
Reinhard Wilhelm + Helmut Seidl

Abstract Machines

Saarbrücken + Trier

Summer 2002

1

0 Introduction

Principle of Interpretation:

Program + Input Interpreter Output

Advantage: No precomputation on the program text ==⇒ no/short

startup-time

Disadvantages: Program parts are repeatedly analyzed during execution +

less efficient access to program variables

==⇒ slower execution speed

2

Principle of Compilation:

OutputCode

CodeProgram

Input

Compiler

Two Phases (at two different Times):

• Translation of the source program into a machine program (at compile time);

• Execution of the machine program on input data (at run time).

3

Preprocessing of the source program provides for

• efficient access to the values of program variables at run time

• global program transformations to increase execution speed.

Disadvantage: Compilation takes time

Advantage: Program execution is sped up ==⇒ compilation pays off in

long running or often run programs

4

Structure of a compiler:

Program for

Frontend

Optimizations

Internal representation

(Syntax tree)

Internal representation

target machinegeneration

Code

Source program

5

Subtasks in code generation:

Goal is a good exploitation of the hardware resources:

1. Instruction Selection: Selection of efficient, semantically equivalent

instruction sequences;

2. Register-allocation: Best use of the available processor registers

3. Instruction Scheduling: Reordering of the instruction stream to exploit

intra-processor parallelism

For several reasons, e.g. modularization of code generation and portability, code

generation may be split into two phases:

6

abstract machine

abstract machine

code

Intermediate

representation
Code

generation

alternatively:

Input

code
Compiler

Interpreter

concrete machine

code

Output

7

Abstract machine

• idealized architecture,

• simple code generation,

• easily implemented on real hardware.

Advantages:

• Porting the compiler to a new target architecture is simpler,

• Modularization makes the compiler easier to modify,

• Translation of program constructs is separated from the exploitation of

architectural features.

8

Abstract machines for some programming languages:

Pascal → P-machine

Smalltalk → Bytecode

Prolog → WAM (“Warren Abstract Machine”)

SML, Haskell → STGM

Java → JVM

9

We will consider the following languages and abstract machines:

C → CMa // imperative

PuF → MaMa // functional

Proll → WiM // logic based

multi-threaded C → threaded CMa // concurrent

10

The Translation of C

11

1 The Architecture of the CMa

• Each abstract machine provides a set of instructions

• Instructions are executed on the abstract hardware

• This abstract hardware can be viewed as a set of data structures, which the

instructions access

• ... and which are managed by the run-time system

For the CMa we need:

12

The Data Store:

0 SP

S

• S is the (data) store, onto which new cells are allocated in a LIFO discipline

==⇒ Stack.

• SP (=̂ Stack Pointer) is a register, which contains the address of the topmost

allocated cell,

Simplification: All types of data fit into one cell of S.

13

The Code/Instruction Store:

0 1 PC

C

• C is the Code store, which contains the program.

Each cell of field C can store exactly one abstract instruction.

• PC (=̂ Program Counter) is a register, which contains the address of the

instruction to be executed next.

• Initially, PC contains the address 0.

==⇒ C[0] contains the instruction to be executed first.

14

Execution of Programs:

• The machine loads the instruction in C[PC] into a Instruction-Register IR

and executes it

• PC is incremented by 1 before the execution of the instruction

while (true) {

IR = C[PC]; PC++;

execute (IR);

}

• The execution of the instruction may overwrite the PC (jumps).

• The Main Cycle of the machine will be halted by executing the instruction

halt , which returns control to the environment, e.g. the operating system

• More instructions will be introduced by demand

15

2 Simple expressions and assignments

Problem: evaluate the expression (1 + 7) ∗ 3 !

This means: generate an instruction sequence, which

• determines the value of the expression and

• pushes it on top of the stack...

Idea:

• first compute the values of the subexpressions,

• save these values on top of the stack,

• then apply the operator.

16

The general principle:

• instructions expect their arguments on top of the stack,

• execution of an instruction consumes its operands,

• results, if any, are stored on top of the stack.

q
loadc q

SP++;

S[SP] = q;

Instruction loadc q needs no operand on top of the stack, pushes the

constant q onto the stack.

Note: the content of register SP is only implicitly represented, namely through

the height of the stack.

17

8
mul

3
24

SP--;

S[SP] = S[SP] ∗ S[SP+1];

mul expects two operands on top of the stack, consumes both, and pushes

their product onto the stack.

... the other binary arithmetic and logical instructions, add, sub, div, mod,

and, or and xor, work analogously, as do the comparison instructions eq, neq,

le, leq, gr and geq.

18

Example: The operator leq

1

leq7
3

Remark: 0 represents false, all other integers true.

Unary operators neg and not consume one operand and produce one

result.

−88 neg

S[SP] = – S[SP];

19

Example: Code for 1 + 7:

loadc 1 loadc 7 add

Execution of this code sequence:

81
7
1loadc 1 loadc 7 add

20

Variables are associated with cells in S:

x:

z:
y:

Code generation will be described by some Translation Functions, code, codeL,

and codeR.

Arguments: A program construct and a function ρ. ρ delivers for each variable x

the relative address of x. ρ is called Address Environment.

21

Variables can be used in two different ways:

Example: x = y + 1

We are interested in the value of y, but in the address of x.

The syntactic position determines, whether the L-value or the R-value of a

variable is required.

L-value of x = address of x

R-value of x = content of x

codeR e ρ produces code to compute the R-value of e in the

address environment ρ

codeL e ρ analogously for the L-value

Note:

Not every expression has an L-value (Ex.: x + 1).

22

We define:

codeR (e1 + e2) ρ = codeR e1 ρ

codeR e2 ρ

add

... analogously for the other binary operators

codeR (−e) ρ = codeR e ρ

neg

... analogously for the other unary operators

codeR q ρ = loadc q

codeL x ρ = loadc (ρ x)

...

23

codeR x ρ = codeL x ρ

load

The instruction load loads the contents of the cell, whose address is on top of

the stack.

1313

load
13

S[SP] = S[S[SP]];

24

codeR (x = e) ρ = codeR e ρ

codeL x ρ

store

store writes the contents of the second topmost stack cell into the cell, whose

address in on top of the stack, and leaves the written value on top of the stack.

Note: this is different from the corresponding store–instruction of the

P–machine in Wilhelm/Maurer!

13 13

13
store

S[S[SP]] = S[SP-1];

SP--;

25

Example: Code for e ≡ x = y− 1 with ρ = {x 7→ 4, y 7→ 7}.

codeR e ρ produces:

loadc 7

load

loadc 1

sub

loadc 4

store

Improvements:

Introduction of special instructions for frequently used instruction sequences,

e.g.,

loada q = loadc q

load

storea q = loadc q

store

26

3 Statements and Statement Sequences

Is e an expression, then e; is a statement.

Statements do not deliver a value. The contents of the SP before and after the

execution of the generated code must therefore be the same.

code e; ρ = codeR e ρ

pop

The instruction pop eliminates the top element of the stack.

1 pop

SP--;

27

The code for a statement sequence is the concatenation of the code for the

statements of the sequence:

code (s ss) ρ = code s ρ

code ss ρ

code ε ρ = // empty sequence of instructions

28

4 Conditional and Iterative Statements

We need jumps to deviate from the serial execution of consecutive statements:

PC

jump A

A

PC

PC = A;

29

PC

jumpz A
1

PC

A

jumpz A
0

PC PC

if (S[SP] == 0) PC = A;

SP--;

30

For ease of comprehension, we use symbolic jump targets. They will later be

replaced by absolute addresses.

Instead of absolute code addresses, one could generate relative addresses, i.e.,

relative to the actual PC.

Advantages:

• smaller addresses suffice most of the time;

• the code becomes relocatable, i.e., can be moved around in memory.

31

4.1 One-sided Conditional Statement

Let us first regard s ≡ if (e) s′.

Idea:

• Put code for the evaluation of e and s′ consecutively in the code store,

• Insert a conditional jump (jump on zero) in between.

32

code s ρ = codeR e ρ

jumpz A

code s′ ρ

A : . . .

R

jumpz

code for e

code for s’

33

4.2 Two-sided Conditional Statement

Let us now regard s ≡ if (e) s1 else s2. The same strategy yields:

code s ρ = codeR e ρ

jumpz A

code s1 ρ

jump B

A : code s2 ρ

B : . . .

code for eR

jump

jumpz

1

2
code for s

code for s

34

Example: Be ρ = {x 7→ 4, y 7→ 7} and

s ≡ if (x > y) (i)

x = x− y; (ii)

else y = y− x; (iii)

code s ρ produces:

loada 4 loada 4 A: loada 7

loada 7 loada 7 loada 4

ge sub sub

jumpz A storea 4 storea 7

pop pop

jump B B: . . .

(i) (ii) (iii)

35

4.3 while-Loops

Let us regard the loop s ≡ while (e) s′. We generate:

code s ρ =

A : codeR e ρ

jumpz B

code s′ ρ

jump A

B : . . .

jumpz

code for eR

jump

code for s’

36

Example: Be ρ = {a 7→ 7, b 7→ 8, c 7→ 9} and s the statement:

while (a > 0) {c = c + 1; a = a− b; }

code s ρ produces the sequence:

A: loada 7 loada 9 loada 7 B: . . .

loadc 0 loadc 1 loada 8

ge add sub

jumpz B storea 9 storea 7

pop pop

jump A

37

4.4 for-Loops

The for-loop s ≡ for (e1; e2; e3) s′ is equivalent to the statement sequence

e1; while (e2) {s′ e3; } – provided that s′ contains no continue-statement.

We therefore translate:

code s ρ = codeR e1

pop

A : codeR e2 ρ

jumpz B

code s′ ρ

codeR e3 ρ

pop

jump A

B : . . .

38

4.5 The switch-Statement

Idea:

• Multi-target branching in constant time!

• Use a jump table, which contains at its i-th position the jump to the

beginning of the i-th alternative.

• Realized by indexed jumps.

q jumpi B

B+q

PC PC

PC = B + S[SP];

SP--;

39

Simplification:

We only regard switch-statements of the following form:

s ≡ switch (e) {

case 0: ss0 break;

case 1: ss1 break;
...

case k− 1: ssk−1 break;

default: ssk

}

s is then translated into the instruction sequence:

40

code s ρ = codeR e ρ C0: code ss0 ρ B: jump C0

check 0 k B jump D . . .

. . . jump Ck

Ck: code ssk ρ D: . . .

jump D

• The Macro check 0 k B checks, whether the R-value of e is in the interval

[0, k], and executes an indexed jump into the table B

• The jump table contains direct jumps to the respective alternatives.

• At the end of each alternative is an unconditional jump out of the

switch-statement.

41

check 0 k B = dup dup jumpi B

loadc 0 loadc k A: pop

geq le loadc k

jumpz A jumpz A jumpi B

• The R-value of e is still needed for indexing after the comparison. It is

therefore copied before the comparison.

• This is done by the instruction dup.

• The R-value of e is replaced by k before the indexed jump is executed if it is

less than 0 or greater than k.

42

3
dup

3
3

S[SP+1] = S[SP];

SP++;

43

Note:

• The jump table could be placed directly after the code for the Macro check.

This would save a few unconditional jumps. However, it may require to

search the switch-statement twice.

• If the table starts with u instead of 0, we have to decrease the R-value of e by

u before using it as an index.

• If all potential values of e are definitely in the interval [0, k], the macro

check is not needed.

44

5 Storage Allocation for Variables

Goal:

Associate statically, i.e. at compile time, with each variable x a fixed (relative)

address ρ x

Assumptions:

• variables of basic types, e.g. int, . . . occupy one storage cell.

• variables are allocated in the store in the order, in which they are declared,

starting at address 1.

Consequently, we obtain for the declaration d ≡ t1 x1 ; . . . tk xk; (ti basic

type) the address environment ρ such that

ρ xi = i, i = 1, . . . , k

45

5.1 Arrays

Example: int [11] a;

The array a consists of 11 components and therefore needs 11 cells.

ρ a is the address of the component a[0].

a[0]

a[10]

46

We need a function sizeof (notation: | · |), computing the space requirement of a

type:

|t| =

1 if t basic

k · |t′| if t ≡ t′[k]

Accordingly, we obtain for the declaration d ≡ t1 x1 ; . . . tk xk ;

ρ x1 = 1

ρ xi = ρ xi−1 + |ti−1| for i > 1

Since | · | can be computed at compile time, also ρ can be computed at compile

time.

47

Task:

Extend codeL and codeR to expressions with accesses to array components.

Be t[c] a; the declaration of an array a.

To determine the start address of a component a[i] , we compute

ρ a + |t| ∗ (R-value of i).

In consequence:

codeL a[e] ρ = loadc (ρ a)

codeR e ρ

loadc |t|

mul

add

. . . or more general:

48

codeL e1[e2] ρ = codeR e1 ρ

codeR e2 ρ

loadc |t|

mul

add

Remark:

• In C, an array is a pointer. A declared array a is a pointer-constant, whose

R-value is the start address of the array.

• Formally, we define for an array e: codeR e ρ = codeL e ρ

• In C, the following are equivalent (as L-values):

2[a] a[2] a + 2

Normalization: Array names and expressions evaluating to arrays occur in

front of index brackets, index expressions inside the index brackets.

49

5.2 Structures

In Modula and Pascal, structures are called Records.

Simplification:

Names of structure components are not used elsewhere.

Alternatively, one could manage a separate environment ρst for each

structure type st.

Be struct { int a; int b; } x; part of a declaration list.

• x has as relative address the address of the first cell allocated for the

structure.

• The components have addresses relative to the start address of the structure.

In the example, these are a 7→ 0, b 7→ 1.

50

Let t ≡ struct {t1 c1 ; . . . tk ck ; }. We have

|t| =
k

∑
i=1

|ti|

ρ c1 = 0 and

ρ ci = ρ ci−1 + |ti−1| for i > 1

We thus obtain:

codeL (e.c) ρ = codeL e ρ

loadc (ρ c)

add

51

Example:

Be struct { int a; int b; } x; such that ρ = {x 7→ 13, a 7→ 0, b 7→ 1}.

This yields:

codeL (x.b) ρ = loadc 13

loadc 1

add

52

6 Pointer and Dynamic Storage Management

Pointer allow the access to anonymous, dynamically generated objects, whose

life time is not subject to the LIFO-principle.

==⇒ We need another potentially unbounded storage area H – the Heap.

S H

MAX0

SP EP NP

NP =̂ New Pointer; points to the lowest occupied heap cell.

EP =̂ Extreme Pointer; points to the uppermost cell, to which SP can point

(during execution of the actual function).

53

Idea:

• Stack and Heap grow toward each other in S, but must not collide. (Stack

Overflow).

• A collision may be caused by an increment of SP or a decrement of NP.

• EP saves us the check for collision at the stack operations.

• The checks at heap allocations are still necessary.

54

What can we do with pointers (pointer values)?

• set a pointer to a storage cell,

• dereference a pointer, access the value in a storage cell pointed to by a

pointer.

There a two ways to set a pointer:

(1) A call malloc (e) reserves a heap area of the size of the value of e and

returns a pointer to this area:

codeR malloc (e) ρ = codeR e ρ

new

(2) The application of the address operator & to a variable returns a pointer

to this variable, i.e. its address (=̂ L-value). Therefore:

codeR (&e) ρ = codeL e ρ

55

n

NP

newn

NP

if (NP - S[SP] ≤ EP)

S[SP] = NULL;

else {

NP = NP - S[SP];

S[SP] = NP;

}

• NULL is a special pointer constant, identified with the integer constant 0.

• In the case of a collision of stack and heap the NULL-pointer is returned.

56

Dereferencing of Pointers:

The application of the operator ∗ to the expression e returns the contents of

the storage cell, whose address is the R-value of e:

codeL (∗e) ρ = codeR e ρ

Example: Given the declarations

struct t { int a[7]; struct t ∗b; };

int i, j;

struct t ∗pt;

and the expression ((pt→ b)→ a)[i + 1]

Because of e→ a ≡ (∗e).a holds:

codeL (e→ a) ρ = codeR e ρ

loadc (ρ a)

add

57

b:

a:

b:

a:pt:

j:

i:

58

Be ρ = {i 7→ 1, j 7→ 2, pt 7→ 3, a 7→ 0, b 7→ 7 }. Then:

codeL ((pt→ b)→ a)[i + 1] ρ

= codeR ((pt→ b)→ a) ρ = codeR ((pt→ b)→ a) ρ

codeR (i + 1) ρ loada 1

loadc 1 loadc 1

mul add

add loadc 1

mul

add

59

For arrays, their R-value equals their L-value. Therefore:

codeR ((pt→ b)→ a) ρ = codeR (pt→ b) ρ = loada 3

loadc 0 loadc 7

add add

load

loadc 0

add

In total, we obtain the instruction sequence:

loada 3 load loada 1 loadc 1

loadc 7 loadc 0 loadc 1 mul

add add add add

60

7 Conclusion

We tabulate the cases of the translation of expressions:

codeL (e1[e2]) ρ = codeR e1 ρ

codeR e2 ρ

loadc |t|

mul

add if e1 has type t∗ or t[]

codeL (e.a) ρ = codeL e ρ

loadc (ρ a)

add

61

codeL (∗e) ρ = codeR e ρ

codeL x ρ = loadc (ρ x)

codeR (&e) ρ = codeL e ρ

codeR e ρ = codeL e ρ if e is an array

codeR (e1 2 e2) ρ = codeR e1 ρ

codeR e2 ρ

op op instruction for operator ‘2’

62

codeR q ρ = loadc q q constant

codeR (e1 = e2) ρ = codeR e2 ρ

codeL e1 ρ

store

codeR e ρ = codeL e ρ

load otherwise

63

Example: int a[10], ∗b; with ρ = {a 7→ 7, b 7→ 17}.

For the statement: ∗a = 5; we obtain:

codeL (∗a) ρ = codeR a ρ = codeL a ρ = loadc 7

code (∗a = 5;) ρ = loadc 5

loadc 7

store

pop

As an exercise translate:

s1 ≡ b = (&a) + 2; and s2 ≡ ∗(b + 3) = 5;

64

code (s1s2) ρ = loadc 7 loadc 5

loadc 2 loadc 17

loadc 10 // size of int[10] load

mul // scaling loadc 3

add loadc 1 // size of int

loadc 17 mul // scaling

store add

pop // end of s1 store

pop // end of s2

65

8 Freeing Occupied Storage

Problems:

• The freed storage area is still referenced by other pointers (dangling

references).

• After several deallocations, the storage could look like this (fragmentation):

frei

66

Potential Solutions:

• Trust the programmer. Manage freed storage in a particular data structure

(free list) ==⇒ malloc or free my become expensive.

• Do nothing, i.e.:

code free (e); ρ = codeR e ρ

pop

==⇒ simple and (in general) efficient.

• Use an automatic, potentially “conservative” Garbage-Collection, which

occasionally collects certainly inaccessible heap space.

67

9 Functions

The definition of a function consists of

• a name, by which it can be called,

• a specification of the formal parameters;

• maybe a result type;

• a statement part, the body.

For C holds:

codeR f ρ = loadc _ f = starting address of the code for f

==⇒ Function names must also be managed in the address environment!

68

Example:

int fac (int x) {

if (x ≤ 0) return 1;

else return x ∗ fac(x− 1);

}

main () {

int n;

n = fac(2) + fac(1);

printf (“%d”, n);

}

At any time during the execution, several instances of one function may exist,

i.e., may have started, but not finished execution.

An instance is created by a call to the function.

The recursion tree in the example:

main

printffacfac

fac fac

fac

69

We conclude:

The formal parameters and local variables of the different instances of the same

function must be kept separate.

Idea:

Allocate a special storage area for each instance of a function.

In sequential programming languages these storage areas can be managed on a

stack. They are therefore called Stack Frames.

70

9.1 Storage Organization for Functions

FP

SP

PCold

FPold

EPold

return value

organisational

cells

formal parameters

local variables

FP =̂ Frame Pointer; points to the last organizational cell and is used to address

the formal parameters and the local variables.

71

The caller must be able to continue execution in its frame after the return from a

function. Therefore, at a function call the following values have to be saved into

organizational cells:

• the FP

• the continuation address after the call and

• the actual EP.

Simplification: The return value fits into one storage cell.

Translation tasks for functions:

• Generate code for the body!

• Generate code for calls!

72

9.2 Computing the Address Environment

We have to distinguish two different kinds of variables:

1. globals, which are defined externally to the functions;

2. locals/automatic (including formal parameters), which are defined

internally to the functions.

==⇒

The address environment ρ associates pairs (tag, a) ∈ {G, L}×N0 with their

names.

Note:

• There exist more refined notions of visibility of (the defining occurrences of)

variables, namely nested blocks.

• The translation of different program parts in general uses different address

environments!

73

Example (1):

0 int i;

struct list {

int info;

struct list ∗ next;

} ∗ l;

1 int ith (struct list ∗ x, int i) {

if (i ≤ 1) return x→info;

else return ith (x→next, i− 1);

}

2 main () {

int k;

scanf ("%d", &i);

scanlist (&l);

printf ("\n\t%d\n", ith (l,i));

}

address environment at 0

ρ0 : i 7→ (G, 1)

l 7→ (G, 2)

ith 7→ (G, _ith)

main 7→ (G, _main)

. . .

74

Example (2):

0 int i;

struct list {

int info;

struct list ∗ next;

} ∗ l;

1 int ith (struct list ∗ x, int i) {

if (i ≤ 1) return x→info;

else return ith (x→next, i− 1);

}

2 main () {

int k;

scanf ("%d", &i);

scanlist (&l);

printf ("\n\t%d\n", ith (l,i));

}

1 inside of ith:

ρ1 : i 7→ (L, 2)

x 7→ (L, 1)

l 7→ (G, 2)

ith 7→ (G, _ith)

main 7→ (G, _main)

. . .

75

Example (3):

0 int i;

struct list {

int info;

struct list ∗ next;

} ∗ l;

1 int ith (struct list ∗ x, int i) {

if (i ≤ 1) return x→info;

else return ith (x→next, i− 1);

}

2 main () {

int k;

scanf ("%d", &i);

scanlist (&l);

printf ("\n\t%d\n", ith (l,i));

}

2 inside of main:

ρ2 : i 7→ (G, 1)

l 7→ (G, 2)

k 7→ (L, 1)

ith 7→ (G, _ith)

main 7→ (G, _main)

. . .

76

9.3 Calling/Entering and Leaving Functions

Be f the actual function, the Caller, and let f call the function g, the Callee.

The code for a function call has to be distributed among the Caller and the

Callee:

The distribution depends on who has which information.

77

Actions upon calling/entering g:

1. Saving FP, EP
}

mark

2. Computing the actual parameters

3. Determining the start address of g

4. Setting the new FP

5. Saving PC and

jump to the beginning of g

call

available in f

6. Setting the new EP
}

enter

7. Allocating the local variables
}

alloc

 available in g

Actions upon leaving g:

1. Restoring the registers FP, EP, SP

2. Returning to the code of f, i.e. restoring the

PC

return

78

Altogether we generate for a call:

codeR g(e1, . . . , en) ρ = mark

codeR e1 ρ

. . .

codeR em ρ

codeR g ρ

call n

where n = space for the actual parameters

Note:

• Expressions occurring as actual parameters will be evaluated to their

R-value ==⇒ Call-by-Value-parameter passing.

• Function g can also be an expression, whose R-value is the start address of

the function to be called ...

79

• Function names are regarded as constant pointers to functions, similarly to

declared arrays. The R-value of such a pointer is the start address of the

function.

• For a variable int (∗)() g; , the two calls

(∗g)() und g()

are equivalent :-)

Normalization: Dereferencing of a function pointer is ignored.

• Structures are copied when they are passed as parameters.

In consequence:

codeR f ρ = loadc (ρ f) f a function name

codeR (∗e) ρ = codeR e ρ e a function pointer

codeR e ρ = codeL e ρ

move k e a structure of size k

80

move k

k

for (i = k-1; i≥0; i--)

S[SP+i] = S[S[SP]+i];

SP = SP+k–1;

81

The instruction mark allocates space for the return value and for the

organizational cells and saves the FP and EP.

e

mark

e
FP
EP e

FP
EP

S[SP+2] = EP;

S[SP+3] = FP;

SP = SP + 4;

82

The instruction call n saves the continuation address and assigns FP, SP, and

PC their new values.

q

p

PC

FPcall n

PC

p

n

q

FP = SP - n - 1;

S[FP] = PC;

PC = S[SP];

SP--;

83

Correspondingly, we translate a function definition:

code t f (specs){V_defs ss} ρ =

_f: enter q // Setting the EP

alloc k // Allocating the local variables

code ss ρf

return // leaving the function

where t = return type of f with |t| ≤ 1

q = maxS + k where

maxS = maximal depth of the local stack

k = space for the local variables

ρf = address environment for f

// takes care of specs, V_defs and ρ

84

The instruction enter q sets EP to its new value. Program execution is

terminated if not enough space is available.

EP

enter q

q

EP = SP + q;

if (EP ≥ NP)

Error (“Stack Overflow”);

85

The instruction alloc k reserves stack space for the local variables.

alloc k

k

SP = SP + k;

86

The instruction return pops the actual stack frame, i.e., it restores the

registers PC, EP, SP, and FP and leaves the return value on top of the stack.

return

v v

p

e

p

eEP

PC
FP
EP

PC
FP

PC = S[FP]; EP = S[FP-2];

if (EP ≥ NP) Error (“Stack Overflow”);

SP = FP-3; FP = S[SP+2];

87

9.4 Access to Variables and Formal Parameters, and Return of

Values

Local variables and formal parameters are addressed relative to the current FP.

We therefore modify codeL for the case of variable names.

For ρ x = (tag, j) we define

codeL x ρ =

loadc j tag = G

loadrc j tag = L

88

The instruction loadrc j computes the sum of FP and j.

FP
loadrc j

f+jffFP

SP++;

S[SP] = FP+j;

89

As an optimization one introduces the instructions loadr j and storer j .

This is analogous to loada j and storea j.

loadr j = loadrc j

load

storer j = loadrc j

store

The code for return e; corresponds to an assignment to a variable with

relative address −3.

code return e; ρ = codeR e ρ

storer -3

return

90

Example: For the function

int fac (int x) {

if (x ≤ 0) return 1;

else return x ∗ fac (x− 1);

}

we generate:

_fac: enter q loadc 1 A: loadr 1 mul

alloc 0 storer -3 mark storer -3

loadr 1 return loadr 1 return

loadc 0 jump B loadc 1 B: return

leq sub

jumpz A loadc _fac

call 1

where ρfac : x 7→ (L, 1) and q = 1 + 4 + 2 = 7.

91

10 Translation of Whole Programs

The state before program execution starts:

SP = −1 FP = EP = 0 PC = 0 NP = MAX

Be p ≡ V_defs F_def1 . . . F_defn, a program, where F_defi defines a function

fi, of which one is named main.

The code for the program p consists of:

• Code for the function definitions F_defi;

• Code for allocating the global variables;

• Code for the call of main();

• the instruction halt.

92

We thus define:

code p ∅ = enter (k + 6)

alloc (k + 1)

mark

loadc _main

call 0

pop

halt

_f1: code F_def1 ρ

...

_fn: code F_defn ρ

where ∅ =̂ empty address environment;

ρ =̂ global address environment;

k =̂ space for global variables

_main ∈ {_f1, . . . , _fn}

93

The Translation of Functional
Programming Languages

108

11 The language PuF

We only regard a mini-language PuF (“Pure Functions”).

We do not treat, as yet:

• Side effects;

• Data structures.

109

A Program is an expression e of the form:

e ::= b | x | (21 e) | (e1 22 e2)

| (if e0 then e1 else e2)

| (e′ e0 . . . ek−1)

| (fn x0, . . . , xk−1 ⇒ e)

| (let x1 = e1; . . . ; xn = en in e0)

| (letrec x1 = e1; . . . ; xn = en in e0)

An expression is therefore

• a basic value, a variable, the application of an operator, or

• a function-application, a function-abstraction, or

• a let-expression, i.e. an expression with locally defined variables, or

• a letrec-expression, i.e. an expression with simultaneously defined local

variables.

For simplicity, we only allow int and bool as basic types.

110

Example:

The following well-known function computes the factorial of a natural number:

letrec fac = fn x⇒ if x ≤ 1 then 1

else x · fac (x− 1)

in fac 7

As usual, we only use the minimal amount of parentheses.

There are two Semantics:

CBV: Arguments are evaluated before they are passed to the function (as in

SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their

value is needed (as in Haskell).

111

12 Architecture of the MaMa:

We know already the following components:

0 1 PC

C

C = Code-store – contains the MaMa-program;

each cell contains one instruction;

PC = Program Counter – points to the instruction to be executed next;

112

0 SP

FP

S

S = Runtime-Stack – each cell can hold a basic value or an address;

SP = Stack-Pointer – points to the topmost occupied cell;

as in the CMa implicitely represented;

FP = Frame-Pointer – points to the actual stack frame.

113

We also need a heap H:

Tag

Heap Pointer

Value

Code Pointer

114

... it can be thought of as an abstract data type, being capable of holding data

objects of the following form:

nV

......

Vector

B

C

F

−173

cp gp

cp ap gp

Function

Closure

v

v[0] v[n−1]

Basic Value

115

The instruction new (tag, args) creates a corresponding object (B, C, F, V) in H

and returns a reference to it.

We distinguish three different kinds of code for an expression e:

• codeV e — (generates code that) computes the Value of e, stores it in the

heap and returns a reference to it on top of the stack (the normal case);

• codeB e — computes the value of e, and returns it on the top of the stack

(only for Basic types);

• codeC e — does not evaluate e, but stores a Closure of e in the heap and

returns a reference to the closure on top of the stack.

We start with the code schemata for the first two kinds:

116

13 Simple expressions

Expressions consisting only of constants, operator applications, and conditionals

are translated like expressions in imperative languages:

codeB b ρ sd = loadc b

codeB (21 e)ρ sd = codeB e ρ sd

op1

codeB (e1 22 e2)ρ sd = codeB e1 ρ sd

codeB e2 ρ (sd + 1)

op2

117

codeB (if e0 then e1 else e2)ρ sd = codeB e0 ρ sd

jumpz A

codeB e1 ρ sd

jump B

A: codeB e2 ρ sd

B: ...

118

Note:

• ρ denotes the actual address environment, in which the expression is

translated. Address environments have the form:

ρ : Vars→ {L, G} ×Z

• The extra argument sd, the stack difference, simulates the movement of the

SP when instruction execution modifies the stack. It is needed later to

address variables.

• The instructions op1 and op2 implement the operators 21 and 22, in the

same way as the the operators neg and add implement negation resp.

addition in the CMa.

• For all other expressions, we first compute the value in the heap and then

dereference the returned pointer:

codeB e ρ sd = codeV e ρ sd

getbasic

119

17B 17
getbasic

if (H[S[SP]] != (B,_))

else
S[SP] = H[S[SP]].v;

Error “not basic!”;

120

For codeV and simple expressions, we define analogously:

codeV b ρ sd = loadc b; mkbasic

codeV (21 e)ρ sd = codeB e ρ sd

op1 ; mkbasic

codeV (e1 22 e2)ρ sd = codeB e1 ρ sd

codeB e2 ρ (sd + 1)

op2 ; mkbasic

codeV (if e0 then e1 else e2)ρ sd = codeB e0 ρ sd

jumpz A

codeV e1 ρ sd

jump B

A: codeV e2 ρ sd

B: ...

121

17B17
mkbasic

S[SP] = new (B,S[SP]);

122

14 Accessing Variables

We must distinguish between local and global variables.

Example: Regard the function f :

let c = 5

f = fn a ⇒ let b = a ∗ a

in b + c

in f c

The function f uses the global variable c and the local variables a (as formal

parameter) and b (introduced by the inner let).

The binding of a global variable is determined, when the function is constructed

(static scoping!), and later only looked up.

123

Accessing Global Variables

• The bindings of global variables of an expression or a function are kept in a

vector in the heap (Global Vector).

• They are addressed consecutively starting with 0.

• When an F-object or a C-object are constructed, the Global Vector for the

function or the expression is determined and a reference to it is stored in the

gp-component of the object.

• During the evaluation of an expression, the (new) register GP (Global

Pointer) points to the actual Global Vector.

• In constrast, local variables should be administered on the stack ...

==⇒ General form of the address environment:

ρ : Vars→ {L, G} ×Z

124

Accessing Local Variables

Local variables are administered on the stack, in stack frames.

Let e ≡ e′ e0 . . . em−1 be the application of a function e′ to arguments

e0, . . . , em−1.

Warning:

The arity of e′ does not need to be m :-)

• PuF functions have curried types, f : t1 → t2 → . . .→ tn → t

• f may therefore receive less than n arguments (under supply);

• f may also receive more than n arguments, if t is a functional type (over

supply).

125

Possible stack organisations:

FP

F e′

e0

em−1

+ Addressing of the arguments can be done relative to FP

− The local variables of e′ cannot be addressed relative to FP.

− If e′ is an n-ary function with n < m, i.e., we have an over-supplied function

application, the remaining m− n arguments will have to be shifted.

126

− If e′ evaluates to a function, which has already been partially applied to the

parameters a0, . . . , ak−1, these have to be sneaked in underneath e0:

FP

a1

em−1

e0

a0

127

Alternative:

FP

F e′

em−1

e0

+ The further arguments a0, . . . , ak−1 and the local variables can be allocated

above the arguments.

128

FP

e0

a0

a1

em−1

− Addressing of arguments and local variables relative to FP is no more

possible. (Remember: m is unknown when the function definition is

translated.)

129

Way out:

• We address both, arguments and local variables, relative to the stack pointer

SP !!!

• However, the stack pointer changes during program execution...

FP

sd
SP

0sp e0

em−1

130

• The differerence between the current value of SP and its value sp0 at the

entry of the function body is called the stack distance, sd.

• Fortunately, this stack distance can be determined at compile time for each

program point, by simulating the movement of the SP.

• The formal parameters x0, x1, x2, . . . successively receive the non-positive

relative addresses 0,−1,−2, . . ., i.e., ρ xi = (L,−i).

• The absolute address of the i-th formal parameter consequently is

sp0 − i = (SP− sd)− i

• The local let-variables y1, y2, y3, . . . will be successively pushed onto the

stack:

131

:

sd

SP

sp0

2

1

0

−2

−1

3 y3

y1

x0

xk−1

x1

y2

• The yi have positive relative addresses 1, 2, 3, . . ., that is: ρ yi = (L, i).

• The absolute address of yi is then sp0 + i = (SP− sd) + i

132

With CBN, we generate for the access to a variable:

codeV x ρ sd = getvar x ρ sd

eval

The instruction eval checks, whether the value has already been computed

or whether its evaluation has to yet to be done (==⇒will be treated later :-)

With CBV, we can just delete eval from the above code schema.

The (compile-time) macro getvar is defined by:

getvar x ρ sd = let (t, i) = ρ x in

case t of

L⇒ pushloc (sd− i)

G⇒ pushglob i

end

133

The access to local variables:

n

pushloc n

S[SP+1] =S[SP - n]; SP++;

134

Correctness argument:

Let sp and sd be the values of the stack pointer resp. stack distance before the

execution of the instruction. The value of the local variable with address i is

loaded from S[a] with

a = sp− (sd− i) = (sp− sd) + i = sp0 + i

... exactly as it should be :-)

135

The access to global variables is much simpler:

VGP VGP

i

pushglob i

SP = SP + 1;
S[SP] = GP→v[i];

136

Example:

Regard e ≡ (b + c) for ρ = {b 7→ (L, 1), c 7→ (G, 0)} and sd = 1.

With CBN, we obtain:

codeV e ρ 1 = getvar b ρ 1 = 1 pushloc 0

eval 2 eval

getbasic 2 getbasic

getvar c ρ 2 2 pushglob 0

eval 3 eval

getbasic 3 getbasic

add 3 add

mkbasic 2 mkbasic

137

15 let-Expressions

As a warm-up let us first consider the treatment of local variables :-)

Let e ≡ let y1 = e1; . . . ; yn = en in e0 be a let-expression.

The translation of e must deliver an instruction sequence that

• allocates local variables y1, . . . , yn;

• in the case of

CBV: evaluates e1, . . . , en and binds the yi to their values;

CBN: constructs closures for the e1, . . . , en and binds the yi to them;

• evaluates the expression e0 and returns its value.

Here, we consider the non-recursive case only, i.e. where y j only depends on

y1, . . . , y j−1. We obtain for CBN:

138

codeV e ρ sd = codeC e1 ρ sd

codeC e2 ρ1 (sd + 1)

. . .

codeC en ρn−1 (sd + n− 1)

codeV e0 ρn (sd + n)

slide n // deallocates local variables

where ρ j = ρ⊕ {yi 7→ (L, sd + i) | i = 1, . . . , j}.

In the case of CBV, we use codeV for the expressions e1, . . . , en.

Warning!

All the ei must be associated with the same binding for the global variables!

139

Example:

Consider the expression

e ≡ let a = 19; b = a ∗ a in a + b

for ρ = ∅ and sd = 0. We obtain (for CBV):

0 loadc 19 3 getbasic 3 pushloc 1

1 mkbasic 3 mul 4 getbasic

1 pushloc 0 2 mkbasic 4 add

2 getbasic 2 pushloc 1 3 mkbasic

2 pushloc 1 3 getbasic 3 slide 2

140

The instruction slide k deallocates again the space for the locals:

k

slide k

S[SP-k] = S[SP];
SP = SP - k;

141

16 Function Definitions

The definition of a function f requires code that allocates a functional value for f

in the heap. This happens in the following steps:

• Creation of a Global Vector with the binding of the free variables;

• Creation of an (initially empty) argument vector;

• Creation of an F-Object, containing references to these vectors and the start

address of the code for the body;

Separately, code for the body has to be generated.

Thus:

142

codeV (fn x0, . . . , xk−1 ⇒ e)ρ sd = getvar z0 ρ sd

getvar z1 ρ (sd + 1)

. . .

getvar zg−1 ρ (sd + g− 1)

mkvec g

mkfunval A

jump B

A : targ k

codeV e ρ′ 0

return k

B : . . .

where {z0, . . . , zg−1} = free(fn x0 , . . . , xk−1 ⇒ e)

and ρ′ = {xi 7→ (L,−i) | i = 0, . . . , k− 1} ∪ {z j 7→ (G, j) | j = 0, . . . , g− 1}

143

g mkvec g

h = new (V, n);
SP = SP - g + 1;
for (i=0; i<g; i++)

h→v[i] = S[SP + i];
S[SP] = h;

V g

144

F A

mkfunval A V 0

V V

a = new (V,0);
S[SP] = new (F, A, a, S[SP]);

145

Example:

Regard f ≡ fn b⇒ a + b for ρ = {a 7→ (L, 1)} and sd = 1.

codeV f ρ 1 produces:

1 pushloc 0 0 pushglob 0 2 getbasic

2 mkvec 1 1 eval 2 add

2 mkfunval A 1 getbasic 1 mkbasic

2 jump B 1 pushloc 1 1 return 1

0 A : targ 1 2 eval 2 B : ...

The secrets around targ k and return k will be revealed later :-)

146

17 Function Application

Function applications correspond to function calls in C.

The necessary actions for the evaluation of e′ e0 . . . em−1 are:

• Allocation of a stack frame;

• Transfer of the actual parameters , i.e. with:

CBV: Evaluation of the actual parameters;

CBN: Allocation of closures for the actual parameters;

• Evaluation of the expression e′ to an F-object;

• Application of the function.

Thus for CBN:

147

codeV (e′ e0 . . . em−1)ρ sd = mark A // Allocation of the frame

codeC em−1 ρ (sd + 3)

codeC em−2 ρ (sd + 4)

. . .

codeC e0 ρ (sd + m + 2)

codeV e′ ρ (sd + m + 3) // Evaluation of e′

apply // corresponds to call

A : ...

To implement CBV, we use codeV instead of codeC for the arguments ei.

Example: For (f 42) , ρ = { f 7→ (L, 2)} and sd = 2, we obtain with CBV:

2 mark A 6 mkbasic 7 apply

5 loadc 42 6 pushloc 4 3 A : ...

148

A Slightly Larger Example:

let a = 17; f = fn b⇒ a + b in f 42

For CBV and sd = 0 we obtain:

0 loadc 17 2 jump B 2 getbasic 5 loadc 42

1 mkbasic 0 A: targ 1 2 add 5 mkbasic

1 pushloc 0 0 pushglob 0 1 mkbasic 6 pushloc 4

2 mkvec 1 1 getbasic 1 return 1 7 apply

2 mkfunval A 1 pushloc 1 2 B: mark C 3 C: slide 2

149

For the implementation of the new instruction, we must fix the organization of a

stack frame:

FPold

PCold

GPold

FP 0

-1

-2

local stack

3 org. cells

SP

Arguments

150

Remember: Addressing of arguments and local variables

FP

sd
SP

0sp e0

em−1

151

Different from the CMa, the instruction mark A already saves the return

address:

V V

A

mark A

GP GP

FP = SP = SP + 3;

FPFP

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = A;

152

The instruction apply unpacks the F-object, a reference to which (hopefully)

resides on top of the stack, and continues execution at the address given there:

42

GP

PC 42

GP

PC
F

ap gp
apply

VV

for (i=0; i< h→ap→n; i++)
S[SP+i] = h→ap→v[i];

SP = SP + h→ap→n – 1;
}

else {
Error “no fun”;

h = S[SP];
if (H[h] != (F,_,_))

GP = h→gp; PC = h→cp;

V n

153

Warning:

• The last element of the argument vector is the last to be put onto the stack.

This must be the first argument reference.

• This should be kept in mind, when we treat the packing of arguments of an

under-supplied function application into an F-object !!!

154

18 Over– and Undersupply of Arguments

The first instruction to be executed when entering a function body, i.e., after an

apply is targ k .

This instruction checks whether there are enough arguments to evaluate the

body.

Only if this is the case, the execution of the code for the body is started.

Otherwise, i.e. in the case of under-supply, a new F-object is returned.

The test for number of arguments uses: SP – FP

155

targ k is a complex instruction.

We decompose its execution in the case of under-supply into several steps:

targ k = if (SP – FP < k) {

mkvec0; // creating the argumentvector

wrap; // wrapping into an F− object

popenv; // popping the stack frame

}

The combination of these steps into one instruction is a kind of optimization :-)

156

The instruction mkvec0 takes all references from the stack above FP and

stores them into a vector:

FPFP

g
mkvec0

g = SP–FP; h = new (V, g);
SP = FP+1;
for (i=0; i<g; i++)

h→v[i] = S[SP + i];
S[SP] = h;

V g

157

The instruction wrap A wraps the argument vector together with the global

vector into an F-object:

ap gp

GPGP

wrap A
VV

V V

F A

S[SP] = new (F, A, S[SP], GP);

158

The instruction popenv finally releases the stack frame:

19

42PC

GP

FP

19

42 FPpopenv

GP = S[FP-2];

FP = S[FP-1];

S[FP-2] = S[SP];
PC = S[FP];
SP = FP - 2;

159

Thus, we obtain for targ k in the case of under supply:

FP

GP

PC 42

17

V

V

mkvek0

160

FP

GP

PC 42

17

V

V

V m

wrap

161

FP

41GP

PC 42

17

V

V

V m

F

popenv

162

GP

PC

41

17

FP

V

V

V

F

163

GP

PC

41

17

FP

V

V

V

F

164

• The stack frame can be released after the execution of the body if exactly the

right number of arguments was available.

