22 Optimizations II: Closures

In some cases, the construction of closures can be avoided, namely for

- Basic values,
- Variables,
- Functions.

Basic Values:

The construction of a closure for the value is at least as expensive as the construction of the B-object itself!

Therefore:

$$code_C b \rho sd = code_V b \rho sd = loadc b$$

mkbasic

This replaces:

mkvec 0 jump B mkbasic B: ... mkclos A A: loadc b update

Variables:

Variables are either bound to values or to C-objects. Constructing another closure is therefore superfluous. Therefore:

$$code_C x \rho sd = getvar x \rho sd$$

This replaces:

getvar $x \rho sd$	mkclos A	A:	pushglob 0		update
mkvec 1	jump B		eval	B:	•••

Example:

Consider $e \equiv \text{let rec } a = b \text{ and } b = 7 \text{ in } a.$ $\text{code}_V e \emptyset 0$ produces:

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

The execution of this instruction sequence should deliver the basic value $7\dots$

pushloc 1 alloc 2 mkbasic 3 rewrite 2 3 2 0 pushloc 0 2 loadc 7 rewrite 1 3 3 eval 3 slide 2

alloc 2

3 rewrite 2

3 mkbasic

2 pushloc 1

eval

2 pushloc 0

loadc 7

3 rewrite 1

3 slide 2

3 rewrite 2

3 mkbasic

2 pushloc 1

eval

2 pushloc 0

loadc 7

3 rewrite 1

3 slide 2

3 rewrite 2

3 mkbasic

2 pushloc 1

eval

2 pushloc 0

2 loadc 7

3 rewrite 1

3 slide 2

3 rewrite 2

3 mkbasic

2 pushloc 1

eval

2 pushloc 0

2 loadc 7

3 rewrite 1

3 slide 2

3 rewrite 2

3 mkbasic

2 pushloc 1

eval

2 pushloc 0

loadc 7

3 rewrite 1

3 slide 2

3 rewrite 2

3 mkbasic

2 pushloc 1

eval

- 2 pushloc 0
- 2 loadc 7

3 rewrite 1

3 slide 2

3 rewrite 2

3 mkbasic

2 pushloc 1

eval

- 2 pushloc 0
- 2 loadc 7

3 rewrite 1

3 slide 2

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1 2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval 3 slide 2

Segmentation Fault!!

Apparently, this optimization was not quite **correct** :-(

The Problem:

Binding of variable *y* to variable *x* before *x*'s dummy node is replaced!!

 \Longrightarrow

The Solution:

cyclic definitions: reject sequences of definitions like **let** a = b; ... b = a **in**

acyclic definitions: order the definitions y = x such that the dummy node for the right side of x is already overwritten.

Functions:

Functions are values, which are not evaluated further. Instead of generating code that constructs a closure for an F-object, we generate code that constructs the F-object directly.

Therefore:

$$\operatorname{code}_{\mathcal{C}}(\operatorname{\mathbf{fun}} x_0 \dots x_{k-1} \to e) \rho \operatorname{\mathbf{sd}} = \operatorname{\mathbf{code}}_{\mathcal{V}}(\operatorname{\mathbf{fun}} x_0 \dots x_{k-1} \to e) \rho \operatorname{\mathbf{sd}}$$

23 The Translation of a Program Expression

Execution of a program *e* starts with

$$PC = 0$$
 $SP = FP = GP = -1$

The expression *e* must not contain free variables.

The value of *e* should be determined and then a halt instruction should be executed.

$$code e = code_V e \emptyset 0$$
halt

Remarks:

- The code schemata as defined so far produce Spaghetti code.
- Reason: Code for function bodies and closures placed directly behind the instructions mkfunval resp. mkclos with a jump over this code.
- Alternative: Place this code somewhere else, e.g. following the halt-instruction:

Advantage: Elimination of the direct jumps following mkfunval and mkclos.

Disadvantage: The code schemata are more complex as they would have to accumulate the code pieces in a Code-Dump.

