Beispiel:

```
public class Foo {
    protected int foo() { return 1; }
}
class Fee extends Foo {
    protected int foo() { return 2; }
    public int test(boolean b) {
        Foo x = (b) ? new Foo() : new Fee();
        return x.foo();
     }
}
```

Aufgabe: Finde zu jeder Benutzung eines Bezeichners die zugehörige Definition

1. Schritt: Ersetze Bezeichner durch eindeutige Nummern!

Input: Folge von Strings

Output: (1) Folge von Nummern

(2) Tabelle, die zu Nummern die Strings auflistet

Beispiel:

das	sch	wein	ist dem		schv	schwein			
_									
	•••	das	schv	wein	dem	menschen		ist	wurst

... liefert:

0	1	2	3	1	4	0	1	3	5	2	6	
---	---	---	---	---	---	---	---	---	---	---	---	--

0	das
1	schwein
2	ist
3	dem
4	was
5	menschen
6	wurst

Implementierung 1:

```
Wir benutzen eine partielle Abbildung: S: \mathbf{String} \rightarrow \mathbf{int} verwaltet :-)
Wir verwalten einen Zähler int count = 0; für die Anzahl der bereits
gefundenen Wörter :-)
Damit definieren wir eine Funktion: int getIndex(String w):
                        int getIndex(String w) {
                               if (S(w) \equiv \text{undefined}) {
                                       S = S \oplus \{ w \mapsto \mathsf{count} \};
                                      return count++;
                               else return S(w);
```

Implementierung 2: Partielle Abbildungen

Ideen:

```
Liste von Paaren (w, i) \in String \times int :
                 \mathcal{O}(1)
  Einfügen:
                  \mathcal{O}(n)
                                                      zu teuer :-(
  Finden:
balancierte Bäume:
  Einfügen: \mathcal{O}(\log(n))
                  \mathcal{O}(\log(n))
                                                      zu teuer :-(
  Finden:
Hash Tables:
  Einfügen: \mathcal{O}(1)
  Finden:
                  \mathcal{O}(1)
                                                 zumindest im Mittel :-)
```

... im Beispiel:

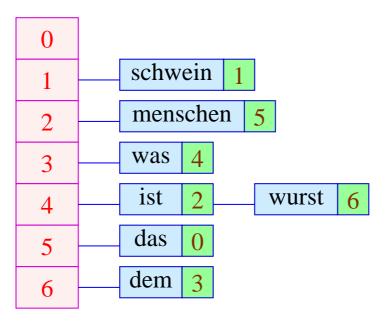
- Wir legen ein Feld M von hinreichender Größe m an :-)
- Wir wählen eine Hash-Funktion H: String $\rightarrow [0, m-1]$ mit den Eigenschaften:
 - \rightarrow H(w) ist leicht zu berechnen :-)
 - → H streut die vorkommenden Wörter gleichmäßig über [0, m-1]:-)

Mögliche Wahlen:

$$H_0(x_0...x_{r-1}) = (x_0 + x_{r-1}) \% m$$
 $H_1(x_0...x_{r-1}) = (\sum_{i=0}^{r-1} x_i \cdot p^i) \% m$
 $= (x_0 + p \cdot (x_1 + p \cdot (... + p \cdot x_{r-1} \cdot ...))) \% m$
für eine Primzahl p (z.B. 31 :-)

• Das Argument-Wert-Paar (w, i) legen wir dann in M[H(w)] ab :-)

Mit m = 7 und H_0 erhalten wir:



Um den Wert des Worts w zu finden, müssen wir w mit allen Worten x vergleichen, für die H(w) = H(x) :-)

