k_r]^\#\)
We verify that these definitions are meaningful :-)

\[M[y] = x; \]

\[x = y + 2; \quad y = 5; \quad x = y + 2; \]
We verify that these definitions are meaningful :-)

\[x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x; \]
We verify that these definitions are meaningful :)
We verify that these definitions are meaningful :)
We verify that these definitions are meaningful :-)

\[
\begin{align*}
M[y] &= x; \\
x &= y + 2; \\
y &= 5; \\
x &= y + 2; \\
\emptyset \{x, y\} \{y\} \emptyset
\end{align*}
\]
We verify that these definitions are meaningful :-)}

\[
\begin{align*}
M[y] &= x; \\
x &= y + 2; \\
y &= 5; \\
x &= y + 2; \\
\end{align*}
\]
The set of variables which are live at u then is given by:

$$\mathcal{L}^*[u] = \bigcup\{[[\pi]]^\# X \mid \pi : u \rightarrow^* \text{stop}\}$$

... literally:

- The paths start in u :-)

 \implies As partial ordering for \mathcal{L} we use $\sqsubseteq = \subseteq$.
- The set of variables which are live at program exit is given by the set X :-)}
Transformation 2:

\[x = e; \quad x \not\in \mathcal{L}^*[v] \]

\[x = M[e]; \quad x \not\in \mathcal{L}^*[v] \]
Correctness Proof:

→ Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π, then $[\pi] \# L$ is the set of variables which are live at the beginning of π :-)

→ Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)

→ Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))
Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

\[
\mathcal{L}[\text{stop}] \supseteq X \\
\mathcal{L}[u] \supseteq \llbracket k \rrbracket^\# (\mathcal{L}[v]) \quad k = (u, _, v) \quad \text{edge}
\]

(2) Solving the constraint system by means of RR iteration. Since \mathcal{L} is finite, the iteration will terminate ;-)

(3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $\llbracket k \rrbracket^\#$ are distributive :-)
Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\begin{align*}
\mathcal{L}[\text{stop}] & \supseteq X \\
\mathcal{L}[u] & \supseteq \llbracket k \rrbracket^\# (\mathcal{L}[v]) & k = (u, _, v) \text{ edge}
\end{align*}$$

(2) Solving the constraint system by means of RR iteration.
Since \mathcal{L} is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $\llbracket k \rrbracket^\#$ are distributive :-))

Caveat: The information is propagated backwards !!!
Example:

\[x = M[I]; \]

\[y = 1; \]

Neg(\(x > 1\))

Pos(\(x > 1\))

\[M[R] = y; \]

\[y = x \star y; \]

\[x = x - 1; \]

\[\mathcal{L}[0] \supseteq (\mathcal{L}[1] \setminus \{x\}) \cup \{I\} \]
\[\mathcal{L}[1] \supseteq \mathcal{L}[2] \setminus \{y\} \]
\[\mathcal{L}[2] \supseteq (\mathcal{L}[6] \cup \{x\}) \cup (\mathcal{L}[3] \cup \{x\}) \]
\[\mathcal{L}[3] \supseteq (\mathcal{L}[4] \setminus \{y\}) \cup \{x, y\} \]
\[\mathcal{L}[4] \supseteq (\mathcal{L}[5] \setminus \{x\}) \cup \{x\} \]
\[\mathcal{L}[5] \supseteq \mathcal{L}[2] \]
\[\mathcal{L}[6] \supseteq \mathcal{L}[7] \cup \{y, R\} \]
\[\mathcal{L}[7] \supseteq \emptyset \]
Example:

\begin{align*}
 y & = 1; \\
 M[R] & = y; \\
 x & = M[I]; \\
 y & = x \ast y; \\
 x & = x - 1;
\end{align*}

\begin{itemize}
 \item Pos\((x > 1)\)
 \item Neg\((x > 1)\)
\end{itemize}

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>\emptyset</td>
<td>dito</td>
</tr>
<tr>
<td>6</td>
<td>{y, R}</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>{x, y, R}</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>{x, y, R}</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>{x, y, R}</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>{x, y, R}</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>{x, R}</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>{I, R}</td>
<td></td>
</tr>
</tbody>
</table>
The left-hand side of no assignment is dead :-(

