24.5 Closures of Tuples and Lists

The general schema for $code_C$ can be optimized for tuples and lists:

```
\operatorname{code}_{\mathbb{C}}\left(e_{0},\ldots,e_{k-1}\right)
ho\operatorname{sd}=\operatorname{code}_{V}\left(e_{0},\ldots,e_{k-1}\right)
ho\operatorname{sd}=\operatorname{code}_{\mathbb{C}}e_{0}
ho\operatorname{sd}
\operatorname{code}_{\mathbb{C}}e_{1}
ho\left(\operatorname{sd}+1\right)
\ldots
\operatorname{code}_{\mathbb{C}}e_{k-1}
ho\left(\operatorname{sd}+k-1\right)
\operatorname{mkvec}k
\operatorname{code}_{\mathbb{C}}\left[\left[\rho\operatorname{sd}\right]
ho\operatorname{sd}=\operatorname{code}_{V}\left[\left[\rho\operatorname{sd}\right]
ho\operatorname{sd}=\operatorname{code}_{\mathbb{C}}e_{1}
ho\operatorname{sd}
\operatorname{code}_{\mathbb{C}}\left(e_{1}:e_{2}\right)
ho\operatorname{sd}=\operatorname{code}_{\mathbb{C}}\left(e_{1}:e_{2}\right)
ho\operatorname{sd}
\operatorname{code}_{\mathbb{C}}\left(e_{1}:e_{2}\right)
ho\operatorname{sd}
```

25 Last Calls

A function application is called last call in an expression e if this application could deliver the value for e.

A last call usually is the outermost application of a defining expression.

A function definition is called tail recursive if all recursive calls are last calls.

Examples:

```
r\ t\ (h:y) is a last call in f\ (x-1) is not a last call in f\ (x-1) is not a last call in f\ (x-1)
```

Observation: Last calls in a function body need no new stack frame!

 \Longrightarrow

Automatic transformation of tail recursion into loops!!!

The code for a last call $l \equiv (e' \ e_0 \dots e_{m_1})$ inside a function f with k arguments must

- 1. allocate the arguments e_i and evaluate e' to a function (note: all this inside f's frame!);
- 2. deallocate the local variables and the k consumed arguments of f;
- 3. execute an apply.

```
\operatorname{code}_{V} l \, \rho \operatorname{sd} = \operatorname{code}_{C} e_{m-1} \, \rho \operatorname{sd}
\operatorname{code}_{C} e_{m-2} \, \rho \left( \operatorname{sd} + 1 \right)
\ldots
\operatorname{code}_{C} e_{0} \, \rho \left( \operatorname{sd} + m - 1 \right)
\operatorname{code}_{V} e' \, \rho \left( \operatorname{sd} + m \right) // Evaluation of the function move r \left( m + 1 \right) // Deallocation of r cells apply
```

where r = sd + k is the number of stack cells to deallocate.

Example:

The body of the function

Since the old stack frame is kept, return 2 will only be reached by the direct jump at the end of the []-alternative.

$$SP = SP - k - r;$$

for (i=1; i\le k; i++)
 $S[SP+i] = S[SP+i+r];$
 $SP = SP + k;$

The Translation of Logic Languages

26 The Language Proll

Here, we just consider the core language Proll ("Prolog-light" :-). In particular, we omit:

- arithmetic;
- the cut operator;
- self-modification of programs through assert and retract.

Example:

```
\begin{array}{lll} \operatorname{bigger}(X,Y) & \leftarrow & X = elephant, Y = horse \\ \operatorname{bigger}(X,Y) & \leftarrow & X = horse, Y = donkey \\ \operatorname{bigger}(X,Y) & \leftarrow & X = donkey, Y = dog \\ \operatorname{bigger}(X,Y) & \leftarrow & X = donkey, Y = monkey \\ \operatorname{is\_bigger}(X,Y) & \leftarrow & \operatorname{bigger}(X,Y) \\ \operatorname{is\_bigger}(X,Y) & \leftarrow & \operatorname{bigger}(X,Z), \operatorname{is\_bigger}(Z,Y) \\ \operatorname{?} & \operatorname{is\_bigger}(elephant, dog) \end{array}
```

A More Realistic Example:

$$app(X, Y, Z) \leftarrow X = [], Y = Z$$

 $app(X, Y, Z) \leftarrow X = [H|X'], Z = [H|Z'], app(X', Y, Z')$
? $app(X, [Y, c], [a, b, Z])$

A More Realistic Example:

$$app(X, Y, Z) \leftarrow X = [], Y = Z$$

 $app(X, Y, Z) \leftarrow X = [H|X'], Z = [H|Z'], app(X', Y, Z')$
? $app(X, [Y, c], [a, b, Z])$

Remark:

```
[] the atom empty list
[H|Z] = binary constructor application
[a, b, Z] = shortcut for: [a|[b|[Z|[]]]]
```

A program *p* is constructed as follows:

$$t ::= a | X | _ | f(t_1, ..., t_n)$$
 $g ::= p(t_1, ..., t_k) | X = t$
 $c ::= p(X_1, ..., X_k) \leftarrow g_1, ..., g_r$
 $p ::= c_1....c_m?g$

- A term *t* either is an atom, a variable, an anonymous variable or a constructor application.
- A goal *g* either is a literal, i.e., a predicate call, or a unification.
- A clause c consists of a head $p(X_1, ..., X_k)$ with predicate name and list of formal parameters together with a body, i.e., a sequence of goals.
- A program consists of a sequence of clauses together with a single goal as query.

