

$$x_i \supseteq f_i(x_1,\ldots,x_n)$$
 (*)

$$x_i \supseteq f_i(x_1,\ldots,x_n)$$
 (*)

wobei:

x_i	Unbekannte	hier:	A[u]
\mathbb{D}	Werte	hier:	2^{Expr}
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	Ordnungsrelation	hier:	\supseteq
$f_i \colon \mathbb{D}^n o \mathbb{D}$	Bedingung	hier:	•••

$$x_i \supseteq f_i(x_1,\ldots,x_n)$$
 (*)

wobei:

x_i	Unbekannte	hier:	A[u]
\square	Werte	hier:	2^{Expr}
\sqsubseteq \subseteq $\mathbb{D} \times \mathbb{D}$	Ordnungsrelation	hier:	\supseteq
$f_i \colon \mathbb{D}^n o \mathbb{D}$	Bedingung	hier:	•••

Constraint für A[v]:

$$\mathcal{A}[v] \subseteq \bigcap \{ \llbracket k \rrbracket^{\sharp} (\mathcal{A}[u]) \mid k = (u, _, v) \text{ Kante} \}$$

$$x_i \supseteq f_i(x_1,\ldots,x_n)$$
 (*)

wobei:

x_i	Unbekannte	hier:	A[u]
\square	Werte	hier:	2^{Expr}
\sqsubseteq \subseteq $\mathbb{D} \times \mathbb{D}$	Ordnungsrelation	hier:	\supseteq
$f_i \colon \mathbb{D}^n o \mathbb{D}$	Bedingung	hier:	•••

Constraint für A[v]:

$$\mathcal{A}[v] \subseteq \bigcap \{ [\![k]\!]^{\sharp} (\mathcal{A}[u]) \mid k = (u, _, v) \text{ Kante} \}$$

Denn:

$$x \supseteq d_1 \wedge \ldots \wedge x \supseteq d_k \quad \text{gdw.} \quad x \supseteq \bigsqcup \{d_1, \ldots, d_k\} \quad :-)$$

Beispiele:

(1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ für eine Menge U und $f x = (x \cap a) \cup b$. Offensichtlich ist jedes solche f monoton :-)

Beispiele:

- (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ für eine Menge U und $f x = (x \cap a) \cup b$. Offensichtlich ist jedes solche f monoton :-)
- (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (mit der Ordnung " \leq "). Dann gilt:
 - inc x = x + 1 ist monoton.
 - $\operatorname{dec} x = x 1$ ist monoton.

Beispiele:

- (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ für eine Menge U und $f x = (x \cap a) \cup b$. Offensichtlich ist jedes solche f monoton :-)
- (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (mit der Ordnung " \leq "). Dann gilt:
 - inc x = x + 1 ist monoton.
 - $\operatorname{dec} x = x 1$ ist monoton.
 - inv x = -x ist nicht monoton :-)

Satz:

Sind $f_1: \mathbb{D}_1 \to \mathbb{D}_2$ und $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ monoton, dann ist auch $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$ monoton :-)

Ist \mathbb{D}_2 ein vollständiger Verband, dann bildet auch die Menge $[\mathbb{D}_1 \to \mathbb{D}_2]$ der monotonen Funktionen $f: \mathbb{D}_1 \to \mathbb{D}_2$ einen vollständigen Verband, wobei

Satz:

Sind $f_1: \mathbb{D}_1 \to \mathbb{D}_2$ und $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ monoton, dann ist auch $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$ monoton :-)

Satz:

Ist \mathbb{D}_2 ein vollständiger Verband, dann bildet auch die Menge $[\mathbb{D}_1 \to \mathbb{D}_2]$ der monotonen Funktionen $f: \mathbb{D}_1 \to \mathbb{D}_2$ einen vollständigen Verband, wobei

$$f \sqsubseteq g$$
 gdw. $f x \sqsubseteq g x$ für alle $x \in \mathbb{D}_1$

Satz:

Sind $f_1: \mathbb{D}_1 \to \mathbb{D}_2$ und $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ monoton, dann ist auch $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$ monoton :-)