Caveat:

Removal of assignments to dead variables may kill further variables:

\[x = y + 1; \]
\[z = 2 \times x; \]
\[M[R] = y; \]
\[\emptyset \]
The left-hand side of no assignment is **dead** :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

```
x = y + 1;
z = 2 * x;
y, R
M[R] = y;
∅
```
The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

1

\[x = y + 1; \]

2

\[x, y, R \]

\[z = 2 \times x; \]

3

\[y, R \]

\[M[R] = y; \]

4

\[\emptyset \]
The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

1. y, R

2. x, y, R

3. $z = 2 \times x;$

4. $M[R] = y;$

 \emptyset
The left-hand side of no assignment is **dead**:)

Caveat:

Removal of assignments to dead variables may kill further variables:

$$
\begin{array}{l}
1. y, R \\
x = y + 1; \\
2. x, y, R \\
z = 2 \times x; \\
3. y, R \\
M[R] = y; \\
4. \emptyset
\end{array}
\quad \rightarrow \quad
\begin{array}{l}
1. x = y + 1; \\
2. \\
3. y, R \\
M[R] = y; \\
4. \emptyset
\end{array}
$$
The left-hand side of no assignment is **dead** :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

\[
\begin{align*}
 &1: y, R \\
 &2: x = y + 1; \\
 &3: x, y, R \\
 &4: z = 2 \times x; \\
 &y, R \\
 &M[R] = y; \\
 &\emptyset
\end{align*}
\]

\[
\begin{align*}
 &1: y, R \\
 &2: x = y + 1; \\
 &3: y, R \\
 &4: M[R] = y; \\
 &\emptyset
\end{align*}
\]
The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:
Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

\(x \) is called truely live at \(u \) along a path \(\pi \) (relative to \(X \)), either

if \(x \in X \), \(\pi \) does not contain a definition of \(x \); or

if \(\pi \) can be decomposed into \(\pi = \pi_1 k \pi_2 \) such that:

- \(k \) is a true use of \(x \);
- \(\pi_1 \) does not contain any definition of \(x \).
The set of truely used variables at an edge $k = (_, lab, v)$ is defined as:

<table>
<thead>
<tr>
<th>lab</th>
<th>truely used</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Pos (e)</td>
<td>$\text{Vars} (e)$</td>
</tr>
<tr>
<td>Neg (e)</td>
<td>$\text{Vars} (e)$</td>
</tr>
<tr>
<td>$x = e$;</td>
<td>$\text{Vars} (e)$ (*)</td>
</tr>
<tr>
<td>$x = M[e]$;</td>
<td>$\text{Vars} (e)$ (*)</td>
</tr>
<tr>
<td>$M[e_1] = e_2$;</td>
<td>$\text{Vars}(e_1) \cup \text{Vars}(e_2)$</td>
</tr>
</tbody>
</table>

(*) – given that x is truely live at v :-)

226
Example:

\[x = y + 1; \]
\[z = 2 \times x; \]
\[M[R] = y; \]
\[\emptyset \]
Example:

1

\[x = y + 1; \]

2

\[z = 2 \times x; \]

3

\[y, R \]

\[M[R] = y; \]

4

\[\emptyset \]
Example:

1. $x = y + 1$;
2. y, R
3. $z = 2 \times x$;
4. y, R
 $M[R] = y$;
5. \emptyset
Example:

1. y, R
2. $x = y + 1$;
3. y, R
4. $z = 2 \times x$;
5. y, R
6. $M[R] = y$;
7. \emptyset