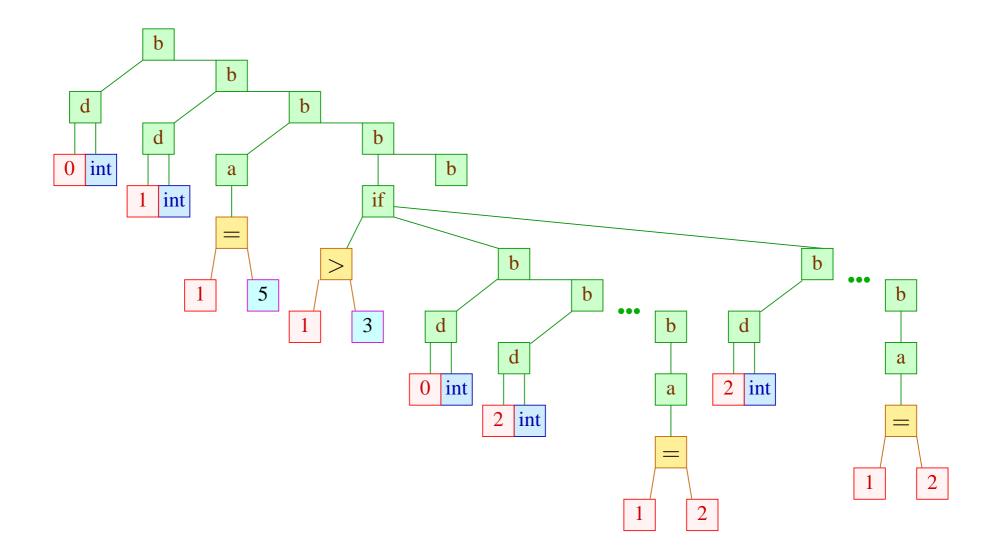
2. Schritt: Symboltabellen

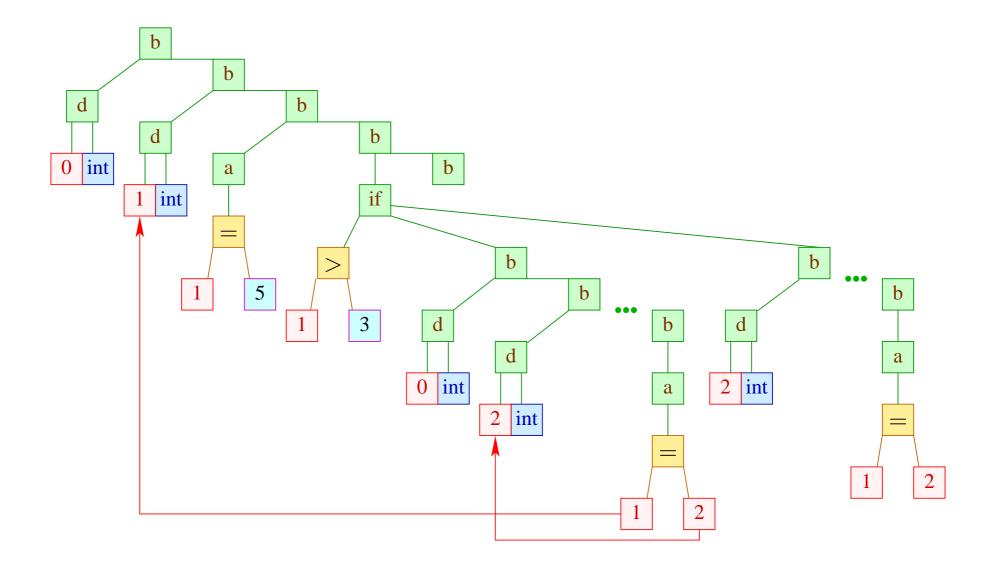
- Durchmustere den Syntaxbaum in einer geeigneten Reihenfolge, die
 - → jede Definition vor ihren Benutzungen besucht :-
 - → die jeweils aktuell sichtbare Definition zuletzt besucht :-)
- Für jeden Bezeichner verwaltet man einen Keller der gültigen Definitionen.
- Trifft man bei der Durchmusterung auf eine Definition eines Bezeichners, schiebt man sie auf den Keller.
- Verlässt man den Gültigkeitsbereich, muss man sie wieder vom Keller werfen :-)
- Trifft man bei der Durchmusterung auf eine Benutzung, schlägt man die letzte Definition auf dem Keller nach ...
- Findet man keine Definition, haben wir einen Fehler gefunden :-)

