
Accessing Global Variables

• The bindings of global variables of an expression or a function are kept in a

vector in the heap (Global Vector).

• They are addressed consecutively starting with 0.

• When an F-object or a C-object are constructed, the Global Vector for the

function or the expression is determined and a reference to it is stored in the

gp-component of the object.

• During the evaluation of an expression, the (new) register GP (Global

Pointer) points to the actual Global Vector.

• In constrast, local variables should be administered on the stack ...

==⇒ General form of the address environment:

� : Vars → {L,G} × Z

116

Accessing Local Variables

Local variables are administered on the stack, in stack frames.

Let e ≡ e′ e0 . . . em−1 be the application of a function e′ to arguments

e0, . . . , em−1.

Warning:

The arity of e′ does not need to be m :-)

• f may therefore receive less than n arguments (under supply);

• f may also receive more than n arguments, if t is a functional type (over

supply).

117

Possible stack organisations:

FP

F e′

e0

em−1

+ Addressing of the arguments can be done relative to FP

− The local variables of e′ cannot be addressed relative to FP.

− If e′ is an n-ary function with n < m, i.e., we have an over-supplied function

application, the remaining m− n arguments will have to be shifted.

118

− If e′ evaluates to a function, which has already been partially applied to the

parameters a0, . . . , ak−1, these have to be sneaked in underneath e0:

FP

a1

em−1

e0

a0

119

Alternative:

FP

F e′

em−1

e0

+ The further arguments a0, . . . , ak−1 and the local variables can be allocated

above the arguments.

120

FP

e0

a0

a1

em−1

− Addressing of arguments and local variables relative to FP is no more

possible. (Remember: m is unknown when the function definition is

translated.)

121

Way out:

• We address both, arguments and local variables, relative to the stack pointer

SP !!!

• However, the stack pointer changes during program execution...

FP

sd
SP

0sp e0

em−1

122

• The differerence between the current value of SP and its value sp0 at the

entry of the function body is called the stack distance, sd.

• Fortunately, this stack distance can be determined at compile time for each

program point, by simulating the movement of the SP.

• The formal parameters x0, x1, x2, . . . successively receive the non-positive

relative addresses 0,−1,−2, . . ., i.e., � xi = (L,−i).

• The absolute address of the i-th formal parameter consequently is

sp0 − i = (SP− sd)− i

• The local let-variables y1, y2, y3, . . . will be successively pushed onto the

stack:

123

:

sd

SP

sp0

2

1

0

−2

−1

3 y3

y1

x0

xk−1

x1

y2

• The yi have positive relative addresses 1, 2, 3, . . ., that is: � yi = (L, i).

• The absolute address of yi is then sp0 + i = (SP− sd) + i

124

With CBN, we generate for the access to a variable:

codeV x � sd = getvar x � sd

eval

The instruction eval checks, whether the value has already been computed

or whether its evaluation has to yet to be done (==⇒will be treated later :-)

With CBV, we can just delete eval from the above code schema.

The (compile-time) macro getvar is defined by:

getvar x � sd = let (t, i) = � x in

match t with

L → pushloc (sd− i)

| G → pushglob i

end

125

The access to local variables:

n

pushloc n

S[SP+1] =S[SP - n]; SP++;

126

Correctness argument:

Let sp and sd be the values of the stack pointer resp. stack distance before the

execution of the instruction. The value of the local variable with address i is

loaded from S[a]with

a = sp− (sd− i) = (sp− sd) + i = sp0 + i

... exactly as it should be :-)

127

The access to global variables is much simpler:

VGP VGP

i

pushglob i

SP = SP + 1;
S[SP] = GP→v[i];

128

Example:

Regard e ≡ (b+ c) for � = {b 7→ (L, 1), c 7→ (G, 0)} and sd = 1.

With CBN, we obtain:

codeV e � 1 = getvar b � 1 = 1 pushloc 0

eval 2 eval

getbasic 2 getbasic

getvar c � 2 2 pushglob 0

eval 3 eval

getbasic 3 getbasic

add 3 add

mkbasic 2 mkbasic

129

15 let-Expressions

As a warm-up let us first consider the treatment of local variables :-)

Let e ≡ let y1 = e1 in . . . let en in e0 be a nested let-expression.

The translation of e must deliver an instruction sequence that

• allocates local variables y1, . . . , yn;

• in the case of

CBV: evaluates e1, . . . , en and binds the yi to their values;

CBN: constructs closures for the e1, . . . , en and binds the yi to them;

• evaluates the expression e0 and returns its value.

Here, we consider the non-recursive case only, i.e. where y j only depends on

y1, . . . , y j−1. We obtain for CBN:

130

codeV e � sd = codeC e1 � sd

codeC e2 �1 (sd+ 1)

. . .

codeC en �n−1 (sd+ n− 1)

codeV e0 �n (sd+ n)

slide n // deallocates local variables

where � j = �⊕ {yi 7→ (L, sd+ i) | i = 1, . . . , j}.