 \Longrightarrow

Solution:

Disentangle the Spaghetti code in a subsequent optimization phase :-)

Example: let a = 17 in let $f = \text{fun } b \rightarrow a + b$ in f 42

Disentanglement of the jumps produces:

0	loadc 17	2	mark B	3	B:	slide 2	1	pushloc 1
1	mkbasic	5	loadc 42	1		halt	2	eval
1	pushloc 0	6	mkbasic	0	A:	targ 1	2	getbasic
2	mkvec 1	6	pushloc 4	0		pushglob 0	2	add
2	mkfunval A	7	eval	1		eval	1	mkbasic
		7	apply	1		getbasic	1	return 1

24 Structured Data

In the following, we extend our functional programming language by some datatypes.

24.1 Tuples

```
Constructors: (.,...,.), k-ary with k \ge 0;
```

Destructors:
$$\#j \text{ for } j \in \mathbb{N}_0$$
 (Projections)

We extend the syntax of expressions correspondingly:

$$e ::= ... \mid (e_0, ..., e_{k-1}) \mid \# j e$$

 $\mid \mathbf{let} (x_0, ..., x_{k-1}) = e_1 \mathbf{in} e_0$

- In order to construct a tuple, we collect sequence of references on the stack. Then we construct a vector of these references in the heap using mkvec
- For returning components we use an indexed access into the tuple.

```
\operatorname{code}_{V}\left(e_{0},\ldots,e_{k-1}\right)
ho\operatorname{sd}=\operatorname{code}_{C}e_{0}
ho\operatorname{sd}
\operatorname{code}_{C}e_{1}
ho\left(\operatorname{sd}+1\right)
\ldots
\operatorname{code}_{C}e_{k-1}
ho\left(\operatorname{sd}+k-1\right)
\operatorname{mkvec} k
\operatorname{code}_{V}\left(\# j\,e\right)
ho\operatorname{sd}=\operatorname{code}_{V}e\,\operatorname{p}\operatorname{sd}
\operatorname{get} j
\operatorname{eval}
```

In the case of CBV, we directly compute the values of the e_i .

Inversion: Accessing all components of a tuple simulataneously:

$$e \equiv \mathbf{let} (y_0, \dots, y_{k-1}) = e_1 \mathbf{in} e_0$$

This is translated as follows:

$$code_V e \rho sd = code_V e_1 \rho sd$$

$$getvec k$$

$$code_V e_0 \rho' (sd + k)$$

$$slide k$$

where
$$\rho' = \rho \oplus \{y_i \mapsto (L, sd + i + 1) \mid i = 0, ..., k - 1\}.$$

The instruction getvec k pushes the components of a vector of length k onto the stack:

24.2 Lists

Lists are constructed by the constructors:

[] "Nil", the empty list;

":" "Cons", right-associative, takes an element and a list.

Access to list components is possible by **match**-expressions ...

Example: The append function app:

app = fun
$$l$$
 $y \rightarrow$ match l with
$$| \quad [] \quad \rightarrow \quad y$$

$$| \quad h :: t \quad \rightarrow \quad h :: (app \ t \ y)$$

accordingly, we extend the syntax of expressions:

$$e ::= \dots \mid [] \mid (e_1 :: e_2)$$

 $\mid (\mathbf{match} \ e_0 \ \mathbf{with} \ [] \rightarrow e_1 \mid h :: t \rightarrow e_2)$

Additionally, we need new heap objects:

24.3 Building Lists

The new instructions nil and cons are introduced for building list nodes. We translate for CBN:

$$\operatorname{code}_{V}[] \rho \operatorname{sd} = \operatorname{nil}$$

$$\operatorname{code}_{V}(e_{1} :: e_{2}) \rho \operatorname{sd} = \operatorname{code}_{C} e_{1} \rho \operatorname{sd}$$

$$\operatorname{code}_{C} e_{2} \rho (\operatorname{sd} + 1)$$

$$\operatorname{cons}$$

Note:

- With CBN: Closures are constructed for the arguments of "::";
- With CBV: Arguments of "::" are evaluated :-)

$$SP++$$
; $S[SP] = new (L,Nil)$;

24.4 Pattern Matching

Consider the expression $e \equiv \mathbf{match} \ e_0 \ \mathbf{with} \ [] \rightarrow e_1 \mid h :: t \rightarrow e_2.$

Evaluation of *e* requires:

- evaluation of e_0 ;
- check, whether resulting value *v* is an L-object;
- if v is the empty list, evaluation of e_1 ...
- otherwise storing the two references of v on the stack and evaluation of e_2 . This corresponds to binding h and t to the two components of v.

In consequence, we obtain (for CBN as for CBV):

```
\operatorname{code}_{V} e \rho \operatorname{sd} = \operatorname{code}_{V} e_{0} \rho \operatorname{sd}
\operatorname{tlist} A
\operatorname{code}_{V} e_{1} \rho \operatorname{sd}
\operatorname{jump} B
A: \operatorname{code}_{V} e_{2} \rho' (\operatorname{sd} + 2)
\operatorname{slide} 2
B: \dots
```

where
$$\rho' = \rho \oplus \{h \mapsto (L, sd + 1), t \mapsto (L, sd + 2)\}.$$

The new instruction tlist A does the necessary checks and (in the case of Cons) allocates two new local variables:


```
h = S[SP];

if (H[h] != (L,...)

Error "no list!";

if (H[h] == (_,Nil)) SP- -;
```



```
... else {
S[SP+1] = S[SP] \rightarrow s[1];
S[SP] = S[SP] \rightarrow s[0];
SP++; PC = A;
}
```

Example: The (disentangled) body of the function app with app \mapsto (*G*, 0):

0		targ 2	3		pushglob 0	0	C:	mark D
0		pushloc 0	4		pushloc 2	3		pushglob 2
1		eval	5		pushloc 6	4		pushglob 1
1		tlist A	6		mkvec 3	5		pushglob 0
0		pushloc 1	4		mkclos C	6		eval
1		eval	4		cons	6		apply
1		jump B	3		slide 2	1	D:	update
2	A:	pushloc 1	1	B:	return 2			

Note:

Datatypes with more than two constructors need a generalization of the tlist instruction, corresponding to a switch-instruction :-)

24.5 Closures of Tuples and Lists

The general schema for $code_C$ can be optimized for tuples and lists:

```
\operatorname{code}_{\mathbb{C}}\left(e_{0},\ldots,e_{k-1}\right)
ho\operatorname{sd}=\operatorname{code}_{V}\left(e_{0},\ldots,e_{k-1}\right)
ho\operatorname{sd}=\operatorname{code}_{\mathbb{C}}e_{0}
ho\operatorname{sd}
\operatorname{code}_{\mathbb{C}}e_{1}
ho\left(\operatorname{sd}+1\right)
\ldots
\operatorname{code}_{\mathbb{C}}e_{k-1}
ho\left(\operatorname{sd}+k-1\right)
\operatorname{mkvec}k
\operatorname{code}_{\mathbb{C}}\left[\left[\rho\operatorname{sd}\right]
ho\operatorname{sd}=\operatorname{code}_{V}\left[\left[\rho\operatorname{sd}\right]
ho\operatorname{sd}=\operatorname{code}_{\mathbb{C}}e_{1}
ho\operatorname{sd}
\operatorname{code}_{\mathbb{C}}\left(e_{1}::e_{2}\right)
ho\operatorname{sd}=\operatorname{code}_{\mathbb{C}}\left(e_{1}::e_{2}\right)
ho\operatorname{sd}
\operatorname{code}_{\mathbb{C}}\left(e_{1}::e_{2}\right)
ho\operatorname{sd}
\operatorname{code}_{\mathbb{C}}\left(e_{1}\circ\operatorname{sd}+k-1\right)
\operatorname{cons}
```