230
Example:

1. \(y, R \)
2. \(x = y + 1; \)
3. \(y, R \)
4. \(z = 2 \times x; \)
5. \(y, R \)
6. \(M[R] = y; \)
7. \(\emptyset \)

1. \(M[R] = y; \)
2. \(\emptyset \)
The Effects of Edges:

\[
\begin{align*}
[;] \# L &= L \\
[\text{Pos}(e)] \# L &= [[\text{Neg}(e)] \# L = L \cup \text{Vars}(e) \\
[x = e;] \# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[x = M[e];] \# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[M[e_1] = e_2;] \# L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]
The Effects of Edges:

\[
\begin{align*}
[;]^\# L &= L \\
[\text{Pos}(e)]^\# L &= [\text{Neg}(e)]^\# L = L \cup \text{Vars}(e) \\
[x = e;]^\# L &= (L \setminus \{x\}) \cup (x \in L) ? \text{Vars}(e) : \emptyset \\
[x = M[e];]^\# L &= (L \setminus \{x\}) \cup (x \in L) ? \text{Vars}(e) : \emptyset \\
[M[e_1] = e_2;]^\# L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]
Note:

- The effects of edges for truly live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!
Note:

- The effects of edges for truly live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for \(D = 2^U \), \(f y = (u \in y) ? b : \emptyset \)
We verify:

\[
\begin{align*}
 f (y_1 \cup y_2) &= (u \in y_1 \cup y_2) ? b : \emptyset \\
 &= (u \in y_1 \lor u \in y_2) ? b : \emptyset \\
 &= (u \in y_1) ? b : \emptyset \cup (u \in y_2) ? b : \emptyset \\
 &= f y_1 \cup f y_2
\end{align*}
\]
Note:

- The effects of edges for truly live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for $\mathbb{D} = 2^U$, $f y = (u \in y) \dashv b : \emptyset$ We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2) \dashv b : \emptyset$$
$$= (u \in y_1 \lor u \in y_2) \dashv b : \emptyset$$
$$= (u \in y_1) \dashv b : \emptyset \cup (u \in y_2) \dashv b : \emptyset$$
$$= f y_1 \cup f y_2$$

\implies the constraint system yields the MOP :-))
• True liveness detects more superfluous assignments than repeated liveness !!!

\[x = x - 1; \]
- True liveness detects more superfluous assignments than repeated liveness !!!

Liveness:

\[
\begin{align*}
\{x\} & \quad x = x - 1; \\
\emptyset & \quad ;
\end{align*}
\]
• True liveness detects more superfluous assignments than repeated liveness !!!

True Liveness:

\[
x = x - 1;
\]
1.3 Removing Superfluous Moves

Example:

\[T = x + 1; \]
\[y = T; \]
\[M[R] = y; \]

This variable-variable assignment is obviously useless :-(
1.3 Removing Superfluous Moves

Example:

\[T = x + 1; \]
\[y = T; \]
\[M[R] = y; \]

This variable-variable assignment is obviously useless \:-(

Instead of \(y \), we could also store \(T \) \:-)
1.3 Removing Superfluous Moves

Example:

$T = x + 1$;

$y = T$;

$M[R] = y$;

$T = x + 1$;

$y = T$;

$M[R] = T$;

This variable-variable assignment is obviously useless :-(

Instead of y, we could also store T :-(
1.3 Removing Superfluous Moves

Example:

\[T = x + 1; \]
\[y = T; \]
\[M[R] = y; \]

Advantage: Now, \(y \) has become dead :-))
1.3 Removing Superfluous Moves

Example:

\[T = x + 1; \]
\[y = T; \]
\[M[R] = y; \]

\[T = x + 1; \]
\[y = T; \]
\[M[R] = T; \]

\[T = x + 1; \]
\[y = T; \]
\[M[R] = T; \]

Advantage: Now, \(y \) has become dead :-))
Idea:

For each expression, we record the variable which currently contains its value :-)

We use: \(\forall = Expr \rightarrow 2^{Vars} \) ...