• If there is an oversupply of arguments, the body must evaluate to a function,

which consumes the rest of the arguments ...

• The check for this is done by return k:

return k = if (SP− FP = k + 1)

popenv; // Done

else { // There are more arguments

slide k;

apply; // another application

}

The execution of return k results in:

165

Case: Done

GP

PC

FP

17

GP

PC

17FP

VV

k
popenv

166

Case: Over-supply

FP FP

F

k
slide k

F

apply

167

19 letrec-Expressions

Consider the expression e ≡ letrec y1 = e1; . . . ; yn = en in e0 .

The translation of e must deliver an instruction sequence that

• allocates local variables y1, . . . , yn;

• in the case of

CBV: evaluates e1, . . . , en and binds the yi to their values;

CBN: constructs closures for the e1, . . . , en and binds the yi to them;

• evaluates the expression e0 and returns its value.

Warning:

In a letrec-expression, the definitions can use variables that will be allocated

only later! ==⇒ Dummy-values are put onto the stack before processing the

definition.

168

For CBN, we obtain:

codeV e ρ sd = alloc n // allocates local variables

codeC e1 ρ′ (sd + n)

rewrite n

. . .

codeC en ρ′ (sd + n)

rewrite 1

codeV e0 ρ′ (sd + n)

slide n // deallocates local variables

where ρ′ = ρ⊕ {yi 7→ (L, sd + i) | i = 1, . . . , n}.

In the case of CBV, we also use codeV for the expressions e1, . . . , en.

Warning:

Recursive definitions of basic values are undefined with CBV!!!

169

Example:

Consider the expression

e ≡ letrec f = fnx, y⇒ ify ≤ 1 then x else f (x ∗ y)(y− 1) in f 1

for ρ = ∅ and sd = 0. We obtain (for CBV):

0 alloc 1 0 A: targ 2 4 loadc 1

1 pushloc 0 0 ... 5 mkbasic

2 mkvec 1 1 return 2 5 pushloc 4

2 mkfunval A 2 B: rewrite 1 6 apply

2 jump B 1 mark C 2 C: slide 1

170

The instruction alloc n reserves n cells on the stack and initialises them with

n dummy nodes:

−1 −1C
−1 −1C
−1 −1C
−1 −1C

n
alloc n

S[SP+i] = new (C,-1,-1);
SP = SP + n;

for (i=1; i<=n; i++)

171

The instruction rewrite n overwrites the contents of the heap cell pointed to

by the reference at S[SP–n]:

n

x

rewrite n

H[S[SP-n]] = H[S[SP]];
SP = SP - 1;

x

• The reference S[SP – n] remains unchanged!

• Only its contents is changed!

172

20 Closures and their Evaluation

• Closures are needed only for the implementation of CBN.

• Before the value of a variable is accessed (with CBN), this value must be

available.

• Otherwise, a stack frame must be created to determine this value.

• This task is performed by the instruction eval.

173

eval can be decomposed into small actions:

eval = if (H[S[SP]] ≡ (C, _, _)) {

mark0; // allocation of the stack frame

pushloc 3; // copying of the reference

apply0; // corresponds to apply

}

• A closure can be understood as a parameterless function. Thus, there is no

need for an ap-component.

• Evaluation of the closure thus means evaluation of an application of this

function to 0 arguments.

• In constrast to mark A , mark0 dumps the current PC.

• The difference between apply and apply0 is that no argument vector

is put on the stack.

174

V

1717

V

17

mark0

FP = SP = SP + 3;

GP

PCPC

GP FPFP

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = PC;

175

42C

gpcp

GP

PC

GP

PC

C

gp

42

42

cp

apply0

V V

GP = h→gp; PC = h→cp;
h = S[SP]; SP--;

We thus obtain for the instruction eval:

176

gp

FP

C

cp

42

GP

PC 17

3

mark0V

gp

3

3

17

17

FP

C

cp

42

GP

PC

pushloc 3V

177

gp

3

3

17

17

FP

C

cp

42

GP

PC

apply0V

3

17

FP

C

cp

42

GP

PC

gp

42

V

178

The construction of a closure for an expression e consists of:

• Packing the bindings for the free variables into a vector;

• Creation of a C-object, which contains a reference to this vector and to the

code for the evaluation of e:

codeC e ρ sd = getvar z0 ρ sd

getvar z1 ρ (sd + 1)

. . .

getvar zg−1 ρ (sd + g− 1)

mkvec g

mkclos A

jump B

A : codeV e ρ′ 0

update

B : . . .

where {z0, . . . , zg−1} = free(e) and ρ′ = {zi 7→ (G, i) | i = 0, . . . , g− 1}.

179

Example:

Consider e ≡ a ∗ a with ρ = {a 7→ (L, 0)} and sd = 1. We obtain:

1 pushloc 1 0 A: pushglob 0 2 getbasic

2 mkvec 1 1 eval 2 mul

2 mkclos A 1 getbasic 1 mkbasic

2 jump B 1 pushglob 0 1 update

2 eval 2 B: ...

180

• The instruction mkclos A is analogous to the instruction mkfunval A.

• It generates a C-object, where the included code pointer is A.

C A

mkclos A

V V

S[SP] = new (C, A, S[SP]);

181

In fact, the instruction update is the combination of the two actions:

popenv

rewrite 1

It overwrites the closure with the computed value.

C

19

42PC

GP

FP

19

42 FP
update

182

21 Optimizations I: Global Variables

Observation:

• Functional programs construct many F- and C-objects.

• This requires the inclusion of (the bindings of) all global variables.

Recall, e.g., the construction of a closure for an expression e ...

183

codeC e ρ sd = getvar z0 ρ sd

getvar z1 ρ (sd + 1)

. . .

getvar zg−1 ρ (sd + g− 1)

mkvec g

mkclos A

jump B

A : codeV e ρ′ 0

update

B : . . .

where {z0, . . . , zg−1} = free(e) and ρ′ = {zi 7→ (G, i) | i = 0, . . . , g− 1}.

184

Idea:

• Reuse Global Vectors, i.e. share Global Vectors!

• Profitable in the translation of let-expressions or function applications: Build

one Global Vector for the union of the free-variable sets of all let-definitions

resp. all arguments.

• Allocate (references to) global vectors with multiple uses in the stack frame

like local variables!

• Support the access to the current GP by an instruction copyglob :

185

GP GP

copyglob

SP++;
S[SP] = GP;

V V

186

• The optimization will cause Global Vectors to contain more components

than just references to the free the variables that occur in one expression ...

Disadvantage: Superfluous components in Global Vectors prevent the

deallocation of already useless heap objects ==⇒ Space Leaks :-(

Potential Remedy: Deletion of references at the end of their life time.

187

22 Optimizations II: Closures

In some cases, the construction of closures can be avoided, namely for

• Basic values,

• Variables,

• Functions.

188

Basic Values:

The construction of a closure for the value is at least as expensive as the

construction of the B-object itself!

Therefore:

codeC b ρ sd = codeV b ρ sd = loadc b

mkbasic

This replaces:

mkvec 0 jump B mkbasic B: ...

mkclos A A: loadc b update

189

Variables:

Variables are either bound to values or to C-objects. Constructing another

closure is therefore superfluous. Therefore:

codeC x ρ sd = getvar x ρ sd

This replaces:

getvar x ρ sd mkclos A A: pushglob 0 update

mkvec 1 jump B eval B: ...

Example: e ≡ letrec a = b; b = 7 in a. codeV e ∅ 0 produces:

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

The execution of this instruction sequence should deliver the basic value 7 ...

190

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

alloc 2

191

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

pushloc 0

192

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

rewrite 2

193

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

loadc 7

194

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

7

mkbasic

195

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

7

−1−1C

−1−1C

B

rewrite 1

196

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

7B

−1−1C

pushloc 1

197

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

7B

−1−1C

−1−1C

eval

198

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

Segmentation Fault !!

199

Apparently, this optimization was not quite correct :-(

The Problem:

Binding of variable y to variable x before x’s dummy node is replaced!!

==⇒

The Solution:

cyclic definitions: reject sequences of definitions like

let a = b; . . . b = a in

acyclic definitions: order the definitions y = x such that the dummy node for

the right side of x is already overwritten.

200

Functions:

Functions are values, which are not evaluated further. Instead of generating

code that constructs a closure for an F-object, we generate code that constructs

the F-object directly.

Therefore:

codeC (fn x0 , . . . , xk−1 ⇒ e) ρ sd = codeV (fn x0 , . . . , xk−1 ⇒ e) ρ sd

201

23 The Translation of a Program Expression

Execution of a program e starts with

PC = 0 SP = FP = GP = −1

The expression e must not contain free variables.

The value of e should be determined and then a halt instruction should be

executed.

code e = codeV e ∅ 0

halt

202

Remarks:

• The code schemata as defined so far produce Spaghetti code.

• Reason: Code for function bodies and closures placed directly behind the

instructions mkfunval resp. mkclos with a jump over this code.

• Alternative: Place this code somewhere else, e.g. following the

halt-instruction:

Advantage: Elimination of the direct jumps following mkfunval and

mkclos.

Disadvantage: The code schemata are more complex as they would have to

accumulate the code pieces in a Code-Dump.

==⇒

Solution:

Disentangle the Spaghetti code in a subsequent optimization phase :-)

203

Example: let a = 17; f = fn b⇒ a + b in f 42

Disentanglement of the jumps produces:

0 loadc 17 2 mark B 3 B: slide 2 1 pushloc 1

1 mkbasic 5 loadc 42 1 halt 2 eval

1 pushloc 0 6 mkbasic 0 A: targ 1 2 getbasic

2 mkvec 1 6 pushloc 4 0 pushglob 0 2 add

2 mkfunval A 7 eval 1 eval 1 mkbasic

7 apply 1 getbasic 1 return 1

204

24 Structured Data

In the following, we extend our functional programming language by some

datatypes.

24.1 Tuples

Constructors: (., . . . , .), k-ary with k ≥ 0;

Destructors: # j for j ∈ N0 (Projections)

We extend the syntax of expressions correspondingly:

e ::= . . . | (e0, . . . , ek−1) | # j e

| let (x0, . . . , xk−1) = e1 in e0

205

• In order to construct a tuple, we collect sequence of references on the stack.

Then we construct a vector of these references in the heap using mkvec

• For returning components we use an indexed access into the tuple.

codeV (e0, . . . , ek−1) ρ sd = codeC e0 ρ sd

codeC e1 ρ (sd + 1)

. . .

codeC ek−1 ρ (sd + k− 1)

mkvec k

codeV (# j e) ρ sd = codeV e ρ sd

get j

In the case of CBV, we directly compute the values of the ei.

206

j

get j

V g V g

S[SP] = v[j];
if (S[SP] == (V,g,v))

else Error “Vector expected!”;

207

Inversion: Accessing all components of a tuple simulataneously:

e ≡ let (y0, . . . , yk−1) = e1 in e0

This is translated as follows:

codeV e ρ sd = codeV e1 ρ sd

getvec k

codeV e0 ρ′ (sd + k)

slide k

where ρ′ = ρ⊕ {yi 7→ (L, sd + i) | i = 0, . . . , k− 1}.

The instruction getvec k pushes the components of a vector of length k onto

the stack:

208

getvec k

V kV k

SP--;

SP++; S[SP] = v[i];
}

} else Error “Vector expected!”;

if (S[SP] == (V,k,v)) {

for(i=0; i<k; i++) {

209

24.2 Lists

Lists are constructed by the constructors:

[] “Nil”, the empty list;

“:” “Cons”, right-associative, takes an element and a list.

Access to list components is possible by case-expressions ...

Example: The append function app:

app = fn l, y⇒ case l of

[] → y

h : t → h : (app t y)

210

accordingly, we extend the syntax of expressions:

e ::= . . . | [] | (e1 : e2)

| (case e0 of []→ e1; h : t→ e2)

Additionally, we need new heap objects:

Nil

Cons

s[0] s[1]

L

L

empty list

non−empty list

211

24.3 Building Lists

The new instructions nil and cons are introduced for building list nodes.

We translate for CBN:

codeV [] ρ sd = nil

codeV (e1 : e2) ρ sd = codeC e1 ρ sd

codeC e2 ρ (sd + 1)

cons

Note:

• With CBN: Closures are constructed for the arguments of “:”;

• With CBV: Arguments of “:” are evaluated :-)

212

NilL
nil

S[SP] = SP++; S[SP] = new (L,Nil);

213

ConsL

cons

S[SP-1] = new (L,Cons, S[SP-1], S[SP]);
SP- -;

214

24.4 Pattern Matching

Consider the expression e ≡ case e0 of []→ e1; h : t→ e2.

Evaluation of e requires:

• evaluation of e0;

• check, whether resulting value v is an L-object;

• if v is the empty list, evaluation of e1 ...

• otherwise storing the two references of v on the stack and evaluation of e2.

This corresponds to binding h and t to the two components of v.

215

In consequence, we obtain (for CBN as for CBV):

codeV e ρ sd = codeV e0 ρ sd

tlist A

codeV e1 ρ sd

jump B

A : codeV e2 ρ′ (sd + 2)

slide 2

B : ...

where ρ′ = ρ⊕ {h 7→ (L, sd + 1), t 7→ (L, sd + 2)}.

The new instruction tlist A does the necessary checks and (in the case of

Cons) allocates two new local variables:

216

NilL NilL
tlist A

h = S[SP];

...

if (H[h] != (L,...)
Error “no list!”;

if (H[h] == (_,Nil)) SP- -;

217

PC A

ConsL ConsL

tlist A

S[SP] = S[SP]→s[0];

... else {

}

S[SP+1] = S[SP]→s[1];

SP++; PC = A;

218

Example: The (disentangled) body of the function app with

app 7→ (G, 0) :

0 targ 2 3 pushglob 0 0 C: mark D

0 pushloc 0 4 pushloc 2 3 pushglob 2

1 eval 5 pushloc 6 4 pushglob 1

1 tlist A 6 mkvec 3 5 pushglob 0

0 pushloc 1 4 mkclos C 6 eval

1 eval 4 cons 6 apply

1 jump B 0 slide 2 1 D: update

2 A: pushloc 1 3 B: return 2

Note:

Datatypes with more than two constructors need a generalization of the tlist

instruction, corresponding to a switch-instruction :-)

219

24.5 Closures of Tuples and Lists

The general schema for codeC can be optimized for tuples and lists:

codeC (e0, . . . , ek−1) ρ sd = codeV (e0, . . . , ek−1) ρ sd = codeC e0 ρ sd

codeC e1 ρ (sd + 1)

. . .

codeC ek−1 ρ (sd + k− 1)

mkvec k

codeC [] ρ sd = codeV [] ρ sd = nil

codeC (e1 : e2) ρ sd = codeV (e1 : e2) ρ sd = codeC e1 ρ sd

codeC e2 ρ (sd + 1)

cons

220

25 Last Calls

A function application is called last call in an expression e if this application

could deliver the value for e.

A last call usually is the outermost application of a defining expression.

A function definition is called tail recursive if all recursive calls are last calls.

Examples:

r t (h : y) is a last call in case x of [] → y; h : t → r t (h : y)

f (x− 1) is not a last call in if x ≤ 1 then 1 else x ∗ f (x− 1)

Observation: Last calls in a function body need no new stack frame!

==⇒

Automatic transformation of tail recursion into loops!!!

221

The code for a last call l ≡ (e′ e0 . . . em1
) inside a function f with k arguments

must

1. allocate the arguments ei and evaluate e′ to a function (note: all this inside

f ’s frame!);

2. deallocate the local variables and the k consumed arguments of f ;

3. execute an apply.

codeV l ρ sd = codeC em−1 ρ sd

codeC em−2 ρ (sd + 1)

. . .

codeC e0 ρ (sd + m− 1)

codeV e′ ρ (sd + m) // Evaluation of the function

move r (m + 1) // Deallocation of r cells

apply

where r = sd + k is the number of stack cells to deallocate.

222

Example:

The body of the function

r = fn x, y ⇒ case x of [] → y; h : t → r t (h : y)

0 targ 2 1 jump B 4 pushglob 0

0 pushloc 0 5 eval

1 eval 2 A: pushloc 1 5 move 4 3

1 tlist A 3 pushloc 4 apply

0 pushloc 1 4 cons slide 2

1 eval 3 pushloc 1 1 B: return 2

Since the old stack frame is kept, return 2 will only be reached by the direct

jump at the end of the []-alternative.

223

r

SP = SP – k – r;
for (i=1; i≤k; i++)

S[SP+i] = S[SP+i+r];
SP = SP + k;

k

move r k

224

The Translation of Logic
Languages

225

26 The Language Proll

Here, we just consider the core language Proll (“Prolog-light” :-). In particular,

we omit:

• arithmetic;

• the cut operator;

• self-modification of programs through assert and retract.

226

Example:

bigger(X, Y) ← X = elephant, Y = horse

bigger(X, Y) ← X = horse, Y = donkey

bigger(X, Y) ← X = donkey, Y = dog

bigger(X, Y) ← X = donkey, Y = monkey

is_bigger(X, Y) ← bigger(X, Y)

is_bigger(X, Y) ← bigger(X, Z), is_bigger(Z, Y)

? is_bigger(elephant, dog)

227

A More Realistic Example:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′, Y, Z′)

? app(X, [Y, c], [a, b, Z])

Remark

[] === the atom “empty list”

[H|Z] === binary constructor application

[a, b, Z] === shortcut for: [a|[b|[Z|[]]]]

228

A More Realistic Example:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′, Y, Z′)

? app(X, [Y, c], [a, b, Z])

Remark:

[] === the atom empty list

[H|Z] === binary constructor application

[a, b, Z] === shortcut for: [a|[b|[Z|[]]]]

229

A program p is constructed as follows:

t ::= a | X | __ | f (t1, . . . , tn)

g ::= p(t1, . . . , tk) | X = t

c ::= p(X1, . . . , Xk)← g1, . . . , gr

p ::= c1cm?g

• A term t either is an atom, a variable, an anonymous variable or a

constructor application.

• A goal g either is a literal, i.e., a predicate call, or a unification.

• A clause c consists of a head p(X1, . . . , Xk) with predicate name and list of

formal parameters together with a body, i.e., a sequence of goals.

• A program consists of a sequence of clauses together with a single goal as

query.

230

Procedural View of Proll programs:

goal === procedure call

predicate === procedure

body === definition

term === value

unification === basic computation step

binding of variables === side effect

Note: Predicate calls ...

• ... do not have a return value.

• ... affect the caller through side effects only :-)

• ... may fail. Then the next definition is tried :-))

==⇒ backtracking

231

27 Architecture of the WiM:

The Code Store:

0 1 PC

C

C = Code store – contains WiM program;

every cell contains one instruction;

PC = Program Counter – points to the next instruction to executed;

232

The Runtime Stack:

0 SP

FP

S

S = Runtime Stack – every cell may contain a value or an address;

SP = Stack Pointer – points to the topmost occupied cell;

FP = Frame Pointer – points to the current stack frame.

Frames are created for predicate calls,

contain cells for each variable of the current clause

233

The Heap:

0 1

H

HP

H = Heap for dynamicly constructed terms;

HP = Heap-Pointer – points to the first free cell;

• The heap in maintained like a stack as well :-)

• A new-instruction allocates a object in H.

• Objects are tagged with their types (as in the MaMa) ...

234

S f/n

R

A

R

a 1 cell

1 cell

1 cell

(n+1) cellsstructure

unbound variable

variable

atom

235

28 Construction of Terms in the Heap

Parameter terms of goals (calls) are constructed in the heap before passing.

Assume that the address environment ρ returns, for each clause variable X its

address (relative to FP) on the stack. Then codeA t ρ should ...

• construct (a presentation of) t in the heap; and

• return a reference to it on top of the stack.

Idea:

• Construct the tree during a post-order traversal of t

• with one instruction for each new node!

Example: t ≡ f (g(X, Y), a, Z).

Assume that X is initialized, i.e., S[FP + ρ X] contains already a reference,

Y and Z are not yet initialized.

236

Representing t ≡ f (g(X, Y), a, Z) :

A a

R

S f/3f/3S

S g/2

R

R

reference to X

237

For a distinction, we mark occurrences of already initialized variables through

over-lining (e.g. X̄).

Note: Arguments are always initialized!

Then we define:

codeA a ρ = putatom a codeA f (t1, . . . , tn)ρ = codeA t1 ρ

codeA X ρ = putvar (ρ X) . . .

codeA X̄ ρ = putref (ρ X) codeA tn ρ

codeA __ρ = putanon putstruct f/n

For f (g(X, Y), a, Z) and ρ = {X 7→ 1, Y 7→ 2, Z 7→ 3} this results in the sequence:

putref 1 putatom a

putvar 2 putvar 3

putstruct g/2 putstruct f/3

238

For a distinction, we mark occurrences of already initialized variables through

over-lining (e.g. X̄).

Note: Arguments are always initialized!

Then we define:

codeA a ρ = putatom a codeA f (t1, . . . , tn)ρ = codeA t1 ρ

codeA X ρ = putvar (ρ X) . . .

codeA X̄ ρ = putref (ρ X) codeA tn ρ

codeA __ρ = putanon putstruct f/n

For f (g(X, Y), a, Z) and ρ = {X 7→ 1, Y 7→ 2, Z 7→ 3} this results in the sequence:

putref 1 putatom a

putvar 2 putvar 3

putstruct g/2 putstruct f/3

239

The instruction putatom a constructs an atom in the heap:

A a
putatom a

SP++; S[SP] = new (A,a);

240

The instruction putvar i introduces a new unbound variable and

additionally initializes the corresponding cell in the stack frame:

FP

i

FP

R
putvar i

SP = SP + 1;
S[SP] = new (R, HP);
S[FP + i] = S[SP];

241

The instruction putanon introduces a new unbound variable but does not

store a reference to it in the stack frame:

FPFP

R
putanon

SP = SP + 1;
S[SP] = new (R, HP);

242

The instruction putref i pushes the value of the variable onto the stack:

FP FP

i

putref i

SP = SP + 1;
S[SP] = deref S[FP + i];

The run-time function deref contracts chains of references:

ref deref (ref v) {

if (H[v]==(R,w) && v!=w) return deref (w);

else return v;

}

243

The instruction putref i pushes the value of the variable onto the stack:

FP FP

i

putref i

SP = SP + 1;
S[SP] = deref S[FP + i];

The auxiliary function deref contracts chains of references:

ref deref (ref v) {

if (H[v]==(R,w) && v!=w) return deref (w);

else return v;

}

244

The instruction putstruct i builds a constructor application in the heap:

n putstruct f/n

f/nS

v = new (S, f, n);
SP = SP - n + 1;

H[v + i] = S[SP + i -1];
S[SP] = v;

for (i=1; i<=n; i++)

245

Remarks:

• The instruction putref i does not just push the reference from S[FP + i] onto

the stack, but also dereferences it as much as possible

==⇒ maximal contraction of reference chains.

• In constructed terms, references always point to smaller heap addresses.

Also otherwise, this will be often the case. Sadly enough, it cannot be

guaranteed in general :-(

246

29 The Translation of Literals (Goals)

Idea:

• Literals are treated as procedure calls.

• We first allocate a stack frame.

• Then we construct the actual parameters (in the heap)

• ... and store references to these into the stack frame.

• Finally, we jump to the code for the procedure/predicate.

247

codeG p(t1, . . . , tk) ρ = mark B // allocates the stack frame

codeA t1 ρ

. . .

codeA tk ρ

call p/k // calls the procedure p/k

B : ...

Example: p(a, X, g(X̄, Y)) with ρ = {X 7→ 1, Y 7→ 2}

We obtain:

mark B putref 1 call p/3

putatom a putvar 2 B: ...

putvar 1 putstruct g/2

248

codeG p(t1, . . . , tk) ρ = mark B // allocates the stack frame

codeA t1 ρ

. . .

codeA tk ρ

call p/k // calls the procedure p/k

B : ...

Example: p(a, X, g(X̄, Y)) with ρ = {X 7→ 1, Y 7→ 2}

We obtain:

mark B putref 1 call p/3

putatom a putvar 2 B: ...

putvar 1 putstruct g/2

249

Stack Frame of the WiM:

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

FPold

posCont.FP

SP

0

-4

-5

-1

-2

-3

local stack

local variables

6 org. cells

250

Remarks:

• The positive continuation address records where to continue after successful

treatment of the goal.

• Additional organizational cells are needed for the implementation of

backtracking

==⇒ will be discussed at the translation of predicates.

251

The instruction mark B allocates a new stack frame:

B

mark B

FP FP

S[SP] = B; S[SP-1] = FP;
SP = SP + 6;

252

The instruction call p/n calls the n-ary predicate p :

p/n

call p/n

FP

PC = p/n;
FP = SP - n;

n

PC PC

253

30 Unification

Convention:

• By X̃, we denote an occurrence of X;

it will be translated differently depending on whether the variable is

initialized or not.

• We introduce the macro put X̃ ρ :

put X ρ = putvar (ρ X)

put __ ρ = putanon

put X̄ ρ = putref (ρ X)

254

Let us translate the unification X̃ = t .

Idea 1:

• Push a reference to (the binding of) X onto the stack;

• Construct the term t in the heap;

• Invent a new instruction implementing the unification :-)

codeG (X̃ = t) ρ = put X̃ ρ

codeA t ρ

unify

255

Let us translate the unification X̃ = t .

Idea 1:

• Push a reference to (the binding of) X onto the stack;

• Construct the term t in the heap;

• Invent a new instruction implementing the unification :-)

codeG (X̃ = t) ρ = put X̃ ρ

codeA t ρ

unify

256

Example:

Consider the equation:

Ū = f (g(X̄, Y), a, Z)

Then we obtain for an address environment

ρ = {X 7→ 1, Y 7→ 2, Z 7→ 3, U 7→ 4}

putref 4 putref 1 putatom a unify

putvar 2 putvar 3

putstruct g/2 putstruct f/3

257

The instruction unify calls the run-time function unify() for the

topmost two references:

unify

SP = SP–2;
unify (S[SP-1], S[SP]);

258

The Function unify()

• ... takes two heap addresses.

For each call, we guarantee that these are maximally de-referenced.

• ... checks whether the two addresses are already identical.

If so, does nothing :-)

• ... binds younger variables (larger addresses) to older variables (smaller

addresses);

• ... when binding a variable to a term, checks whether the variable occurs

inside the term ==⇒ occur-check;

• ... records newly created bindings;

• ... may fail. Then backtracking is initiated.

259

bool unify (ref u, ref v) {

if (u == v) return true;

if (H[u] == (R,_)) {

if (H[v] == (R,_)) {

if (u>v) {

H[u] = (R,v); trail (u); return true;

} else {

H[v] = (R,u); trail (v); return true;

}

} elseif (check (u,v)) {

H[u] = (R,v); trail (u); return true;

} else {

backtrack(); return false;

}

}

...

260

...

if ((H[v] == (R,_)) {

if (check (v,u)) {

H[v] = (R,u); trail (v); return true;

} else {

backtrack(); return false;

}

}

if (H[u]==(A,a) && H[v]==(A,a))

return true;

if (H[u]==(S, f/n) && H[v]==(S, f/n)) {

for (int i=1; i<=n; i++)

if(!unify (deref (H[u+i]), deref (H[v+i])) return false;

return true;

}

backtrack(); return false;

}

261

R

A a

S f/2S f/2

S f/2S f/2

R

R R

262

R

A a

R

R R

S f/2S f/2

S f/2S f/2

263

R

A a

R

R R

S f/2S f/2

S f/2S f/2

264

R

A a

R

R

S f/2S f/2

S f/2S f/2

R

265

A a

R

R

S f/2S f/2

S f/2S f/2

R

R

266

• The run-time function trail() records the a potential new binding.

• The run-time function backtrack() initiates backtracking.

• The auxiliary function check() performs the occur-check: it tests

whether a variable (the first argument) occurs inside a term (the second

argument).

• Often, this check is skipped, i.e.,

bool check (ref u, ref v) { return true;}

267

Otherwise, we could implement the run-time function check() as follows:

bool check (ref u, ref v) {

if (u == v) return false;

if (H[v] == (S, f/n)) {

for (int i=1; i<=n; i++)

if (!check(u, deref (H[v+i])))

return false;

return true;

}

268

Discussion:

• The translation of an equation X̃ = t is very simple :-)

• Often the constructed cells immediately become garbage :-(

Idea 2:

• Push a reference to the run-time binding of the left-hand side onto the stack.

• Avoid to construct sub-terms of t whenever possible !

• Translate each node of t into an instruction which performs the unifcation

with this node !!

codeG (X̃ = t) ρ = put X̃ ρ

codeU t ρ

269

Discussion:

• The translation of an equation X̃ = t is very simple :-)

• Often the constructed cells immediately become garbage :-(

Idea 2:

• Push a reference to the run-time binding of the left-hand side onto the stack.

• Avoid to construct sub-terms of t whenever possible !

• Translate each node of t into an instruction which performs the unifcation

with this node !!

codeG (X̃ = t) ρ = put X̃ ρ

codeU t ρ

270

Let us first consider the unifcation code for atoms and variables only:

codeU a ρ = uatom a

codeU X ρ = uvar (ρ X)

codeU __ ρ = pop

codeU X̄ ρ = uref (ρ X)

... // to be continued :-)

271

The instruction uatom a implements the unification with the atom a:

R AR

}
default:

H[v] = (R, new (A, a));case (R,_) :
case (A, a): break;
switch (H[v]) {

backtrack();

v = S[SP]; SP−−;

trail (v); break;

uatom a

a

• The run-time function trail() records the a potential new binding.

• The run-time function backtrack() initiates backtracking.

272

The instruction uvar i implements the unification with an un-initialized

variable:

uvar i

FP+i FP+i

S[FP+i] = S[SP]; SP– –;

273

The instruction pop implements the unification with an anonymous

variable. It always succeeds :-)

pop

SP– –;

274

The instruction uref i implements the unification with an initialized variable:

uref i

FP+iFP+i y

x

θ = mgu (x, y)

θ y

SP– –;
unify (S[SP], deref (S[FP+i]));

It is only here that the run-time function unify() is called :-)

275

• The unification code performs a pre-order traversal over t.

• In case, execution hits at an unbound variable, we switch from checking to

building :-)

codeU f (t1, . . . , tn) ρ = ustruct f/n A // test

son 1

codeU t1 ρ

. . .

son n

codeU tn ρ

up B

A : check ivars(f (t1, . . . , tn)) ρ // occur-check

codeA f (t1, . . . , tn) ρ // building !!

bind // creation of bindings

B : . . .

276

The Building Block:

Before constructing the new (sub-) term t′ for the binding, we must exclude that

it contains the variable X′ on top of the stack !!!

This is the case iff the binding of no variable inside t′ contains (a reference to) X′.

==⇒ ivars(t′) returns the set of already initialized variables of t.

==⇒ The macro check {Y1, . . . , Yd} ρ generates the necessary tests on

the variables Y1, . . . , Yd :

check {Y1, . . . , Yd} ρ = check (ρ Y1)

check (ρ Y2)

...

check (ρ Yd)

277

The instruction check i checks whether the (unbound) variable on top of the

stack occurs inside the term bound to variable i.

If so, unification fails and backtracking is caused:

R

FP

i

R

FP

i

check i

backtrack();
if (!check (S[SP], deref S[FP+i]))

278

The instruction bind terminates the building block. It binds the (unbound)

variable to the constructed term:

R R

bind

trail (S[SP-1]);
H[S[SP-1]] = (R, S[SP]);

SP = SP – 2;

279

The Pre-Order Traversal:

• First, we test whether the topmost reference is an unbound variable.

If so, we jump to the building block.

• Then we compare the root node with the constructor f/n.

• Then we recursively descend to the children.

• Then we pop the stack and proceed behind the unification code:

280

Once again the unification code for constructed terms:

codeU f (t1, . . . , tn) ρ = ustruct f/n A // test

son 1 // recursive descent

codeU t1 ρ

. . .

son n // recursive descent

codeU tn ρ

up B // ascent to father

A : check ivars(f (t1, . . . , tn)) ρ

codeA f (t1, . . . , tn) ρ

bind

B : . . .

281

The instruction ustruct i implements the test of the root node of a structure:

R R

S f/n S f/n

case (R,_) :
break;case (S, f/n):

switch (H[S[SP]]) {

PC = A; break;

}
default: backtrack();

ustruct f/n A

ustruct f/n A

PC PC A

... the argument reference is not yet popped :-)

282

The instruction son i pushes the (reference to the) i-th sub-term from the

structure pointed at from the topmost reference:

S f/nS f/n

son ii

S[SP+1] = deref (H[S[SP]+i]); SP++;

283

It is the instruction up B which finally pops the reference to the structure:

up B

PC BPC

SP– –; PC = B;

The continuation address B is the next address after the build-section.

284

Example:

For our example term f (g(X̄, Y), a, Z) and

ρ = {X 7→ 1, Y 7→ 2, Z 7→ 3} we obtain:

ustruct f/3 A1 up B2 B2: son 2 putvar 2

son 1 uatom a putstruct g/2

ustruct g/2 A2 A2: check 1 son 3 putatom a

son 1 putref 1 uvar 3 putvar 3

uref 1 putvar 2 up B1 putstruct f/3

son 2 putstruct g/2 A1: check 1 bind

uvar 2 bind putref 1 B1: ...

Code size can grow quite considerably — for deep terms. In practice, though,

deep terms are “rare” :-)

285

31 Clauses

Clausal code must

• allocate stack space for locals;

• evaluate the body;

• free the stack frame (whenever possible :-)

Let r denote the clause: p(X1, . . . , Xk)← g1, . . . , gn.

Let {X1, . . . , Xm} denote the set of locals of r and ρ the address environment:

ρ Xi = i

Remark: The first k locals are always the formals :-)

286

Then we translate:

codeC r = pushenv m // allocates space for locals

codeG g1 ρ

...

codeG gn ρ

popenv

The instruction popenv restores FP and PC and tries to pop the current stack

frame.

It should succeed whenever program execution will never return to this stack

frame :-)

287

The instruction pushenv m sets the stack pointer:

FP FP

m
pushenv m

SP = FP + m;

288

Example:

Consider the clause r:

a(X, Y)← f(X̄, X1), a(X̄1, Ȳ)

Then codeC r yields:

pushenv 3 mark A A: mark B B: popenv

putref 1 putref 3

putvar 3 putref 2

call f/2 call a/2

289

32 Predicates

A predicate q/k is defined through a sequence of clauses rr ≡ r1 . . . r f .

The translation of q/k provides the translations of the individual clauses ri.

In particular, we have for f = 1 :

codeP rr = codeC r1

If q/k is defined through several clauses, the first alternative must be tried.

On failure, the next alternative must be tried

==⇒ backtracking :-)

290

32.1 Backtracking

• Whenever unifcation fails, we call the run-time function backtrack().

• The goal is to roll back the whole computation to the (dynamically :-) latest

goal where another clause can be chosen ==⇒ the last backtrack point.

• In order to undo intermediate variable bindings, we always have recorded

new bindings with the run-time function trail().

• The run-time function trail() stores variables in the data-structure

trail:

291

0

T

TP

TP === Trail Pointer

points to the topmost occupied Trail cell

292

The current stack frame where backtracking should return to is pointed at by the

extra register BP:

0 SP

FP

S

BP

293

A backtrack point is stack frame to which program execution possibly returns.

• We need the code address for trying the next alternative (negative

continuation address);

• We save the old values of the registers HP, TP and BP.

• Note: The new BP will receive the value of the current FP :-)

For this purpose, we use the corresponding four organizational cells:

FPold

HPold

TPold

BPold

posCont.

negCont.

FP 0

-4

-5

-1

-2

-3

294

For more comprehensible notation, we thus introduce the macros:

posCont ≡ S[FP]

FPold ≡ S[FP− 1]

HPold ≡ S[FP− 2]

TPold ≡ S[FP− 3]

BPold ≡ S[FP− 4]

negCont ≡ S[FP− 5]

for the corresponding addresses.

Remark:

Occurrence on the left === saving the register

Occurrence on the right === restoring the register

295

Calling the run-time function void backtrack() yields:

42
17

13

void backtrack() {

}

42
17

13

42
17

13

FP = BP; HP = HPold;
reset (TPold, TP);
TP = TPold; PC = negCont;

backtrack();

FP

HP
TP
BP
PC

HP
TP
BP
PC

FP

where the run-time function reset() undoes the bindings of variables

established since the backtrack point.

296

32.2 Resetting Variables

Idea:

• The variables which have been created since the last backtrack point can be

removed together with their bindings by popping the heap !!! :-)

• This works fine if younger variables always point to older objects.

• Bindings of old variables to younger objects, though, must be reset

manually :-(

• These are therefore recorded in the trail.

297

Functions void trail(ref u) and void reset (ref y, ref x) can

thus be implemented as:

void trail (ref u) {

if (u < S[BP-2]) {

TP = TP+1;

T[TP] = u;

}

}

void reset (ref x, ref y) {

for (ref u=y; x<u; u--)

H[T[u]] = (R,T[u]);

}

Here, S[BP-2] represents the heap pointer when creating the last backtrack

point.

298

32.3 Wrapping it Up

Assume that the predicate q/k is defined by the clauses r1, . . . , r f (f > 1).

We provide code for:

• setting up the backtrack point;

• successively trying the alternatives;

• deleting the backtrack point.

This means:

299

codeP rr = q/k : setbtp

try A1

...

try A f−1

delbtp

jump A f

A1 : codeC r1

...

A f : codeC r f

Note:

• We delete the backtrack point before the last alternative :-)

• We jump to the last alternative — never to return to the present frame :-))

300

Example:

s(X) ← t(X̄)

s(X) ← X̄ = a

The translation of the predicate s yields:

s/1: setbtp A: pushenv 1 B: pushenv 1

try A mark C putref 1

delbtp putref 1 uatom a

jump B call t/1 popenv

C: popenv

301

The instruction setbtp saves the registers HP, TP, BP:

42
17

42
17

42
17

setbtp

HP
TP
BP

HP
TP
BP

FPFP

HPold = HP;
TPold = TP;
BPold = BP;
BP = FP;

302

The instruction try A tries the alternative at address A and updates the

negative continuation address to the current PC:

29

A29

try A

HP
TP
BP

HP
TP
BP

FPFP

negForts = PC;
PC = A;

PC PC

303

The instruction delbtp restores the old backtrack pointer:

delbtp

HP
TP
BP

HP
TP
BP

FPFP

BP = BPold;

304

32.4 Popping of Stack Frames

Recall the translation scheme for clauses:

codeC r = pushenv m

codeG g1 ρ

...

codeG gn ρ

popenv

The present stack frame can be popped ...

• if the applied clause was the last (or only); and

• if all goals in the body are definitely finished.

==⇒ the backtrack point is older :-)

==⇒ FP > BP

305

The instruction popenv restores the registers FP and PC and possibly pops

the stack frame:

42

42

popenv

BP

PC

FP

BP

PC

FP

FP = FPold;

if (FP > BP) SP = FP - 6;
PC = posCont;

Warning: popenv may fail to de-allocate the frame !!!

306

42 42

42

popenv

BP

PC

FP

BP

PC

FP

FP = FPold;

if (FP > BP) SP = FP - 6;
PC = posCont;

If popping the stack frame fails, new data are allocated on top of the stack. When

returning to the frame, the locals still can be accessed through the FP :-))

307

33 Queries and Programs

The translation of a program: p ≡ rr1 . . . rrh?g

consists of:

• an instruction no for failure;

• code for evaluating the query g;

• code for the predicate definitions rri.

Preceding query evaluation:

==⇒ initialization of registers

==⇒ allocation of space for the globals

Succeeding query evaluation:

==⇒ returning the values of globals

308

code p = init A

pushenv d

codeG g ρ

halt d

A: no

codeP rr1

...

codeP rrh

where f ree(g) = {X1, . . . , Xd} and ρ is given by ρ Xi = i .

The instruction halt d ...

• ... terminates the program execution;

• ... returns the bindings of the d globals;

• ... causes backtracking — if demanded by the user :-)

309

The instruction init A is defined by:

0
−1

−1
0

−1

0
−1

−1

−1

A

init A
FP
HP
TP
BP

FP
HP
TP
BP

BP = FP;

BP = FP = SP = 5;

S[1] = S[2] = -1;
S[3] = 0;

S[0] = A;

At address “A” for a failing goal we have placed the instruction no for

printing no to the standard output and halt :-)

310

The Final Example:

t(X)← X̄ = b q(X)← s(X̄) s(X)← X̄ = a

p← q(X), t(X̄) s(X)← t(X̄) ? p

The translation yields:

init N popenv q/1: pushenv 1 E: pushenv 1

pushenv 0 p/0: pushenv 1 mark D mark G

mark A makr B putref 1 putref 1

call p/0 putvar 1 call s/1 call t/1

A: halt 0 call q/1 D: popenv G: popenv

N: no B: mark C s/1: setbtp F: pushenv 1

t/1: pushenv 1 putref 1 try E putref 1

putref 1 call t/1 delbtp uatom a

uatom b C: popenv jump F popenv

311

34 Last Call Optimization

Consider the app predicate from the beginnning:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′, Y, Z′)

We observe:

• The recursive call occurs in the last goal of the clause.

• Such a goal is called last call.

==⇒ we try to evaluate it in the current stack frame !!!

==⇒ after (successful) completion, we will not return to

the current caller !!!

312

Consider a clause r: p(X1, . . . , Xk)← g1, . . . , gn

with m locals where gn ≡ q(t1, . . . , th). The interplay between codeC and

codeG:

codeC r = pushenv m

codeG g1 ρ

...

codeG gn−1 ρ

mark B

codeA t1 ρ

. . .

codeA th ρ

call q/h

B : popenv

Replacement: mark B ==⇒ lastmark

call q/h; popenv ==⇒ lastcall q/h m

313

Consider a clause r: p(X1, . . . , Xk)← g1, . . . , gn

with m locals where gn ≡ q(t1, . . . , th). The interplay between codeC and

codeG:

codeC r = pushenv m

codeG g1 ρ

...

codeG gn−1 ρ

lastmark

codeA t1 ρ

. . .

codeA th ρ

lastcall q/h m

B : popenv

Replacement: mark B ==⇒ lastmark

call q/h; popenv ==⇒ lastcall q/h m

314

If the current clause is not last or the g1 , . . . , gn−1 have created backtrack points,

then FP ≤ BP :-)

Then lastmark creates a new frame but stores a reference to the predecessor:

42

42

42

lastmark

FPFP

BP BP

}

SP = SP + 6;
S[SP] = posCont; S[SP-1] = FPold;

if (FP ≤ BP) {

If FP > BP then lastmark does nothing :-)

315

If FP ≤ BP, then lastcall q/h m behaves like a normal call q/h.