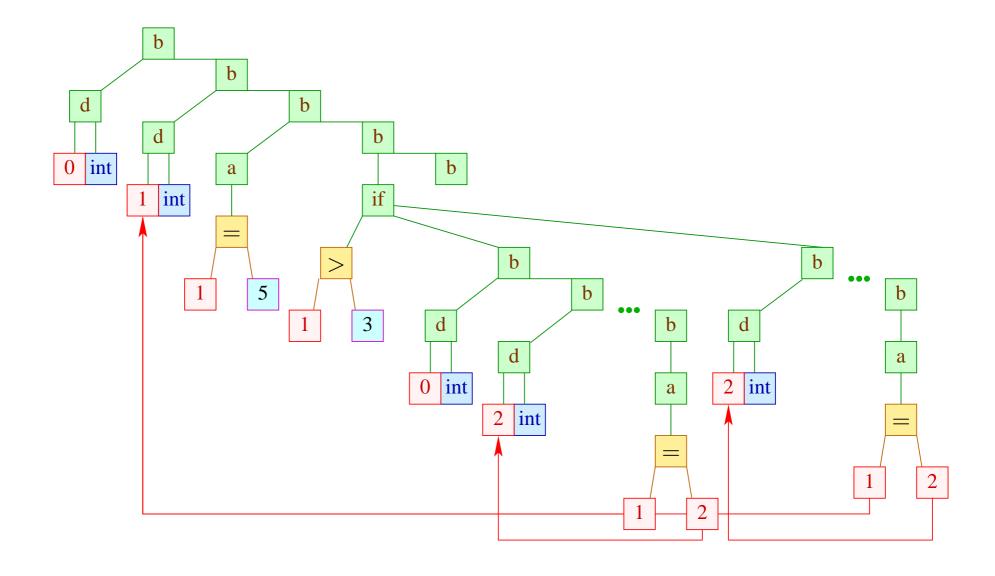
Beispiel:

```
{ int a, b; } else {
  a = 5; int c;
  if (a > 3) {
      c = a + 1; 0 | a
      int a, c; b = c;
      d = a + 1; b = a + b;
  b = c; }
```

Der zugehörige Syntaxbaum ...







Diskussion:

- Der Durchlauf ist hier einfach links-rechts DFS.
- Benutzt man eine Listen-Implementierung der Keller und eine rekursive Implementierung, kann man auf das Beseitigen der jeweils neuen Definitionen verzichten :-)
- Anstelle erst die Namen durch Nummern zu ersetzen und dann die Zuordnung von Benutzungen zu Definitionen vorzunehmen, kann man auch gleich eindeutige Nummern vergeben :-))

Diskussion:

- Der Durchlauf ist hier einfach links-rechts DFS.
- Benutzt man eine Listen-Implementierung der Keller und eine rekursive Implementierung, kann man auf das Beseitigen der jeweils neuen Definitionen verzichten :-)
- Anstelle erst die Namen durch Nummern zu ersetzen und dann die Zuordnung von Benutzungen zu Definitionen vorzunehmen, kann man auch gleich eindeutige Nummern vergeben :-))

Achtung:

- Manche Programmiersprachen verbieten eine Mehrfach-Deklaration des selben Namens innerhalb eines Blocks ;-)
- Dann muss man für jede Deklaration einen Pointer auf den Block verwalten, zu dem sie gehört.
- Gibt es eine weitere Deklaration des gleichen Namens mit dem selben Pointer, muss ein Fehler gemeldet werden :-))

Erweiterung:

 Hat man mehrere wechselseitig rekursive Funktionsdefinitionen in einem Block, müssen deren Namen vor Durchmustern der Rümpfe in die Tabelle eingetragen werden ...

```
fun odd 0 = false

| odd 1 = true

| odd x = even (x-1)

and even 0 = true

| even 1 = false

| even x = odd (x-1)
```

- Hat man eine objektorientierte Sprache mit Vererbung zwischen Klassen, sollte die übergeordnete Klasse vor der Unterklasse besucht werden :-)
- Bei Überladung muss simultan eine Typüberprüfung vorgenommen werden ...

