
Classes and Objects

431

Example:

int count = 0;

class list {

int info;

class list ∗ next;

list (int x) {

info = x; count++; next = null;

}

virtual int last () {

if (next == null) return info;

else return next → last ();

}

}

432

Discussion:

• We adopt the C++ perspective on classes and objects.

• We extend our implementation of C. In particular ...

• Classes are considered as extensions of structs. They may comprise:

⇒ attributes, i.e., data fields;

⇒ constructors;

⇒ member functions which either are virtual, i.e., are called depending
on the run-time type or non-virtual, i.e., called according to the static
type of an object :-)

⇒ static member functions which are like ordinary functions :-))

• We ignore visibility restrictions such as public, protected or private but
simply assume general visibility.

• We ignore multiple inheritance :-)

433

50 Object Layout

Idea:
• Only attributes and virtual member functions are stored inside the class !!

• The addresses of non-virtual or static member functions as well as of
constructors can be resolved at compile-time :-)

• The fields of a sub-class are appended to the corresponding fields of the
super-class ...

... in our Example:

next

info

last

434

Idea (cont.):

• The fields of a sub-class are appended to the corresponding fields of the
super-class :-)

Example:
class mylist : list {

int moreInfo;

}

... results in:

next

info

moreInfo

last

435

For every class C we assume that we are given an adress environment ρC .

ρC maps every identifier x visible inside C to its decorated relative
address a . We distingish:

global variable (G, a)

local variable (L, a)

attribute (A, a)

virtual function (V, b)

non-virtual function (N, a)

static function (S, a)

For virtual functions x , we do not store the starting address of the code — but
the relative address b of the field of x inside the object :-)

436

For the various of variables, we obtain for the L-values:

codeL x ρ =

loadr 1 if x = this

loadc a if ρ x = (G, a)

loadr a if ρ x = (L, a)

loadr 1

loadc a

add if ρ x = (A, a)

In particular, the pointer to the current object has relative address 1 :-)

437

Accordingly, we introduce the abbreviated operations:

loadm q = loadr 1

loadc q

add

load

bla ; storem q = loadr 1

loadc q

add

bla

store

438

Discussion:

• Besides storing the current object pointer inside the stack frame, we could
have additionally used a specific register COP :-)

• This register must updated before calls to non-static member functions and
restored after the call.

• We have refrained from doing so since

→ Only some functions are member functions :-)

→ We want to reuse as much of the C-machine as possible :-))

439

51 Calling Member Functions

Static member functions are considered as ordinary functions :-)

For non-static member functions, we distinguish two forms of calls:

(1) directly: f (e2, . . . , en)

(2) relative to an object: e1. f (e2, . . . , en)

Idea:

• The case (1) is considered as an abbreviation of this. f (e2, . . . , en) :-)

• The object is passed to f as an implicit first argument :-)

• If f is non-virtual, proceed as with an ordinary call of a function :-)

• If f is virtual, insert an indirect call :-)

440

A non-virtual function:

codeR e1. f (e2, . . . , en) ρ = mark

codeL e1 ρ

codeR e2 ρ

. . .

codeR en ρ

loadc _ f

call m + 1

where (F, _ f) = ρC(f)

where C = class of e1

where m = space for the actual parameters

Note:
The pointer to the object is obtained by computing the L-value of e1 :-)

441

A virtual function:

codeR e1. f (e2, . . . , en) ρ = mark

codeL e1 ρ

codeR e2 ρ

. . .

codeR en ρ

loads m

loadc b

add ; load

call m + 1

where (V, b) = ρC(f)

where C = class of e1

where m = space for the actual parameters

442

The instruction loads j loads relative to the stack pointer:

j

SP++;

S[SP+1] = S[SP−j];

loads j

42 42

42

443

... in the Example:

The recursive call

next → last ()

in the body of the virtual method last is translated into:

mark

loadm 1

loads 0

loadc 2

add

load

call 1

444

52 Defining Member Functions

In general, a definition of a member function for class C looks as follows:

d ≡ t f (t2 x2, . . . , tn xn) { ss }

Idea:

• f is treated like an ordinary function with one extra implicit argument

• Inside f a pointer this to the current object has relative address 1
:-)

• Object-local data must be addressed relative to this ...

445

codeD d ρ = _ f : enter q // Setting the EP

alloc m // Allocating the local variables

code ss ρ1

return // Leaving the function

where q = maxS + m where

maxS = maximal depth of the local stack

m = space for the local variables

k = space for the formal parameters (including this)

ρ1 = local address environment

446

... in the Example:

_last: enter 6 loadm 0 loads 0

alloc 0 storer -3 loadc 2

loadm 1 return add

loadc 0 load

eq A: mark call 1

jumpz A loadm 1 storer -3

return

447

53 Calling Constructors

Every new object should be initialized by (perhaps implicitly) calling a
constructor. We distinguish two forms of object creations:

(1) directly: x = C (e2, . . . , en);

(2) indirectly: new C (e2, . . . , en)

Idea for (2):
• Allocate space for the object and return a pointer to it on the stack;

• Initialize the fields for virtual functions;

• Pass the object pointer as first parameter to a call to the constructor;

• Proceed as with an ordinary call of a (non-virtual) member function :-)

• Unboxed objects are considered later ...

448

codeR new C (e2, . . . , en); ρ = malloc |C|

initVirtual C

mark

loads 4 // loads relative to SP :-)

codeR e2 ρ

. . .

codeR en ρ

loadc _C

call m + 1

pop

where m = space for the actual parameters.

Note:
Before calling the constructor, we initialize all fields of virtual functions.

The pointer to the object is copied into the frame by a new instruction :-)

449

Assume that the class C lists the virtual functions f1, . . . , fr for C with
the offsets and initial addresses: bi and ai , respectively:

Then:
initVirtual C = dup

loadc b1 ; add

loadc a1 ; store

pop

. . .

dup

loadc br ; add

loadc ar ; store

pop

450

54 Defining Constructors

In general, a definition of a constructor for class C looks as follows:

d ≡ C (t2 x2, . . . , tn xn) { ss }

Idea:

• Treat the constructor as a definition of an ordinary member function :-)

451

... in the Example:

_list: enter 3 loada 1 loadc 0

alloc 0 dup storem 1

loadr 2 loadc 1 pop

storem 0 add return

pop storea 1

pop

pop

452

Discussion:

The constructor may issue further constructors for attributes if desired :-)

The constructor may call a constructor of the super class B as first action:

code B (e2, . . . , en); ρ = mark

loadr 1

codeR e2 ρ

. . .

codeR en ρ

loadc _B

call m

where m = space for the actual parameters.

Thus, the constructor is applied to the current object of the calling constructor
:-)

453

55 Initializing Unboxed Objects

Problem:
The same constructor application can be used for initializing several variables:

x = x1 = C (e2, . . . , en)

Idea:

• Allocate sufficient space for a temporary copy of a new C object.

• Initialize the temporary copy.

• Assign this value to the variables to be intialized :-)

454

codeR C (e2, . . . , en) ρ = stalloc |C|

initVirtual C

mark

loads 4

codeR e2 ρ

. . .

codeR en ρ

loadc _C

call m + 1

pop

pop

where m = space for the actual parameters.

Note:
The instruction stalloc m is like malloc m but allocates on the stack :-)

We assume that we have assignments between complex types :-)

455

m

SP = SP+m+1;

S[SP] = SP−m;

stalloc m

456

