- If e' evaluates to a function, which has already been partially applied to the parameters a_0, \ldots, a_{k-1} , these have to be sneaked in underneath e_0 :

Alternative:

+ The further arguments a_0, \ldots, a_{k-1} and the local variables can be allocated above the arguments.

Addressing of arguments and local variables relative to FP is no more possible. (Remember: *m* is unknown when the function definition is translated.)

Way out:

- We address both, arguments and local variables, relative to the stack pointer SP !!!
- However, the stack pointer changes during program execution...

- The difference between the current value of SP and its value sp₀ at the entry of the function body is called the stack distance, sd.
- Fortunately, this stack distance can be determined at compile time for each program point, by simulating the movement of the SP.
- The formal parameters $x_0, x_1, x_2, ...$ successively receive the non-positive relative addresses 0, -1, -2, ..., i.e., $\rho x_i = (L, -i)$.
- The absolute address of the *i*-th formal parameter consequently is

$$\mathrm{sp}_0 - i = (\mathrm{SP} - \mathrm{sd}) - i$$

• The local **let**-variables *y*₁, *y*₂, *y*₃, . . . will be successively pushed onto the stack:

- The y_i have positive relative addresses 1, 2, 3, . . ., that is: $\rho y_i = (L, i)$.
- The absolute address of y_i is then $sp_0 + i = (SP sd) + i$

With CBN, we generate for the access to a variable:

```
\operatorname{code}_V x \rho \operatorname{sd} = \operatorname{getvar} x \rho \operatorname{sd}
eval
```

The instruction eval checks, whether the value has already been computed or whether its evaluation has to yet to be done (\implies will be treated later :-) With CBV, we can just delete eval from the above code schema. The (compile-time) macro getvar is defined by:

```
getvar x \rho \operatorname{sd} = \operatorname{let} (t, i) = \rho x \operatorname{in}
case t of
L \Rightarrow \operatorname{pushloc} (\operatorname{sd} - i)
G \Rightarrow \operatorname{pushglob} i
end
```

The access to local variables:

S[SP+1] = S[SP - n]; SP++;

Correctness argument:

Let sp and sd be the values of the stack pointer resp. stack distance before the execution of the instruction. The value of the local variable with address *i* is loaded from S[a] with

$$a = \operatorname{sp} - (\operatorname{sd} - i) = (\operatorname{sp} - \operatorname{sd}) + i = \operatorname{sp}_0 + i$$

... exactly as it should be :-)

The access to global variables is much simpler:

Example:

Regard $e \equiv (b + c)$ for $\rho = \{b \mapsto (L, 1), c \mapsto (G, 0)\}$ and sd = 1. With CBN, we obtain:

$\operatorname{code}_V e \rho 1$	=	getvar $b ho 1$	=	1	pushloc 0
		eval		2	eval
		getbasic		2	getbasic
		getvar c ρ 2		2	pushglob 0
		eval		3	eval
		getbasic		3	getbasic
		add		3	add
		mkbasic		2	mkbasic

15 let-Expressions

As a warm-up let us first consider the treatment of local variables :-)

Let $e \equiv \text{let } y_1 = e_1; \ldots; y_n = e_n \text{ in } e_0$ be a let-expression.

The translation of *e* must deliver an instruction sequence that

- allocates local variables *y*₁, . . . , *y*_n;
- in the case of
 - **CBV**: evaluates e_1, \ldots, e_n and binds the y_i to their values;
 - **CBN**: constructs closures for the e_1, \ldots, e_n and binds the y_i to them;
- evaluates the expression e_0 and returns its value.

Here, we consider the non-recursive case only, i.e. where y_j only depends on y_1, \ldots, y_{j-1} . We obtain for CBN:

$$code_{V} e \rho sd = code_{C} e_{1} \rho sd$$

$$code_{C} e_{2} \rho_{1} (sd + 1)$$
...
$$code_{C} e_{n} \rho_{n-1} (sd + n - 1)$$

$$code_{V} e_{0} \rho_{n} (sd + n)$$
slide n // deallocates local variables

where $\rho_j = \rho \oplus \{y_i \mapsto (L, sd + i) \mid i = 1, ..., j\}.$ In the case of CBV, we use code_V for the expressions $e_1, ..., e_n$.

Warning!

All the e_i must be associated with the same binding for the global variables!