Otherwise, the current stack frame is re-used. This means that:

• the cells S[FP+1], S[FP+2], . . ., S[FP+h] receive the new values and

• q/h can be jumped to :-)

lastcall q/h m = if (FP ≤ BP) call q/h;

else {

move m h;

jump q/h;

}

The difference between the old and the new addresses of the parameters m

just equals the number of the local variables of the current clause :-))

316

args.

q/h

locals
m old

lastcall (q/h,m)

FP

BP

FP

BP

h

PC PC

317

Example:

Consider the clause:

a(X, Y)← f(X̄, X1), a(X̄1, Ȳ)

The last-call optimization for codeC r yields:

mark A A: lastmark

pushenv 3 putref 1 putref 3

putvar 3 putref 2

call f/2 lastcall a/2 3

Note:

If the clause is last and the last literal is the only one, we can skip lastmark and

can replace lastcall q/h m with the sequence move m n; jump p/n :-))

318

Example:

Consider the clause:

a(X, Y)← f(X̄, X1), a(X̄1, Ȳ)

The last-call optimization for codeC r yields:

mark A A: lastmark

pushenv 3 putref 1 putref 3

putvar 3 putref 2

call f/2 lastcall a/2 3

Note:

If the clause is last and the last literal is the only one, we can skip lastmark and

can replace lastcall q/h m with the sequence move m n; jump p/n :-))

319

Example:

Consider the last clause of the app predicate:

app(X, Y, Z) ← X̄ = [H|X′], Z̄ = [H̄|Z′], app(X̄′, Ȳ, Z̄′)

Here, the last call is the only one :-) Consequently, we obtain:

A: pushenv 6 uref 4 bind

putref 1 B: putvar 4 son 2 E: putref 5

ustruct [|]/2 B putvar 5 uvar 6 putref 2

son 1 putstruct [|]/2 up E putref 6

uvar 4 bind D: check 4 move 6 3

son 2 C: putref 3 putref 4 jump app/3

uvar 5 ustruct [|]/2 D putvar 6

up C son 1 putstruct [|]/2

320

35 Trimming of Stack Frames

Idea:

• Order local variables according to their life times;

• Pop the dead variables — if possible :-}

Example:

Consider the clause:

a(X, Z)← p1(X̄, X1), p2(X̄1, X2), p3(X̄2, X3), p4(X̄3, Z̄)

After the query p2(X̄1, X2) , variable X1 is dead.

After the query p3(X̄2, X3) , variable X2 is dead :-)

321

35 Trimming of Stack Frames

Idea:

• Order local variables according to their life times;

• Pop the dead variables — if possible :-}

Example:

Consider the clause:

a(X, Z)← p1(X̄, X1), p2(X̄1, X2), p3(X̄2, X3), p4(X̄3, Z̄)

After the query p2(X̄1, X2) , variable X1 is dead.

After the query p3(X̄2, X3) , variable X2 is dead :-)

322

35 Trimming of Stack Frames

Idea:

• Order local variables according to their life times;

• Pop the dead variables — if possible :-}

Example:

Consider the clause:

a(X, Z)← p1(X̄, X1), p2(X̄1, X2), p3(X̄2, X3), p4(X̄3, Z̄)

After the query p2(X̄1, X2) , variable X1 is dead.

After the query p3(X̄2, X3) , variable X2 is dead :-)

323

After every non-last goal with dead variables, we insert the instruction trim :

FP FP

m

trim m

SP = FP + m;
if (FP ≥ BP)

The dead locals can only be popped if no new backtrack point has been

allocated :-)

324

After every non-last goal with dead variables, we insert the instruction trim :

FP FP

m

trim m

SP = FP + m;
if (FP ≥ BP)

The dead locals can only be popped if no new backtrack point has been

allocated :-)

325

Example (continued):

a(X, Z)← p1(X̄, X1), p2(X̄1, X2), p3(X̄2, X3), p4(X̄3, Z̄)

Ordering of the variables:

ρ = {X 7→ 1, Z 7→ 2, X3 7→ 3, X2 7→ 4, X1 7→ 5}

The resulting code:

pushenv 5 A: mark B mark C lastmark

mark A putref 5 putref 4 putref 3

putref 1 putvar 4 putvar 3 putref 2

putvar 5 call p2/2 call p3/2 lastcall p4/2 3

call p1/2 B: trim 4 C: trim 3

326

36 Clause Indexing

Observation:

Often, predicates are implemented by case distinction on the first argument.

==⇒ Inspecting the first argument, many alternatives can be excluded :-)

==⇒ Failure is earlier detected :-)

==⇒ Backtrack points are earlier removed. :-))

==⇒ Stack frames are earlier popped :-)))

327

Example: The app-predicate:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′, Y, Z′)

• If the root constructor is [], only the first clause is applicable.

• If the root constructor is [|], only the second clause is applicable.

• Every other root constructor should fail !!

• Only if the first argument equals an unbound variable, both alternatives

must be tried ;-)

328

Idea:

• Introduce separate try chains for every possible constructor.

• Inspect the root node of the first argument.

• Depending on the result, perform an indexed jump to the appropriate try

chain.

Assume that the predicate p/k is defined by the sequence rr of clauses r1 . . . rm.

Let tchains rr denote the sequence of try chains as built up for the root

constructors occurring in unifications X1 = t.

329

Example:

Consider again the app-predicate, and assume that the code for the two clauses

start at addresses A1 and A2, respectively.

Then we obtain the following four try chains:

VAR: setbtp // variables NIL: jump A1 // atom []

try A1

delbtp CONS: jump A2 // constructor [|]

jump A2

ELSE: fail // default

The new instruction fail takes care of any constructor besides [] and [|] ...

fail = backtrack()

It directly triggers backtracking :-)

330

Example:

Consider again the app-predicate, and assume that the code for the two clauses

start at addresses A1 and A2, respectively.

Then we obtain the following four try chains:

VAR: setbtp // variables NIL: jump A1 // atom []

try A1

delbtp CONS: jump A2 // constructor [|]

jump A2

ELSE: fail // default

The new instruction fail takes care of any constructor besides [] and [|] ...

fail = backtrack()

It directly triggers backtracking :-)

331

Then we generate for a predicate p/k:

codeP rr = putref 1

getNode // extracts the root label

index p/k // jumps to the try block

tchains rr

A1 : codeC r1

...

Am : codeC rm

332

The instruction getNode returns “R” if the pointer on top of the stack points

to an unbound variable. Otherwise, it returns the content of the heap object:

S f/n f/n

R

S[SP] = f/n; break;
switch (H[S[SP]]) {

S[SP] = a; break;
S[SP] = R;

case (S, f/n):

}

case (A,a):
case (R,_) :

R

getNode

getNode

333

The instruction index p/k performs an indexed jump to the appropriate try

chain:

a

map (p/k,a)

index p/k

PC = map (p/k,S[SP]);
SP– –;

PC

The function map() returns, for a given predicate and node content, the start

address of the appropriate try chain :-)

It typically is defined through some hash table :-)

334

The instruction index p/k performs an indexed jump to the appropriate try

chain:

a

map (p/k,a)

index p/k

PC = map (p/k,S[SP]);
SP– –;

PC

The function map() returns, for a given predicate and node content, the start

address of the appropriate try chain :-)

It typically is defined through some hash table :-))

335

37 Extension: The Cut Operator

Realistic Prolog additionally provides an operator “!” (cut) which explicitly

allows to prune the search space of backtracking.

Example:

branch(X, Y) ← p(X), !, q1(X, Y)

branch(X, Y) ← q2(X, Y)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the

left-hand side ...

336

The Basic Idea:

• We restore the oldBP from our current stack frame;

• We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still used) local variables of the clause.

337

Example:

Consider our example:

branch(X, Y) ← p(X), !, q1(X, Y)

branch(X, Y) ← q2(X, Y)

We obtain:

setbtp A: pushenv 2 C: prune lastmark B: pushenv 2

try A mark C pushenv 2 putref 1 putref 2

delbtp putref 1 putref 2 putref 2

jump B call p/1 lastcall q1/2 2 move 2 2

jump q2/2

338

Example:

Consider our example:

branch(X, Y) ← p(X), !, q1(X, Y)

branch(X, Y) ← q2(X, Y)

In fact, an optimized translation even yields here:

setbtp A: pushenv 2 C: prune putref 1 B: pushenv 2

try A mark C pushenv 2 putref 2 putref 1

delbtp putref 1 move 2 2 putref 2

jump B call p/1 jump q1/2 move 2 2

jump q2/2

339

The new instruction prune simply restores the backtrack pointer:

prune

HP
TP
BP

HP
TP
BP

FPFP

BP = BPold;

340

Problem:

If a clause is single, then (at least so far ;-) we have not stored the old BP inside

the stack frame :-(

==⇒

For the cut to work also with single-clause predicates or try chains of length 1,

we insert an extra instruction setcut before the clausal code (or the jump):

341

The instruction setcut just stores the current value of BP:

setcut

HP
TP
BP

HP
TP
BP

FPFP

BPold = BP;

342

The Final Example: Negation by Failure

The predicate notP should succeed whenever p fails (and vice versa :-)

notP(X) ← p(X), !, fail

notP(X) ←

where the goal fail never succeeds. Then we obtain for notP :

setbtp A: pushenv 1 C: prune B: pushenv 1

try A mark C pushenv 1 popenv

delbtp putref 1 fail

jump B call p/1 popenv

343

38 Garbage Collection

• Both during execution of a MaMa- as well as a WiM-programs, it may

happen that some objects can no longer be reached through references.

• Obviously, they cannot affect the further program execution. Therefore,

these objects are called garbage.

• Their storage space should be freed and reused for the creation of other

objects.

Warning:

The WiM provides some kind of heap de-allocation. This, however, only frees

the storage of failed alternatives !!!

344

Operation of a stop-and-copy-Collector:

• Division of the heap into two parts, the to-space and the from-space —

which, after each collection flip their roles.

• Allocation with new in the current from-space.

• In case of memory exhaustion, call of the collector.

The Phases of the Collection:

1. Marking of all reachable objects in the from-space.

2. Copying of all marked objects into the to-space.

3. Correction of references.

4. Exchange of from-space and to-space.

345

(1) Mark: Detection of live objects:

• all references in the stack point to live objects;

• every reference of a live object points to a live object.

==⇒

Graph Reachability

346

a

b

c

d

347

b

c

d

a

348

(2) Copy: Copying of all live objects from the current from-space into the

current to-space. This means for every detected object:

• Copying the object;

• Storing a forward reference to the new place at the old place :-)

==⇒

all references of the copied objects point to the forward references in the

from-space.

349

a

b

c

d

350

a

b

c

d

351

d a

c

b

352

a

c

d

b

353

(3) Traversing of the to-space in order to correct the references.

a

c

d

b

354

a

c

d

b

355

a

c

d

b

356

a

c

d

357

(4) Exchange of to-space and from-space.

a

c

d

358

a

c

d

359

Warning:

The garbage collection of the WiM must harmonize with backtracking.

This means:

• The relative position of heap objects must not change during copying :-!!

• The heap references in the trail must be updated to the new positions.

• If heap objects are collected which have been created before the last

backtrack point, then also the heap pointers in the stack must be updated.

360

a

b

c

d

361

a

b

c

d

362

d

c

ab

363

d

c

a

364

Threads

365

39 The Language ThreadedC

We extend C by a simple thread concept. In particular, we provide functions for:

• generating new threads: create();

• terminating a thread: exit();

• waiting for termination of a thread: join();

• mutual exclusion: lock(), unlock(); ...

In order to enable a parallel program execution, we extend the abstract machine

(what else? :-)

366

40 Storage Organization

All threads share the same common code store and heap:

0 1 PC

C

H

NP0 1 2

367

... similar to the CMa, we have:

C = Code Store – contains the CMa program;

every cell contains one instruction;

PC = Program-Counter – points to the next executable instruction;

H = Heap –

every cell may contain a base value or an address;

the globals are stored at the bottom;

NP = New-Pointer – points to the first free cell.

For a simplification, we assume that the heap is stored in a separate segment.

The function malloc() then fails whenever NP exceeds the topmost border.

368

Every thread on the other hand needs its own stack:

SP

FP

S

SSetH

369

In constrast to the CMa, we have:

SSet = Set of Stacks – contains the stacks of the threads;

every cell may contain a base value of an address;

S = common address space for heap and the stacks;

SP = Stack-Pointer – points to the current topmost ocupied stack cell;

FP = Frame-Pointer – points to the current stack frame.

Warning:

• If all references pointed into the heap, we could use separate address spaces

for each stack.

Besides SP and FP, we would have to record the number of the current stack

:-)

• In the case of C, though, we must assume that all storage reagions live

within the same address space — only at different locations :-)

SP Und FP then uniquely identify storage locations.

• For simplicity, we omit the extreme-pointer EP.

370

41 The Ready-Queue

Idea:

• Every thread has a unique number tid.

• A table TTab allows to determine for every tid the corresponding thread.

• At every point in time, there can be several executable threads, but only one

running thread (per processor :-)

• the tid of the currently running thread is cept in the register CT (Current

Thread).

• The function: tid self () returns the tid of the current thread.

Accordingly:

codeR self () ρ = self

371

... where the instruction self pushes the content of the register CT onto

the (current) stack:

CTCT

self

11 11

11

S[SP++] = CT;

372

• The remaining executable threads (more precisely, their tid’s) are

maintained in the queue RQ (Ready-Queue).

• For queues, we need the functions:

void enqueue (queue q, tid t),
tid dequeue (queue q)

which insert a tid into a queue and return the first one, respectively ...

373

TTab
CT RQ

374

enqueue(RQ, 13)

TTab
CT

13

RQ

375

TTab
CT

13

RQ

376

TTab
CT RQ

CT = dequeue(RQ);

377

TTab
CT RQ

378

If a call to dequeue () failed, it returns a value < 0 :-)

The thread table must contain for every thread, all information which is needed

for its execution. In particular it consists of the registers PC, SP und FP:

SP

PC

FP0

1

2

Interrupting the current thread therefore requires to save these registers:

void save () {

TTab[CT][0] = FP;

TTab[CT][1] = PC;

TTab[CT][2] = SP;

}

379

Analogously, we restore these registers by calling the function:

void restore () {

FP = TTab[CT][0];

PC = TTab[CT][1];

SP = TTab[CT][2];

}

Thus, we can realize an instruction yield which causes a thread-switch:

tid ct = dequeue (RQ);
if (ct ≥ 0) {

save (); enqueue (RQ, CT);
CT = ct;

restore ();
}

Only if the ready-queue is non-empty, the current thread is replaced :-)

380

42 Switching between Threads

Problem:

We want to give each executable thread a fair chance to be completed.

