Accessing Global Variables

- The bindings of global variables of an expression or a function are kept in a vector in the heap (Global Vector).
- They are addressed consecutively starting with 0 .
- When an F-object or a C-object are constructed, the Global Vector for the function or the expression is determined and a reference to it is stored in the gp-component of the object.
- During the evaluation of an expression, the (new) register GP (Global Pointer) points to the actual Global Vector.
- In constrast, local variables should be administered on the stack ...
\Longrightarrow General form of the address environment:

$$
\rho: \text { Vars } \rightarrow\{L, G\} \times \mathbb{Z}
$$

Accessing Local Variables

Local variables are administered on the stack, in stack frames.
Let $e \equiv e^{\prime} e_{0} \ldots e_{m-1}$ be the application of a function e^{\prime} to arguments e_{0}, \ldots, e_{m-1}.

Warning:

The arity of e^{\prime} does not need to be $\left.m \quad:-\right)$

- f may therefore receive less than n arguments (under supply);
- f may also receive more than n arguments, if t is a functional type (over supply).

Possible stack organisations:

+ Addressing of the arguments can be done relative to FP
- The local variables of e^{\prime} cannot be addressed relative to FP.
- If e^{\prime} is an n-ary function with $n<m$, i.e., we have an over-supplied function application, the remaining $m-n$ arguments will have to be shifted.
- If e^{\prime} evaluates to a function, which has already been partially applied to the parameters a_{0}, \ldots, a_{k-1}, these have to be sneaked in underneath e_{0} :

Alternative:

+ The further arguments a_{0}, \ldots, a_{k-1} and the local variables can be allocated above the arguments.

- Addressing of arguments and local variables relative to FP is no more possible. (Remember: m is unknown when the function definition is translated.)

Way out:

- We address both, arguments and local variables, relative to the stack pointer SP !!!
- However, the stack pointer changes during program execution...

- The differerence between the current value of SP and its value sp_{0} at the entry of the function body is called the stack distance, sd.
- Fortunately, this stack distance can be determined at compile time for each program point, by simulating the movement of the SP.
- The formal parameters $x_{0}, x_{1}, x_{2}, \ldots$ successively receive the non-positive relative addresses $0,-1,-2, \ldots$, i.e., $\quad \rho x_{i}=(L,-i)$.
- The absolute address of the i-th formal parameter consequently is

$$
\mathrm{sp}_{0}-i=(\mathrm{SP}-\mathrm{sd})-i
$$

- The local let-variables $y_{1}, y_{2}, y_{3}, \ldots$ will be successively pushed onto the stack:

- The y_{i} have positive relative addresses $1,2,3, \ldots$, that is: $\quad \rho y_{i}=(L, i)$.
- The absolute address of y_{i} is then $\quad \mathrm{sp}_{0}+i=(\mathrm{SP}-\mathrm{sd})+i$

With CBN, we generate for the access to a variable:

$$
\begin{aligned}
\operatorname{code}_{V} x \rho \mathrm{sd}= & \underset{\text { eval }}{\operatorname{getvar} x \rho \mathrm{sd}}
\end{aligned}
$$

The instruction eval checks, whether the value has already been computed or whether its evaluation has to yet to be done $(\Longrightarrow$ will be treated later :-) With CBV, we can just delete eval from the above code schema.
The (compile-time) macro getvar is defined by:

$$
\begin{aligned}
& \text { getvar } x \rho \mathrm{sd}= \text { let }(t, i)=\rho x \text { in } \\
& \text { match } t \text { with } \\
& L \rightarrow \text { pushloc }(\mathrm{sd}-i) \\
& \mid G \rightarrow \text { pushglob } \mathrm{i} \\
& \text { end }
\end{aligned}
$$

The access to local variables:

Correctness argument:

Let sp and sd be the values of the stack pointer resp. stack distance before the execution of the instruction. The value of the local variable with address i is loaded from $S[a]$ with

$$
a=\mathrm{sp}-(\mathrm{sd}-i)=(\mathrm{sp}-\mathrm{sd})+i=\mathrm{sp}_{0}+i
$$

... exactly as it should be :-)

The access to global variables is much simpler:

Example:
Regard $\quad e \equiv(b+c)$ for $\rho=\{b \mapsto(L, 1), c \mapsto(G, 0)\}$ and $\quad \mathrm{sd}=1$.
With CBN, we obtain:

$$
\begin{aligned}
& \operatorname{code}_{V} e \rho 1=\text { getvar } b \rho 1=1 \text { pushloc } 0 \\
& \text { eval } 2 \text { eval } \\
& \text { getbasic } 2 \text { getbasic } \\
& \text { getvar c } \rho 2 \quad 2 \text { pushglob } 0 \\
& \text { eval } 3 \text { eval } \\
& \text { getbasic } 3 \text { getbasic } \\
& \text { add } 3 \text { add } \\
& \text { mkbasic } 2 \text { mkbasic }
\end{aligned}
$$

15 let-Expressions

As a warm-up let us first consider the treatment of local variables :-)
Let $\quad e \equiv$ let $y_{1}=e_{1}$ in \ldots let e_{n} in $e_{0} \quad$ be a nested let-expression.
The translation of e must deliver an instruction sequence that

- allocates local variables y_{1}, \ldots, y_{n};
- in the case of

CBV: evaluates e_{1}, \ldots, e_{n} and binds the y_{i} to their values;
CBN: constructs closures for the e_{1}, \ldots, e_{n} and binds the y_{i} to them;

- evaluates the expression e_{0} and returns its value.

Here, we consider the non-recursive case only, i.e. where y_{j} only depends on y_{1}, \ldots, y_{j-1}. We obtain for CBN:

$$
\begin{aligned}
\operatorname{code}_{V} e \rho \mathrm{sd}= & \operatorname{code}_{C} e_{1} \rho \mathrm{sd} \\
& \operatorname{code}_{C} e_{2} \rho_{1}(\mathrm{sd}+1) \\
& \ldots \\
& \operatorname{code}_{C} e_{n} \rho_{n-1}(\mathrm{sd}+n-1) \\
& \operatorname{code}_{V} e_{0} \rho_{n}(\mathrm{sd}+n)
\end{aligned}
$$

$$
\text { slide } \mathrm{n} \quad / / \text { deallocates local variables }
$$

where

$$
\rho_{j}=\rho \oplus\left\{y_{i} \mapsto(L, \mathrm{sd}+i) \mid i=1, \ldots, j\right\}
$$

In the case of CBV, we use code ${ }_{V}$ for the expressions e_{1}, \ldots, e_{n}.

Warning!

All the e_{i} must be associated with the same binding for the global variables!

Example:

Consider the expression

$$
e \equiv \text { let } a=19 \text { in let } b=a * a \text { in } a+b
$$

for $\rho=\emptyset$ and $s d=0$. We obtain (for CBV):

0	loadc 19	3	getbasic	3	pushloc 1
1	mkbasic	3	mul	4	getbasic
1	pushloc 0	2	mkbasic	4	add
2	getbasic	2	pushloc 1	3	mkbasic
2	pushloc 1	3	getbasic	3	slide 2

The instruction slide k deallocates again the space for the locals:

16 Function Definitions

The definition of a function f requires code that allocates a functional value for f in the heap. This happens in the following steps:

- Creation of a Global Vector with the binding of the free variables;
- Creation of an (initially empty) argument vector;
- Creation of an F-Object, containing references to theses vectors and the start address of the code for the body;

Separately, code for the body has to be generated.
Thus:

$$
\begin{aligned}
& \operatorname{code}_{V}\left(\text { fun } x_{0} \ldots x_{k-1} \rightarrow e\right) \rho \text { sd }=\quad \text { getvar } z_{0} \rho \mathrm{sd} \\
& \text { getvar } z_{1} \rho(\mathrm{sd}+1) \\
& \text { getvar } z_{g-1} \rho(\mathrm{sd}+g-1) \\
& \text { mkvec } g \\
& \text { mkfunval A } \\
& \text { jump B } \\
& \text { A: } \operatorname{targ} k \\
& \text { code }_{V} \text { e } \rho^{\prime} 0 \\
& \text { return } \mathrm{k} \\
& \text { B : ... }
\end{aligned}
$$

where $\quad\left\{z_{0}, \ldots, z_{g-1}\right\}=$ free $\left(\right.$ fun $\left.x_{0} \ldots x_{k-1} \rightarrow e\right)$
and $\quad \rho^{\prime}=\left\{x_{i} \mapsto(L,-i) \mid i=0, \ldots, k-1\right\} \cup\left\{z_{j} \mapsto(G, j) \mid j=0, \ldots, g-1\right\}$

mkvec g

$$
\begin{aligned}
& \mathrm{h}=\text { new }(\mathrm{V}, \mathrm{n}) ; \\
& \mathrm{SP}=\mathrm{SP}-\mathrm{g}+1 ; \\
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{g} ; \mathrm{i}++) \\
& \quad \mathrm{h} \rightarrow \mathrm{v}[\mathrm{i}]=\mathrm{S}[\mathrm{SP}+\mathrm{i}] ; \\
& \mathrm{S}[\mathrm{SP}]=\mathrm{h} ;
\end{aligned}
$$