Example:

Consider the expression

 $e \equiv \text{let } a = 19; b = a * a \text{ in } a + b$

for $\rho = \emptyset$ and sd = 0. We obtain (for CBV):

0	loadc 19	3	getbasic	3	pushloc 1
1	mkbasic	3	mul	4	getbasic
1	pushloc 0	2	mkbasic	4	add
2	getbasic	2	pushloc 1	3	mkbasic
2	pushloc 1	3	getbasic	3	slide 2

The instruction slide k deallocates again the space for the locals:

SP = SP - k;

16 Function Definitions

The definition of a function f requires code that allocates a functional value for f in the heap. This happens in the following steps:

- Creation of a Global Vector with the binding of the free variables;
- Creation of an (initially empty) argument vector;
- Creation of an F-Object, containing references to theses vectors and the start address of the code for the body;

Separately, code for the body has to be generated.

Thus:

$$\operatorname{code}_{V}\left(\operatorname{fn} x_{0}, \ldots, x_{k-1} \Rightarrow e\right) \rho \operatorname{sd} = \operatorname{getvar} z_{0} \rho \operatorname{sd}$$

$$\operatorname{getvar} z_{1} \rho \left(\operatorname{sd} + 1\right)$$

$$\ldots$$

$$\operatorname{getvar} z_{g-1} \rho \left(\operatorname{sd} + g - 1\right)$$

$$\operatorname{mkvec} g$$

$$\operatorname{mkfunval} A$$

$$\operatorname{jump} B$$

$$A : \operatorname{targ} k$$

$$\operatorname{code}_{V} e \rho' 0$$

$$\operatorname{return} k$$

$$B : \ldots$$

where
$$\{z_0, ..., z_{g-1}\} = free(\mathbf{fn} \ x_0, ..., x_{k-1} \Rightarrow e)$$

and $\rho' = \{x_i \mapsto (L, -i) \mid i = 0, ..., k-1\} \cup \{z_j \mapsto (G, j) \mid j = 0, ..., g-1\}$

-

$$\begin{split} h &= new \ (V, n); \\ SP &= SP - g + 1; \\ for \ (i = 0; i < g; i + +) \\ h &\rightarrow v[i] = S[SP + i]; \\ S[SP] &= h; \end{split}$$

a = new (V,0); S[SP] = new (F, A, a, S[SP]);

Example:

Regard $f \equiv \mathbf{fn} \ b \Rightarrow a + b$ for $\rho = \{a \mapsto (L, 1)\}$ and $\mathbf{sd} = 1$. code_V $f \ \rho \ 1$ produces:

1	pushloc 0	0 pusł	nglob 0 2	getbasic
2	mkvec 1	1 eval	2	add
2	mkfunval A	1 getb	asic 1	mkbasic
2	jump B	1 pusł	nloc 1 1	return 1
0 A	: targ 1	2 eval	2	B:

The secrets around targ k and return k will be revealed later :-)

17 Function Application

Function applications correspond to function calls in **C**. The necessary actions for the evaluation of $e' e_0 \dots e_{m-1}$ are:

- Allocation of a stack frame;
- Transfer of the actual parameters , i.e. with:
 - **CBV**: Evaluation of the actual parameters;
 - **CBN**: Allocation of closures for the actual parameters;
- Evaluation of the expression *e*' to an F-object;
- Application of the function.

Thus for CBN:

$$code_{V} (e' e_{0} \dots e_{m-1}) \rho sd = mark A // Allocation of the frame
code_{C} e_{m-1} \rho (sd + 3)
code_{C} e_{m-2} \rho (sd + 4)
...
code_{C} e_{0} \rho (sd + m + 2)
code_{V} e' \rho (sd + m + 3) // Evaluation of e'
apply // corresponds to call
A : ...$$

To implement CBV, we use $code_V$ instead of $code_C$ for the arguments e_i .

Example:For (f 42), $\rho = \{f \mapsto (L, 2)\}$ and sd = 2, we obtain with CBV:2mark A6mkbasic7apply5loadc 426pushloc 43A : ...

A Slightly Larger Example:

let
$$a = 17$$
; $f = \operatorname{fn} b \Rightarrow a + b \operatorname{in} f 42$

For **CBV** and $\mathbf{kp} = 0$ we obtain:

0	loadc 17	2		jump B	2		getbasic	5		loadc 42
1	mkbasic	0	A:	targ 1	2		add	5		mkbasic
1	pushloc 0	0		pushglob 0	1		mkbasic	6		pushloc 4
2	mkvec 1	1		getbasic	1		return 1	7		apply
2	mkfunval A	1		pushloc 1	2	B:	mark C	3	C:	slide 2

For the implementation of the new instruction, we must fix the organization of a stack frame:

Remember: Addressing of arguments and local variables

Different from the CMa, the instruction mark A already saves the return address:

$$S[SP+1] = GP;$$

 $S[SP+2] = FP;$
 $S[SP+3] = A;$
 $FP = SP = SP + 3;$

The instruction apply unpacks the F-object, a reference to which (hopefully) resides on top of the stack, and continues execution at the address given there:

