Accessing Global Variables

e The bindings of global variables of an expression or a function are kept in a
vector in the heap (Global Vector).

e They are addressed consecutively starting with 0.

e When an F-object or a C-object are constructed, the Global Vector for the
function or the expression is determined and a reference to it is stored in the
gp-component of the object.

e During the evaluation of an expression, the (new) register GP’ (Global
Pointer) points to the actual Global Vector.

e In constrast, local variables should be administered on the stack ...

— General form of the address environment:

p:Vars - {L,G} x Z

116

Accessing Local Variables

Local variables are administered on the stack, in stack frames.

Lete=¢' e ... e,_1 be the application of a function ¢’ to arguments

€o,c++,6m—1.
Warning:
The arity of ¢’ does not need tobe m :-)

e f may therefore receive less than n arguments (under supply);

e f may also receive more than n arguments, if ¢ is a functional type (over
supply).

117

Possible stack organisations:

> F e’
- €m—1
.
>
L €o

FP— >

+ Addressing of the arguments can be done relative to FP
— The local variables of ¢’ cannot be addressed relative to FP.

— If ¢’ is an n-ary function with n < m, i.e., we have an over-supplied function
application, the remaining m — n arguments will have to be shifted.

118

— If ¢’ evaluates to a function, which has already been partially applied to the
parameters ay, . . ., dx—1, these have to be sneaked in underneath e:

> €m—1
.
|
I dq
- ag
FP ——>

119

Alternative:

= F e’

> eo
]

>
> €m—1

FP— =

+ The further arguments ay, . . ., ax_1 and the local variables can be allocated
above the arguments.

120

> Ao
)>
a1
> €0
=
%
> Cm—1

FP— =

— Addressing of arguments and local variables relative to FP is no more
possible. (Remember: m is unknown when the function definition is
translated.)

121

Way out:

e We address both, arguments and local variables, relative to the stack pointer
sp

e However, the stack pointer changes during program execution...

SP ——— =

sd

Spo — r 80

FP— >

122

The differerence between the current value of S’ and its value sp at the
entry of the function body is called the stack distance, sd.

Fortunately, this stack distance can be determined at compile time for each
program point, by simulating the movement of the SP.

The formal parameters x, x1, X2, . . . successively receive the non-positive
relative addresses 0, —1, -2, ..., i.e., px; = (L,—i).

The absolute address of the i-th formal parameter consequently is
spy—1=(SP —sd) —i

The local let-variables y1, 2, 3, . . . will be successively pushed onto the
stack:

123

SP ——

sd 3 . 3 \
2 R 1
1 —>— Y1
- SP, 0 R X0
-1 > Xq
—2 I Y
= Xk—1

e The y; have positive relative addresses 1,2, 3, .. ., that is: pyi=(L,i).

e The absolute address of v; is then spy+i=(SP —sd) +i

124

With CBN, we generate for the access to a variable:

codey x psd = getvarx psd

eval

The instruction eval checks, whether the value has already been computed
or whether its evaluation has to yet to be done (= will be treated later :-)

With CBV, we can just delete eval from the above code schema.

The (compile-time) macro getvar is defined by:

getvarx psd = let(t,i) =pxin
match t with
L — pushloc (sd — i)
| G — pushglob i

end

125

The access to local variables:

|

pushloc n

S[SP+1] =S[SP - n]; SP++;

126

Correctness argument:

Let sp and sd be the values of the stack pointer resp. stack distance before the
execution of the instruction. The value of the local variable with address i is
loaded from S|a] with

a=sp—(sd—1i)=(sp—sd)+i=sp,+i
... exactly as it should be :-)

127

The access to global variables is much simpler:

GP —

pushglob i

SP=SP +1;

GP —

S[SP] = GP—v]i];

128

Example:

Regard e= (b+c) for p={b~— (L,1),c— (G,0)}and sd=1.
With CBN, we obtain:

129

codeyepl = getvarbpl = 1 pushlocO

eval 2 eval
getbasic 2 getbasic
getvarcp 2 2 pushglob 0
eval 3 eval
getbasic 3 getbasic
add 3 add
mkbasic 2 mkbasic

15 let-Expressions

As a warm-up let us first consider the treatment of local variables :-)
Let e=lety; =e¢; in...lete, iney be anested let-expression.
The translation of e must deliver an instruction sequence that

e allocates local variables vy, ..., yu;

e in the case of
CBV: evaluates ey, . . ., e, and binds the y; to their values;
CBN: constructs closures for the ey, .. ., ¢, and binds the y; to them;

e evaluates the expression ¢y and returns its value.

Here, we consider the non-recursive case only, i.e. where y; only depends on
Y1,...,Yj-1. We obtain for CBN:

130

codey e psd = codece; psd

codec e p1 (sd +1)

codec e, py—1 (sd+n—1)
codey ey p, (sd +n)

slide n // deallocates local variables

where pi=p@{yi— (L,sd+i)|i=1,...,j}.

In the case of CBV, we use codey for the expressions ey, .. ., ej.
Warning!

All the e; must be associated with the same binding for the global variables!

131

Example:

Consider the expression
e=leta=19inletb=axaina+b

for p = () and sd = 0. We obtain (for CBV):

0 loadc19 3 getbasic 3 pushloc1
1 mkbasic 3 mul 4 getbasic
1 pushlocO 2 mbkbasic 4 add

2 getbasic 2 pushloc1 3 mkbasic
2 pushloc1 3 getbasic 3 slide2

132

The instruction slide k deallocates again the space for the locals:

slide k

S[SP-k] = S[SP];
SP =SP - k;

133

16 Function Definitions

The definition of a function f requires code that allocates a functional value for f
in the heap. This happens in the following steps:

e Creation of a Global Vector with the binding of the free variables;
e Creation of an (initially empty) argument vector;

e Creation of an F-Object, containing references to theses vectors and the start
address of the code for the body;

Separately, code for the body has to be generated.

Thus:

134

codey (funxg...x, 1 —e)psd = getvar zg p sd

getvar z; p (sd +1)

getvar zg_q p (sd +g—1)
mkvec g

mkfunval A

jump B
A: targk
codey e p’ 0
return k
B:
where {zo,...,2g-1} = free(fun xg ... x_1 — e)

and o ={xi—(L,—i)|i=0,....k—=1}U{z;— (G,j) | j=0,...,g—1}

135

mkvec g

%AAA s

h =new (V, n);

SP=SP-g+1;

for (i=0; i<g; i++)
h—v[i] = S[SP + i];

S[SP] = h;

136

<

mkfunval A

a =new (V,0);
S[SP] =new (F, A, a, S[SP]);

137

Example:

Regard f=funb—a+b for p={a— (L,1)}and sd=1.

codey f p 1 produces:

1 pushloc 0 0 pushglob 0 2 getbasic
2 mkvec 1 1 eval 2 add

2 mkfunval A 1 getbasic 1 mkbasic
2 jump B 1 pushloc1 1 return 1
0 A: targl 2 eval 2 B:

The secrets around targk and returnk will berevealed later :-)

138

17 Function Application

Function applications correspond to function calls in C.
The necessary actions for the evaluationof e ey ... e,,_1 are:

e Allocation of a stack frame;

e Transfer of the actual parameters, i.e. with:
CBV: Evaluation of the actual parameters;
CBN: Allocation of closures for the actual parameters;

e Evaluation of the expression ¢’ to an F-object;

e Application of the function.

Thus for CBN:

139

codey (€' ep ... em—1)psd = mark A // Allocation of the frame
codec ey—1 p (sd + 3)
codec ey_o p (sd +4)

codec ep p (sd +m+2)
codey € p (sd +m + 3) // Evaluation of ¢’

apply // corresponds to call
A

To implement CBV, we use codey instead of codec for the arguments e;.

Example: For (f42),p={f+ (L,2)} and sd = 2, we obtain with CBV:

2 mark A 6 mkbasic 7 apply
5 loadc42 6 pushloc4 3 A:

140

A Slightly Larger Example:

leta =17inlet f =funb — a+bin f 42

For CBV and
0 loadc17 2
1 mkbasic 0
1 pushloc0 0
2 mkvecl 1
2 mkfunval A 1

sd =0 we obtain:

jump B
targ 1
pushglob 0
getbasic
pushloc 1

141

getbasic
add
mkbasic

return 1

mark C

loadc 42
mkbasic
pushloc 4

apply
slide 2

For the implementation of the new instruction, we must fix the organization of a

stack frame:

SP—— >

FP — >

PCold

FPold

GPold

142

N

local stack

Arguments

3 org. cells

Different from the CMa, the instruction mark A

address:

FP ——

GP

mark A

FP

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = A;

FP =SP =SP + 3;

143

already saves the return

GP

The instruction apply unpacks the F-object, a reference to which (hopefully)
resides on top of the stack, and continues execution at the address given there:

ap gp
PC PC [42
> [F[42 4 apply
Vin
| -
B SE— >
e S >
< =
h = S[SP]; GP = h—gp; PC = h—cp;
if (H[h] !'=(F_,_)) for (i=0; i< h—ap—n; i++)
Error “no fun”; S[SP+i] = h—ap—vl[i];

else { SP =SP + h—ap—n-1;
}

144

Warning:

e The last element of the argument vector is the last to be put onto the stack.
This must be the first argument reference.

e This should be kept in mind, when we treat the packing of arguments of an
under-supplied function application into an F-object !!!

145