Procedural View of Proll programs:

goal — procedure call

predicate == procedure

clause — definition

term == value

unification == basic computation step

binding of variables == side effect

Note: Predicate calls ...

- ... do not have a return value.
- ... affect the caller through side effects only :-)
- ... may fail. Then the next definition is tried :-))

⇒ backtracking

27 Architecture of the WiM:

The Code Store:

C = Code store – contains WiM program;every cell contains one instruction;

PC = Program Counter – points to the next instruction to executed;

The Runtime Stack:

- S Runtime Stack – every cell may contain a value or an address;
- SP Stack Pointer – points to the topmost occupied cell;
- Frame Pointer points to the current stack frame. FP =
 - Frames are created for predicate calls, contain cells for each variable of the current clause

The Heap:

- H = Heap for dynamicly constructed terms;
- HP = Heap-Pointer points to the first free cell;
- The heap in maintained like a stack as well :-)
- A new-instruction allocates a object in H.
- Objects are tagged with their types (as in the MaMa) ...

28 Construction of Terms in the Heap

Parameter terms of goals (calls) are constructed in the heap before passing.

Assume that the address environment ρ returns, for each clause variable X its address (relative to FP) on the stack. Then $\operatorname{code}_A t \rho$ should ...

- construct (a presentation of) *t* in the heap; and
- return a reference to it on top of the stack.

Idea:

- Construct the tree during a post-order traversal of *t*
- with one instruction for each new node!

Example:
$$t \equiv f(g(X,Y), a, Z)$$
.

Assume that *X* is initialized, i.e., $S[FP + \rho X]$ contains already a reference, *Y* and *Z* are not yet initialized.

Representing

$$t \equiv f(g(X,Y), a, Z)$$
:

reference to X

For a distinction, we mark occurrences of already initialized variables through over-lining (e.g. \bar{X}).

Note: Arguments are always initialized!

Then we define:

$$\operatorname{code}_{A} a \rho = \operatorname{putatom} a \qquad \operatorname{code}_{A} f(t_{1}, \dots, t_{n}) \rho = \operatorname{code}_{A} t_{1} \rho$$
 $\operatorname{code}_{A} X \rho = \operatorname{putvar}(\rho X) \qquad \qquad \dots$
 $\operatorname{code}_{A} \bar{X} \rho = \operatorname{putref}(\rho X) \qquad \qquad \operatorname{code}_{A} t_{n} \rho$
 $\operatorname{code}_{A} \rho = \operatorname{putanon} \qquad \qquad \operatorname{putstruct} f/n$

For a distinction, we mark occurrences of already initialized variables through over-lining (e.g. \bar{X}).

Note: Arguments are always initialized!

Then we define:

$$\operatorname{code}_{A} a \rho = \operatorname{putatom} a \qquad \operatorname{code}_{A} f(t_{1}, \dots, t_{n}) \rho = \operatorname{code}_{A} t_{1} \rho$$
 $\operatorname{code}_{A} X \rho = \operatorname{putvar}(\rho X) \qquad \qquad \dots$
 $\operatorname{code}_{A} \bar{X} \rho = \operatorname{putref}(\rho X) \qquad \qquad \operatorname{code}_{A} t_{n} \rho$
 $\operatorname{code}_{A} \rho = \operatorname{putanon} \qquad \qquad \operatorname{putstruct} f/n$

For $f(g(\overline{X}, Y), a, Z)$ and $\rho = \{X \mapsto 1, Y \mapsto 2, Z \mapsto 3\}$ this results in the sequence:

putref 1 putatom a
putvar 2 putvar 3
putstruct g/2 putstruct f/3

The instruction putatom a constructs an atom in the heap:

$$SP++; S[SP] = new (A,a);$$

The instruction putvar i introduces a new unbound variable and additionally initializes the corresponding cell in the stack frame:

$$SP = SP + 1;$$

 $S[SP] = new (R, HP);$
 $S[FP + i] = S[SP];$

The instruction putanon introduces a new unbound variable but does not store a reference to it in the stack frame:

The instruction putref i pushes the value of the variable onto the stack:

$$SP = SP + 1;$$

 $S[SP] = deref S[FP + i];$

The instruction putref i pushes the value of the variable onto the stack:

$$SP = SP + 1;$$

 $S[SP] = deref S[FP + i];$

The auxiliary function deref contracts chains of references:

```
ref deref (ref v) {
    if (H[v]==(R,w) && v!=w) return deref (w);
    else return v;
}
```

The instruction putstruct f/n builds a constructor application in the heap:

Remarks:

- The instruction putref i does not just push the reference from S[FP + i] onto the stack, but also dereferences it as much as possible
 - → maximal contraction of reference chains.
- In constructed terms, references always point to smaller heap addresses. Also otherwise, this will be often the case. Sadly enough, it cannot be guaranteed in general :-(