Example:
Regard $\quad f \equiv$ fun $b \rightarrow a+b \quad$ for $\quad \rho=\{a \mapsto(L, 1)\}$ and $\quad \mathrm{sd}=1$. code $_{V} f \rho 1$ produces:

1	pushloc 0	0	pushglob 0	2	getbasic
2	mkvec 1	1	eval	2	add
2	mkfunval A	1	getbasic	1	
mkbasic					
2	jump B	1	pushloc 1	1	
0	A $: \operatorname{targ} 1$	2	eval	2	B:

The secrets around $\operatorname{targ} \mathrm{k}$ and return k will be revealed later :-)

17 Function Application

Function applications correspond to function calls in C. The necessary actions for the evaluation of $\quad e^{\prime} e_{0} \ldots e_{m-1}$ are:

- Allocation of a stack frame;
- Transfer of the actual parameters, i.e. with:

CBV: Evaluation of the actual parameters;
CBN: Allocation of closures for the actual parameters;

- Evaluation of the expression e^{\prime} to an F-object;
- Application of the function.

Thus for CBN:

$$
\begin{array}{rlrl}
\operatorname{code}_{V}\left(e^{\prime} e_{0} \ldots e_{m-1}\right) \rho \mathrm{sd}= & \operatorname{mark} \mathrm{A} & / / \text { Allocation of the fra } \\
& \operatorname{code}_{C} e_{m-1} \rho(\mathrm{sd}+3) \\
& \operatorname{code}_{C} e_{m-2} \rho(\mathrm{sd}+4) \\
& \ldots \\
& \operatorname{code}_{C} e_{0} \rho(\mathrm{sd}+m+2) \\
& \operatorname{code}_{V} e^{\prime} \rho(\mathrm{sd}+m+3) \quad / / \text { Evaluation of } e^{\prime} \\
& \text { apply } & / / \text { corresponds to call } \\
A: & \ldots &
\end{array}
$$

To implement CBV, we use code_{V} instead of code_{C} for the arguments e_{i}.

Example: For $(f 42), \rho=\{f \mapsto(L, 2)\}$ and $s d=2$, we obtain with CBV:

2	mark A	6	mkbasic	7		apply
5	loadc 42	6	pushloc 4	3	A:	\ldots

A Slightly Larger Example:

$$
\text { let } a=17 \text { in let } f=\text { fun } b \rightarrow a+b \text { in } f 42
$$

For CBV and $s d=0$ we obtain:

0	loadc 17	2		jump B	2		getbasic	5		loadc 42
1	mkbasic	0	A:	$\operatorname{targ} 1$	2		add	5		mkbasic
1	pushloc 0	0		pushglob 0	1		mkbasic	6		pushloc 4
2	mkvec 1	1		getbasic	1		return 1	7		apply
2	mkfunval A	1			pushloc 1	2	B:	mark C	3	C:
mlide 2										

For the implementation of the new instruction, we must fix the organization of a stack frame:

Different from the CMa, the instruction mark A already saves the return address:

The instruction apply unpacks the F-object, a reference to which (hopefully) resides on top of the stack, and continues execution at the address given there:

$$
\begin{array}{ll}
\mathrm{h}=\mathrm{S}[\mathrm{SP}] ; & \mathrm{GP}=\mathrm{h} \rightarrow \mathrm{gp} ; \mathrm{PC}=\mathrm{h} \rightarrow \mathrm{cp} ; \\
\text { if }(\mathrm{H}[\mathrm{~h}]!=(\mathrm{F},-,-)) & \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{h} \rightarrow \mathrm{ap} \rightarrow \mathrm{n} ; \mathrm{i}++) \\
\quad \text { Error "no fun"; } & \mathrm{S}[\mathrm{SP}+\mathrm{i}]=\mathrm{h} \rightarrow \mathrm{ap} \rightarrow \mathrm{v}[\mathrm{i}] ; \\
\text { else }\{ & \mathrm{SP}=\mathrm{SP}+\mathrm{h} \rightarrow \mathrm{ap} \rightarrow \mathrm{n}-1 ;
\end{array}
$$

Warning:

- The last element of the argument vector is the last to be put onto the stack. This must be the first argument reference.
- This should be kept in mind, when we treat the packing of arguments of an under-supplied function application into an F-object!!!