Satz:

Ist \mathbb{D}_2 ein vollständiger Verband, dann bildet auch die Menge $[\mathbb{D}_1 \to \mathbb{D}_2]$ der monotonen Funktionen $f: \mathbb{D}_1 \to \mathbb{D}_2$ einen vollständigen Verband, wobei

$$f \sqsubseteq g$$
 gdw. $f x \sqsubseteq g x$ für alle $x \in \mathbb{D}_1$

Insbesondere ist für $F \subseteq [\mathbb{D}_1 \to \mathbb{D}_2]$,

$$| F = f \text{ mit } fx = | \{gx \mid g \in F\}$$

Für Funktionen $f_i x = a_i \cap x \cup b_i$ können wir die Operationen " \circ ", " \sqcup " und " \sqcap " explizit angeben:

$$(f_{2} \circ f_{1}) x = a_{1} \cap a_{2} \cap x \cup a_{2} \cap b_{1} \cup b_{2}$$

$$(f_{1} \cup f_{2}) x = (a_{1} \cup a_{2}) \cap x \cup b_{1} \cup b_{2}$$

$$(f_{1} \cap f_{2}) x = (a_{1} \cup b_{1}) \cap (a_{2} \cup b_{2}) \cap x \cup b_{1} \cap b_{2}$$

$$x_i \supseteq f_i(x_1,\ldots,x_n), \quad i=1,\ldots,n$$
 (*)

wobei alle $f_i: \mathbb{D}^n \to \mathbb{D}$ monoton sind.

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

wobei alle $f_i: \mathbb{D}^n \to \mathbb{D}$ monoton sind.

Idee:

• Betrachte $F: \mathbb{D}^n \to \mathbb{D}^n$ mit

$$F(x_1,...,x_n) = (y_1,...,y_n)$$
 wobei $y_i = f_i(x_1,...,x_n)$.

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

wobei alle $f_i: \mathbb{D}^n \to \mathbb{D}$ monoton sind.

Idee:

• Betrachte $F: \mathbb{D}^n \to \mathbb{D}^n$ mit

$$F(x_1,...,x_n) = (y_1,...,y_n)$$
 wobei $y_i = f_i(x_1,...,x_n)$.

• Sind alle f_i monoton, dann auch F :-)

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

wobei alle $f_i: \mathbb{D}^n \to \mathbb{D}$ monoton sind.

Idee:

• Betrachte $F: \mathbb{D}^n \to \mathbb{D}^n$ mit

$$F(x_1,...,x_n) = (y_1,...,y_n)$$
 wobei $y_i = f_i(x_1,...,x_n)$.

- Sind alle f_i monoton, dann auch F:-)
- Wir approximieren sukzessive eine Lösung. Wir konstruieren:

$$\underline{\perp}$$
, $F\underline{\perp}$, $F^2\underline{\perp}$, $F^3\underline{\perp}$, ...

Hoffnung: Wir erreichen irgendwann eine Lösung ... ???

$$\mathbb{D}=2^{\{a,b,c\}},\quad \sqsubseteq=\subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

 $x_2 \supseteq x_3 \cap \{a, b\}$
 $x_3 \supseteq x_1 \cup \{c\}$

$$\mathbb{D}=2^{\{a,b,c\}},\quad \sqsubseteq=\subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

 $x_2 \supseteq x_3 \cap \{a, b\}$
 $x_3 \supseteq x_1 \cup \{c\}$

	0	1	2	3	4
x_1	Ø				
x_2	\emptyset				
x_3	$ \emptyset$				

$$\mathbb{D}=2^{\{a,b,c\}},\quad \sqsubseteq=\subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

 $x_2 \supseteq x_3 \cap \{a, b\}$
 $x_3 \supseteq x_1 \cup \{c\}$

	0	1	2	3	4
x_1	Ø	{ a }			
x_2	Ø	Ø			
x_3	Ø	{ c }			

$$\mathbb{D}=2^{\{a,b,c\}},\quad \sqsubseteq=\subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

 $x_2 \supseteq x_3 \cap \{a, b\}$
 $x_3 \supseteq x_1 \cup \{c\}$

	0	1	2	3	4
x_1	Ø	{ a }	$\{a,c\}$		
x_2	Ø	Ø	Ø		
x_3	Ø	{ c }	$\{a,c\}$		

$$\mathbb{D}=2^{\{a,b,c\}},\quad \sqsubseteq=\subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

 $x_2 \supseteq x_3 \cap \{a, b\}$
 $x_3 \supseteq x_1 \cup \{c\}$

	0	1	2	3	4
x_1	Ø	$\{a\}$	$\{a,c\}$	$\{a,c\}$	
x_2	Ø	Ø	Ø	{ a }	
x_3	Ø	{ c }	$\{a,c\}$	$\{a,c\}$	

$$\mathbb{D}=2^{\{a,b,c\}},\quad \sqsubseteq=\subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

 $x_2 \supseteq x_3 \cap \{a, b\}$
 $x_3 \supseteq x_1 \cup \{c\}$

	0	1	2	3	4
x_1	Ø	$\{a\}$	$\{a,c\}$	$\{a,c\}$	dito
$ x_2 $	Ø	Ø	Ø	{ a }	
x_3	Ø	{ c }	$\{a,c\}$	$\{a,c\}$	

- Gilt $F^k \perp = F^{k+1} \perp$, ist eine Lösung gefunden :-)
- $\underline{\perp}$, $F \underline{\perp}$, $F^2 \underline{\perp}$, ... bilden eine aufsteigende Kette :

$$\perp$$
 \sqsubseteq $F \perp$ \sqsubseteq $F^2 \perp$ \sqsubseteq ...

• Sind alle aufsteigenden Ketten endlich, gibt es k immer.

- Gilt $F^k \perp = F^{k+1} \perp$, ist eine Lösung gefunden :-)
- $\underline{\perp}$, $F \underline{\perp}$, $F^2 \underline{\perp}$, ... bilden eine aufsteigende Kette :

$$\perp$$
 \sqsubseteq $F \perp$ \sqsubseteq $F^2 \perp$ \sqsubseteq ...

• Sind alle aufsteigenden Ketten endlich, gibt es k immer.

Die zweite Aussage folgt mit vollständiger Induktion:

- Gilt $F^k \perp = F^{k+1} \perp$, ist eine Lösung gefunden :-)
- $\underline{\perp}$, $F \underline{\perp}$, $F^2 \underline{\perp}$, ... bilden eine aufsteigende Kette :

$$\perp$$
 \sqsubseteq $F \perp$ \sqsubseteq $F^2 \perp$ \sqsubseteq ...

• Sind alle aufsteigenden Ketten endlich, gibt es k immer.

Die zweite Aussage folgt mit vollständiger Induktion:

Anfang:
$$F^0 \perp = \perp \sqsubseteq F^1 \perp :$$

- Gilt $F^k \perp = F^{k+1} \perp$, ist eine Lösung gefunden :-)
- $\underline{\perp}$, $F \underline{\perp}$, $F^2 \underline{\perp}$, ... bilden eine aufsteigende Kette :

$$\perp$$
 \sqsubseteq $F \perp$ \sqsubseteq $F^2 \perp$ \sqsubseteq ...

• Sind alle aufsteigenden Ketten endlich, gibt es k immer.

Die zweite Aussage folgt mit vollständiger Induktion:

Anfang:
$$F^0 \perp = \perp \sqsubseteq F^1 \perp :$$
-)
Schluss: Gelte bereits $F^{i-1} \perp \sqsubseteq F^i \perp .$ Dann
$$F^i \perp = F(F^{i-1} \perp) \sqsubseteq F(F^i \perp) = F^{i+1} \perp$$
da F monoton ist :-)

Wenn D endlich ist, finden wir mit Sicherheit eine Lösung :-)

Fragen:

Wenn D endlich ist, finden wir mit Sicherheit eine Lösung :-)

Fragen:

1. Gibt es eine kleinste Lösung?

Wenn D endlich ist, finden wir mit Sicherheit eine Lösung :-)

Fragen:

- 1. Gibt es eine kleinste Lösung?
- 2. Wenn ja: findet Iteration die kleinste Lösung ??