==⇒

• Every thread must former or later be scheduled for running.

• Every thread must former or later be interrupted.

Possible Strategies:

• Thread switch only at explicit calls to a function yield() :-(

• Thread switch after every instruction ==⇒ too expensive :-(

• Thread switch after a fixed number of steps ==⇒ we must install a

counter and execute yield at dynamically chosen points :-(

381

We insert thread switches at selected program points ...

• at the beginning of function bodies;

• before every jump whose target does not exceed the current PC ...

==⇒ rare :-))

The modified scheme for loops s ≡ while (e) s then yields:

code s ρ = A : codeR e ρ

jumpz B

code s ρ

yield

jump A

B : . . .

382

Note:

• If-then-else-Statements do not necessarily contain thread switches.

• do-while-Loops require a thread switch at the end of the condition.

• Every loop should contain (at least) one thread switch :-)

• Loop-Unroling reduces the number of thread switches.

• At the translation of switch-statements, we created a jump table behind the

code for the alternatives. Nonetheless, we can avoid thread switches here.

• At freely programmed uses of jumpi as well as jumpz we should

also insert thread switches before the jump (or at the jump target).

• If we want to reduce the number of executed thread switches even further,

we could switch threads, e.g., only at every 100th call of yield ...

383

43 Generating New Threads

We assume that the expression: s ≡ create (e0, e1) first evaluates the

expressions ei to the values f , a and then creates a new thread which computes

f (a) .

If thread creation fails, s returns the value −1.

Otherwise, s returns the new thread’s tid.

Tasks of the Generated Code:

• Evaluation of the ei;

• Allocation of a new run-time stack together with a stack frame for the

evaluation of f (a);

• Generation of a new tid;

• Allocation of a new entry in the TTab;

• Insertion of the new tid into the ready-queue.

384

The translation of s then is quite simple:

codeR s ρ = codeR e0 ρ

codeR e1 ρ

initStack

initThread

where we assume the argument value occupies 1 cell :-)

For the implementation of initStack we need a run-time function

newStack() which returns a pointer onto the first element of a new stack:

385

SP SP

newStack()

If the creation of a new stack fails, the value 0 is returned.

386

SP SP
f

−1initStack

newStack();
if (S[SP]) {

S[S[SP]+1] = -1;

S[S[SP]+2] = f;

S[S[SP]+3] = S[SP-1];

S[SP-1] = S[SP]; SP--

}

else S[SP = SP - 2] = -1;

387

Note:

• The continuation address f points to the (fixed) code for the termination

of threads.

• Inside the stack frame, we no longer allocate space for the EP ==⇒ the

return value has relative address −2.

• The bottom stack frame can be identified through FPold = -1 :-)

In order to create new thread ids, we introduce a new register TC (Thread

Count).

Initially, TC has the value 0 (corresponds to the tid of the initial thread).

Before thread creation, TC is incremented by 1.

388

SP

5TC
37

initThread

6

37

SP

6TC
6

389

if (S[SP] ≥ 0) {

tid = ++TCount;

TTab[tid][0] = S[SP]-1;

TTab[tid][1] = S[SP-1];

TTab[tid][2] = S[SP];

S[--SP] = tid;

enqueue(RQ, tid);

}

390

44 Terminating Threads

Termination of a thread (usually :-) returns a value. There are two (regular) ways

to terminate a thread:

1. The initial function call has terminated. Then the return value is the return

value of the call.

2. The thread executes the statement exit (e); Then the return value equals

the value of e.

Warning:

• We want to return the return value in the bottom stack cell.

• exit may occur arbitrarily deeply nested inside a recursion. Then we

de-allocate all stack frames ...

• ... and jump to the terminal treatment of threads at address f .

391

Therefore, we translate:

code exit (e); ρ = codeR e ρ

exit

term

next

The instruction term is explained later :-)

The instruction exit successively pops all stack frames:

result = S[SP];

while (FP 6= –1) {

SP = FP–2;

FP = S[FP–1];

}

S[SP] = result;

392

FP FP −1

exit−1

17

17

393

The instruction next activates the next executable thread:

in contrast to yield the current thread is not inserted into RQ .

SP
PC
FP

1313

SP
PC
FP

4

next

CT

RQ

13CT 13

RQ

4

4

39
4
21

39
4
21

39
4
21

5
7
2

5

2
7

394

Ist die Schlange RQ leer, wird zusätzlich If the queue RQ is empty, we

additionally terminate the whole program:

if (0 > ct = dequeue(RQ)) halt;

else {

save ();
CT = ct;

restore ();
}

395

45 Waiting for Termination

Occaionally, a thread may only continue with its execution, if some other thread

has terminated. For that, we have the expression join (e) where we assume

that e evaluatges to a thread id tid.

• If the thread with the given tid is already terminated, we return its return

value.

• If it is not yet terminated, we interrupt the current thread execution.

• We insert the current thread into the queue of treads already waiting for the

termination.

We save the current registers and switch to the next executable thread.

• Thread waiting for termination are maintained in the table JTab.

• There, we also store the return values of threads :-)

396

Example:

CT RQ

JTab

2

0

1

4

3

10

2 3

4

Thread 0 is running, thread 1 could run, threads 2 and 3 wait for the termination

of 1, and thread 4 waits for the termination of 3.

397

Thus, we translate:

codeR join (e) ρ = codeR e ρ

join

finalize

... where the instruction join is defined by:

tid = S[SP];

if (TTab[tid][1] ≥ 0) {

enqueue (JTab[tid], CT);
next

}

398

... accordingly:

finalize

SP SP 425

425 425

S[SP] = JTab[tid][1];

399

The instruction sequence:

term

next

is executed before a thread is terminated.

Therefore, we store them at the location f.

The instruction next switches to the next executable thread. Before that,

though,

• ... the last stack frame must be popped and the result be stored in the table

JTab ;

• ... the thread must be marked as terminated, e.g., by additionally setting the

PC to −1;

• ... all threads must be notified which have waited for the termination.

For the instruction term this means:

400

PC = –1;

JTab[CT][1] = S[SP];

freeStack(SP);

while (0 ≤ tid = dequeue (JTab[CT][0]))
enqueue (RQ, tid);

The run-time function freeStack (int adr) removes the (one-element) stack at

the location adr :

adr

freeStack(adr)

401

46 Mutual Exclusion

A mutex is an (abstract) datatype (in the heap) which should allow the

programmer to dedicate exclusive access to a shared resource (mutual

exclusion).

The datatype supports the following operations:

Mutex ∗ newMutex (); — creates a new mutex;

void lock (Mutex ∗me); — tries to acquire the mutex;

void unlock (Mutex ∗me); — releases the mutex;

Warning:

A thread is only allowed to release a mutex if it has owned it beforehand :-)

402

A mutex me consists of:

• the tid of the current owner (or −1 if there is no one);

• the queue BQ of blocked threads which want to acquire the mutex.

1

0

BQ

owner

403

Then we translate:

codeR newMutex () ρ = newMutex

where:

newMutex
−1

404

Then we translate:

code lock (e); ρ = codeR e ρ

lock

where:

lock

17CT 17CT

17−1

405

If the mutex is already owned by someone, the current thread is interrupted:

lock

17CT CT
17

55

if (S[S[SP]] < 0) S[S[SP– –]] = CT;

else {

enqueue (S[SP– –]+1, CT);
next;

}

406

Accordingly, we translate:

code unlock (e); ρ = codeR e ρ

unlock

where:

unlock

5CTCT

175

5

17

407

If the queue BQ is empty, we release the mutex:

CT CT

unlock

5

5

−1

5

if (S[S[SP]] 6= CT) Error (“Illegal unlock!”);

if (0 > tid = dequeue (S[SP]+1)) S[S[SP– –]] = –1;

else {

S[S[SP--]] = tid;

enqueue (RQ, tid);
}

408

47 Waiting for Better Wheather

It may happen that a thread owns a mutex but must wait until some extra

condition is true.

Then we want the thread to remain in-active until it is told otherwise.

For that, we use condition variables. A condition variable consists of a queue

WQ of waiting threads :-)

0 WQ

409

For condition variables, we introduce the functions:

CondVar ∗ newCondVar (); — creates a new condition variable;

void wait (CondVar ∗ cv), Mutex ∗ me); — enqueues the current thread;

void signal (CondVar ∗ cv); — re-animates one waiting thread;

void broadcast (CondVar ∗ cv); — re-animates all waiting threads.

410

Then we translate:

codeR newCondVar () ρ = newCondVar

where:

newCondVar

411

After enqueuing the current thread, we release the mutex. After re-animation,

though, we must acquire the mutex again.

Therefore, we translate:

code wait (e0, e1); ρ = codeR e1 ρ

codeR e0 ρ

wait

dup

unlock

next

lock

where ...

412

CT CT

wait

5 5

55 5

if (S[S[SP-1]] 6= CT) Error (“Illegal wait!”);

enqueue (S[SP], CT); SP--;

413

Accordingly, we translate:

code signal (e); ρ = codeR e ρ

signal

signal

RQ RQ

17

17

if (0 ≤ tid = dequeue (S[SP]))

enqueue (RQ, tid);
SP--;

414

Analogously:

code broadcast (e); ρ = codeR e ρ

broadcast

where the instruction broadcast enqueues all threads from the queue WQ

into the ready-queue RQ :

while (0 ≤ tid = dequeue (S[SP]))

enqueue (RQ, tid);
SP--;

Warning:

The re-animated threads are not blocked !!!

When they become running, though, they first have to acquire their mutex :-)

415

48 Example: Semaphores

A semaphore is an abstract datatype which controls the access of a bounded

number of (identical) resources.

Operations:

Sema ∗ newSema (int n) — creates a new semaphore;

void Up (Sema ∗ s) — increases the number of free resources;

void Down (Sema ∗ s) — decreases the number of available resources.

416

Therefore, a semaphore consists of:

• a counter of type int;

• a mutex for synchronizing the semaphore operations;

• a condition variable.

typedef struct {

Mutex ∗me;

CondVar ∗ cv;

int count;

} Sema;

417

Sema ∗ newSema (int n) {

Sema ∗ s;

s = (Sema ∗) malloc (sizeof (Sema));

s→me = newMutex ();

s→cv = newCondVar ();

s→count = n;

return (s);

}

418

The translation of the body amounts to:

alloc 1 newMutex newCondVar loadr 1 loadr 2

loadc 3 loadr 2 loadr 2 loadr 2 storer -2

new store loadc 1 loadc 2 return

storer 2 pop add add

pop store store

pop pop

419

The function Down() decrements the counter.

If the counter becomes negative, wait is called:

void Down (Sema ∗ s) {

Mutex ∗me;

me = s→me;

lock (me);

s→count– –;

if (s→count < 0) wait (s→cv,me);

unlock (me);

}

420

The translation of the body amounts to:

alloc 1 loadc 2 add loadc 1

loadr 1 add store add

load load loadc 0 load

storer 2 loadc 1 le wait

lock sub jumpz A A: loadr 2

loadr 1 loadr 2 unlock

loadr 1 loadc 2 loadr 1 return

421

The function Up() increments the counter again.

If it is afterwards not yet positive, there still must exist waiting threads. One of

these is sent a signal:

void Up (Sema ∗ s) {

Mutex ∗me;

me = s→me;

lock (me);

s→count++;

if (s→count ≤ 0) signal (s→cv);

unlock (me);

}

422

The translation of the body amounts to:

alloc 1 loadc 2 add loadc 1

loadr 1 add store add

load load loadc 0 load

storer 2 loadc 1 le signal

lock add jumpz A A: loadr 2

loadr 1 unlock

loadr 1 loadc 2 loadr 1 return

423

49 Stack-Management

Problem:

• All threads live within the same storage.

• Every thread requires its own stack (at least conceptually).

1. Idea:

Allocate for each new thread a fixed amount of storage space.

==⇒

Then we implement:

void *newStack() { return malloc(M); }

void freeStack(void *adr) { free(adr); }

424

Problem:

• Some threads consume much, some only little stack space.

• The necessary space is statically typically unknown :-(

2. Idea:

• Maintain all stacks in one joint Frame-Heap FH :-)

• Take care that the space inside the stack frame is sufficient at least for the

current function call.

• A global stack-pointer GSP points to the overall topmost stack cell ...

425

thread 2

thread 1

GSP

Allocation and de-allocation of a stack frame makes use of the run-time

functions:

int newFrame(int size) {

int result = GSP;

GSP = GSP+size;

return result;

}

void freeFrame(int sp, int size);

426

Warning:

The de-allocated block may reside inside the stack :-(

==⇒

We maintain a list of freed stack blocks :-)

0
42
30

19
15

7
6 1

3

This list supports a function

void insertBlock(int max, int min)

which allows to free single blocks.

• If the block is on top of the stack, we pop the stack immediately;

• ... together with the blocks below – given that these have already been

marked as de-allocated.

• If the block is inside the stack, we merge it with neighbored free blocks:

427

GSP

freeBlock(...)

GSP

428

freeBlock(...)

GSPGSP

429

freeBlock(...)

GSPGSP

430

Approach:

We allocate a fresh block for every function call ...

Problem:

When ordering the block before the call, we do not yet know the space

consumption of the called function :-(

==⇒ We order the new block after entering the function body!

431

SP

Organisational cells as well as actual parameters must be allocated inside the old

block ...

432

actual
parameters

SP

When entering the new function, we now allocate the new block ...

and one further line

433

FP

actual
parameters

local
variables

SP

Inparticular, the local variables reside in the new block ...

and one further line

434

==⇒ We address ...

• the formal parameters relatively to the frame-pointer;

• the local variables relatively to the stack-pointer :-)

==⇒ We must re-organize the complete code generation ... :-(

Alternative: Passing of parameters in registers ... :-)

435

SP

argument
registers

The values of the actual parameters are determined before allocation of the new

stack frame.

436

argument
registers

actual
parameters

organizational
cells

FP

SP

The complete frame is allocated inside the new block – plus the space for the

current parameters.

437

argument
registers

actual
parameters

FP

SP

Inside the new block, though, we must store the old SP (possibly +1) in

order to correctly return the result ... :-)

438

3. Idea: Hybrid Solution

• For the first k threads, we allocate a separate stack area.

• For all further threads, we successively use one of the existing ones !!!

==⇒

• For few threads extremely simple and efficient;

• For many threads amortized storage usage :-))

439