3.2 Typ-Überprüfung

In modernen (imperativen / objektorientierten / funktionalen)
Programmiersprachen besitzen Variablen und Funktionen einen Typ, z.B. int, struct { int *x*; int *y*; }.

Typen sind nützlich für:

- die Speicherverwaltung;
- die Vermeidung von Laufzeit-Fehlern :-)

In imperativen /objektorientierten Programmiersprachen muss der Typ bei der Deklaration spezifiziert und vom Compiler die typ-korrekte Verwendung überprüft werden :-)

Typen werden durch Typ-Ausdrücke beschrieben.

Die Menge *T* der Typausdrücke enthält:

- (1) Basis-Typen: int, boolean, float, void ...
- (2) Typkonstruktoren, angewendet auf Typen, z.B.:
 - Verbunde: **struct** $\{t_1 a_1; \ldots t_k a_k; \}$
 - Zeiger: t *
 - Felder: *t* []

Achtung:

In \mathbb{C} muss zusätzlich eine Größe spezifiziert werden; die Variable muss dann zwischen t und [n] stehen :-(

• Funktionen: $t(t_1, \ldots, t_k)$

Achtung:

In C muss die Variable zwischen t und (t_1, \ldots, t_k) stehen.

In SML dagegen würde man diesen Typ anders herum schreiben:

$$t_1 * \ldots * t_k \rightarrow t :$$

Wir benutzen: (t_1, \ldots, t_k) als Tupel-Typen.

(3) Typ-Namen.

Typ-Namen sind nützlich:

• als Abkürzung :-)
In C kann man diese mithilfe von typedef einführen:

typedef $t \times x$;

• zur Konstruktion rekursiver Typen ...

Beispiel:

```
struct list0 {
    int info;
    struct list1 {
        int info;
        struct list1 * next;
        struct list0 * next;
    };
```

Aufgabe:

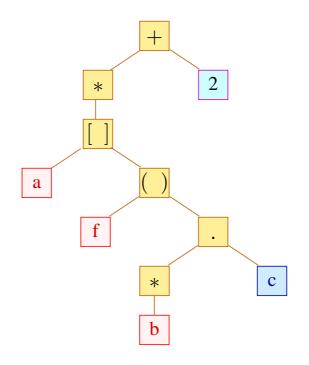
```
Gegeben: eine Menge von Typ-Deklarationen \Gamma = \{t_1 \ x_1; \dots t_m \ x_m; \}
Überprüfe: Kann ein Ausdruck e mit dem Typ t versehen werden?
```

Beispiel:

```
struct list {int info; struct list * next; };
int f(struct list * I) {return 1; };
struct {struct list * c; } * b;
int * a[11];
```

Betrachte den Ausdruck:

*a[
$$f(b \rightarrow c)$$
] + 2;



Idee:

- Traversiere den Syntaxbaum bottom-up.
- Für Bezeichner sagt uns Γ den richtigen Typ :-)
- Konstanten wie 2 oder 0.5 sehen wir den Typ direkt an ;-)
- Die Typen für die inneren Knoten erschießen wir mithilfe von Typ-Regeln.

Formal betrachten wir Aussagen der Form:

$$\Gamma \vdash e : t$$

// (In der Typ-Umgebung Γ hat e den Typ t)

Axiome:

Const: $\Gamma \vdash c : t_c$ $(t_c \quad \text{Typ der Konstante} \quad c)$

Var: $\Gamma \vdash x : \Gamma(x)$ (x Variable)

Regeln:

Ref:
$$\frac{\Gamma \vdash e : t}{\Gamma \vdash \& e : t*}$$
 Deref:
$$\frac{\Gamma \vdash e : t*}{\Gamma \vdash *e : t}$$