In the case of CBV, we use codeV for the expressions e1, . . . , en.

Warning!

All the ei must be associated with the same binding for the global variables!

131

Example:

Consider the expression

e ≡ let a = 19 in let b = a ∗ a in a+ b

for � = ∅ and sd = 0. We obtain (for CBV):

0 loadc 19 3 getbasic 3 pushloc 1

1 mkbasic 3 mul 4 getbasic

1 pushloc 0 2 mkbasic 4 add

2 getbasic 2 pushloc 1 3 mkbasic

2 pushloc 1 3 getbasic 3 slide 2

132

The instruction slide k deallocates again the space for the locals:

k

slide k

S[SP-k] = S[SP];
SP = SP - k;

133

16 Function Definitions

The definition of a function f requires code that allocates a functional value for f

in the heap. This happens in the following steps:

• Creation of a Global Vector with the binding of the free variables;

• Creation of an (initially empty) argument vector;

• Creation of an F-Object, containing references to theses vectors and the start

address of the code for the body;

Separately, code for the body has to be generated.

Thus:

134

codeV (fun x0 . . . xk−1 → e)� sd = getvar z0 � sd

getvar z1 � (sd+ 1)

. . .

getvar zg−1 � (sd+ g− 1)

mkvec g

mkfunval A

jump B

A : targ k

codeV e �′ 0

return k

B : . . .

where {z0, . . . , zg−1} = free(fun x0 . . . xk−1 → e)

and �

′ = {xi 7→ (L,−i) | i = 0, . . . , k− 1} ∪ {z j 7→ (G, j) | j = 0, . . . , g− 1}

135

g mkvec g

h = new (V, n);
SP = SP - g + 1;
for (i=0; i<g; i++)

h→v[i] = S[SP + i];
S[SP] = h;

V g

136

F A

mkfunval A V 0

V V

a = new (V,0);
S[SP] = new (F, A, a, S[SP]);

137

Example:

Regard f ≡ fun b → a+ b for � = {a 7→ (L, 1)} and sd = 1.

codeV f � 1 produces:

1 pushloc 0 0 pushglob 0 2 getbasic

2 mkvec 1 1 eval 2 add

2 mkfunval A 1 getbasic 1 mkbasic

2 jump B 1 pushloc 1 1 return 1

0 A : targ 1 2 eval 2 B : ...

The secrets around targ k and return k will be revealed later :-)

138

17 Function Application

Function applications correspond to function calls in C.

The necessary actions for the evaluation of e′ e0 . . . em−1 are:

• Allocation of a stack frame;

• Transfer of the actual parameters , i.e. with:

CBV: Evaluation of the actual parameters;

CBN: Allocation of closures for the actual parameters;

• Evaluation of the expression e′ to an F-object;

• Application of the function.

Thus for CBN:

139

codeV (e′ e0 . . . em−1)� sd = mark A // Allocation of the frame

codeC em−1 � (sd+ 3)

codeC em−2 � (sd+ 4)

. . .

codeC e0 � (sd+m+ 2)

codeV e′ � (sd+m+ 3) // Evaluation of e′

apply // corresponds to call

A : ...

To implement CBV, we use codeV instead of codeC for the arguments ei.

Example: For (f 42) , � = { f 7→ (L, 2)} and sd = 2, we obtain with CBV:

2 mark A 6 mkbasic 7 apply

5 loadc 42 6 pushloc 4 3 A : ...

140

A Slightly Larger Example:

let a = 17 in let f = fun b → a+ b in f 42

For CBV and sd = 0 we obtain:

0 loadc 17 2 jump B 2 getbasic 5 loadc 42

1 mkbasic 0 A: targ 1 2 add 5 mkbasic

1 pushloc 0 0 pushglob 0 1 mkbasic 6 pushloc 4

2 mkvec 1 1 getbasic 1 return 1 7 apply

2 mkfunval A 1 pushloc 1 2 B: mark C 3 C: slide 2

141

For the implementation of the new instruction, we must fix the organization of a

stack frame:

FPold

PCold

GPold

FP 0

-1

-2

local stack

3 org. cells

SP

Arguments

142

Different from the CMa, the instruction mark A already saves the return

address:

V V

A

mark A

GP GP

FP = SP = SP + 3;

FPFP

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = A;

143

The instruction apply unpacks the F-object, a reference to which (hopefully)

resides on top of the stack, and continues execution at the address given there:

42

GP

PC 42

GP

PC
F

ap gp
apply

VV

for (i=0; i< h→ap→n; i++)
S[SP+i] = h→ap→v[i];

SP = SP + h→ap→n – 1;
}

else {
Error “no fun”;

h = S[SP];
if (H[h] != (F,_,_))

GP = h→gp; PC = h→cp;

V n

144

Warning:

• The last element of the argument vector is the last to be put onto the stack.

This must be the first argument reference.

• This should be kept in mind, when we treat the packing of arguments of an

under-supplied function application into an F-object !!!

145