Wenn D endlich ist, finden wir mit Sicherheit eine Lösung :-)

Fragen:

- 1. Gibt es eine kleinste Lösung?
- 2. Wenn ja: findet Iteration die kleinste Lösung ??
- 3. Was, wenn D nicht endlich ist ???

Satz

Knaster – Tarski

In einem vollständigen Verband \mathbb{D} hat jede monotone Funktion $f: \mathbb{D} \to \mathbb{D}$ einen kleinsten Fixpunkt d_0 .

Sei $P = \{d \in \mathbb{D} \mid d \supseteq f d\}$ die Menge der Postfixpunkte.

Dann ist $d_0 = \prod P$.



Bronisław Knaster (1893-1980), topology

Satz

Knaster – Tarski

In einem vollständigen Verband \mathbb{D} hat jede monotone Funktion $f: \mathbb{D} \to \mathbb{D}$ einen kleinsten Fixpunkt d_0 .

Sei $P = \{d \in \mathbb{D} \mid d \supseteq f d\}$ die Menge der Postfixpunkte.

Dann ist $d_0 = \prod P$.

Beweis:

(1)
$$d_0 \in P$$
:

Satz

Knaster – Tarski

In einem vollständigen Verband \mathbb{D} hat jede monotone Funktion $f: \mathbb{D} \to \mathbb{D}$ einen kleinsten Fixpunkt d_0 .

Sei $P = \{d \in \mathbb{D} \mid d \supseteq f d\}$ die Menge der Postfixpunkte.

Dann ist $d_0 = \prod P$.

Beweis:

(1) $d_0 \in P$:

$$f d_0 \sqsubseteq f d \sqsubseteq d$$
 für alle $d \in P$

 \longrightarrow $f d_0$ ist untere Schranke von P

$$\implies f d_0 \sqsubseteq d_0 \quad \text{weil } d_0 = \prod P$$

$$\longrightarrow$$
 $d_0 \in P$:-)

$$f d_0 \sqsubseteq d_0$$
 wegen (1)

 $f(f d_0) \sqsubseteq f d_0$ wegen Monotonie von f
 $f(f d_0) \sqsubseteq f d_0$ wegen Monotonie von f
 $f(f d_0) \sqsubseteq f d_0$ und die Behauptung folgt :-)

 $f d_0 \sqsubseteq d_0$ wegen (1) $\implies f(f d_0) \sqsubseteq f d_0$ wegen Monotonie von f $\implies f d_0 \in P$ $\implies d_0 \sqsubseteq f d_0$ und die Behauptung folgt :-)

(3) d_0 ist kleinster Fixpunkt:

$$f d_0 \sqsubseteq d_0$$
 wegen (1)

 $f(f d_0) \sqsubseteq f d_0$ wegen Monotonie von f
 $f(f d_0) \subseteq f d_0$

 \longrightarrow $d_0 \sqsubseteq f d_0$ und die Behauptung folgt :-)

(3) d_0 ist kleinster Fixpunkt:

$$d_1 \supseteq d_1 = f d_1$$
 weiterer Fixpunkt $d_1 \in P$ $d_0 \sqsubseteq d_1$:-))

Bemerkung:

Der kleinste Fixpunkt d_0 ist in P und untere Schranke :-) d_0 ist der kleinste Wert x mit $x \supseteq f x$

Bemerkung:

Der kleinste Fixpunkt d_0 ist in P und untere Schranke :-) $\longrightarrow d_0$ ist der kleinste Wert x mit $x \supseteq f(x)$

Anwendung:

Sei
$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)
ein Ungleichungssystem, wobei alle $f_i : \mathbb{D}^n \to \mathbb{D}$ monoton sind.

Bemerkung:

Der kleinste Fixpunkt d_0 ist in P und untere Schranke :-) $\longrightarrow d_0$ ist der kleinste Wert x mit $x \supseteq f x$

Anwendung:

Sei $x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$ (*) ein Ungleichungssystem, wobei alle $f_i : \mathbb{D}^n \to \mathbb{D}$ monoton sind.

 \longrightarrow kleinste Lösung von (*) \Longrightarrow kleinster Fixpunkt von F :-)

f	$f^k \perp$	$f^k \top$
0	Ø	T

$\int f$	$f^k \perp$	$f^k \top$
0	Ø	Т
1	b	$a \cup b$

f	$f^k \perp$	$f^k \top$
0	Ø	_
1	b	$a \cup b$
2	b	$a \cup b$

f	$f^k \perp$	$f^k \top$
0	\emptyset	\vdash
1	b	$a \cup b$
2	b	$a \cup b$

Beispiel 2: $\mathbb{D} = \mathbb{N} \cup \{\infty\}$

Für die Funktion f x = x + 1 ist:

$$f^i \perp = f^i 0 = i \quad \Box \quad i+1 = f^{i+1} \perp$$

Beispiel 1:
$$\mathbb{D} = 2^U$$
, $f x = x \cap a \cup b$

f	$f^k \perp$	$f^k \top$
0	\emptyset	Τ
1	b	$a \cup b$
2	b	$a \cup b$

Beispiel 2:
$$\mathbb{D} = \mathbb{N} \cup \{\infty\}$$

Für die Funktion f x = x + 1 ist:

$$f^i \perp = f^i 0 = i \quad \square \quad i+1 = f^{i+1} \perp$$

- ⇒ Die normale Iteration erreicht nie einen Fixpunkt :-(
- → Man benötigt manchmal transfinite Iteration :-)

Satz:

Sei $f: \mathbb{D} \to \mathbb{D}$ monoton und $X \subseteq \mathbb{D}$ die kleinste Menge mit:

- (a) $\perp \in X$;
- (b) $f d \in X$ falls $d \in X$;
- (c) $\bigsqcup X_0 \in X$ für alle $X_0 \subseteq X$.
 - // diese Menge existiert offenbar :-)

Satz:

Sei $f: \mathbb{D} \to \mathbb{D}$ monoton und $X \subseteq \mathbb{D}$ die kleinste Menge mit:

- (a) $\perp \in X$;
- (b) $f d \in X$ falls $d \in X$;
- (c) $\bigsqcup X_0 \in X$ für alle $X_0 \subseteq X$.
 - // diese Menge existiert offenbar :-)

Dann ist $d_0 = \bigsqcup X$ der kleinste Fixpunkt von f.

(1) $f d_0 \sqsubseteq d_0$ d.h. d_0 ist Präfixpunkt:

(1)
$$f d_0 \sqsubseteq d_0$$
 d.h. d_0 ist Präfixpunkt: $d_0 \in X$ wegen (c) $\implies f d_0 \in X$ wegen (b) $\implies f d_0 \sqsubseteq d_0$:-)

(1) $f d_0 \sqsubseteq d_0$ d.h. d_0 ist Präfixpunkt:

$$d_0 \in X$$
 wegen (c)
 $\implies f d_0 \in X$ wegen (b)
 $\implies f d_0 \sqsubseteq d_0 :-$

(2) d_0 ist kleinster Präfixpunkt:

(1) $f d_0 \sqsubseteq d_0$ d.h. d_0 ist Präfixpunkt:

$$d_0 \in X$$
 wegen (c)
 $\implies f d_0 \in X$ wegen (b)
 $\implies f d_0 \sqsubseteq d_0 :-)$

(2) d_0 ist kleinster Präfixpunkt:

Sei d_1 weiterer Präfixpunkt, d.h. $f d_1 \sqsubseteq d_1$. Dann erfüllt die Menge: $X_1 = \{x \in \mathbb{D} \mid x \sqsubseteq d_1\}$ die Eigenschaften (a), (b) und (c) :-)

(1) $f d_0 \sqsubseteq d_0$ d.h. d_0 ist Präfixpunkt:

$$d_0 \in X$$
 wegen (c)

$$\longrightarrow$$
 $f d_0 \in X$ wegen (b)

$$\implies f d_0 \sqsubseteq d_0 : -)$$

(2) d_0 ist kleinster Präfixpunkt:

Sei d_1 weiterer Präfixpunkt, d.h. $f d_1 \sqsubseteq d_1$. Dann erfüllt die Menge: $X_1 = \{x \in \mathbb{D} \mid x \sqsubseteq d_1\}$ die Eigenschaften (a), (b) und (c) :-)

$$\longrightarrow$$
 $X \subseteq X_1$

$$\implies$$
 d_1 ist obere Schranke von X

$$\longrightarrow$$
 $d_0 = \bigsqcup X \sqsubseteq d_1 :-)$

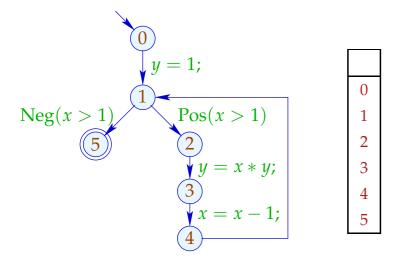
Wir können Constraint-Systeme durch Fixpunkt-Iteration lösen, d.h. durch wiederholtes Einsetzen :-)

Wir können Constraint-Systeme durch Fixpunkt-Iteration lösen, d.h. durch wiederholtes Einsetzen :-)

Achtung: Naive Fixpunkt-Iteration ist ziemlich ineffizient :-(

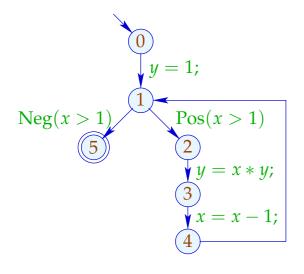
Wir können Constraint-Systeme durch Fixpunkt-Iteration lösen, d.h. durch wiederholtes Einsetzen :-)

Achtung: Naive Fixpunkt-Iteration ist ziemlich ineffizient :-(



Wir können Constraint-Systeme durch Fixpunkt-Iteration lösen, d.h. durch wiederholtes Einsetzen :-)

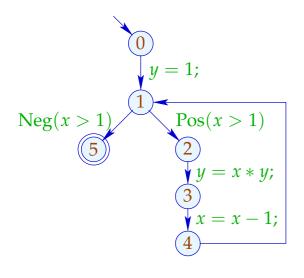
Achtung: Naive Fixpunkt-Iteration ist ziemlich ineffizient :-(



	1
0	Ø
1	$\{1, x > 1, x - 1\}$
2	Expr
3	$\{1, x > 1, x - 1\}$
4	{1}
5	Expr

Wir können Constraint-Systeme durch Fixpunkt-Iteration lösen, d.h. durch wiederholtes Einsetzen :-)

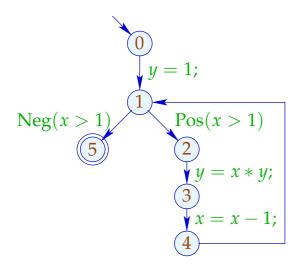
Achtung: Naive Fixpunkt-Iteration ist ziemlich ineffizient :-(



	1	2
0	Ø	Ø
1	$\{1, x > 1, x - 1\}$	{1}
2	Expr	$\{1, x > 1, x - 1\}$
3	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$
4	{1}	{1}
5	Expr	$\{1, x > 1, x - 1\}$

Wir können Constraint-Systeme durch Fixpunkt-Iteration lösen, d.h. durch wiederholtes Einsetzen :-)

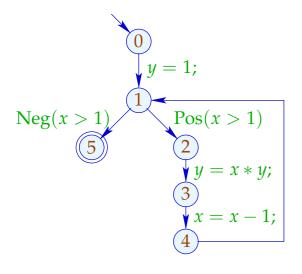
Achtung: Naive Fixpunkt-Iteration ist ziemlich ineffizient :-(



	1	2	3
0	Ø	Ø	Ø
1	$\{1, x > 1, x - 1\}$	{1}	{1}
2	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$
3	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$
4	{1}	{1}	{1}
5	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$

Wir können Constraint-Systeme durch Fixpunkt-Iteration lösen, d.h. durch wiederholtes Einsetzen :-)

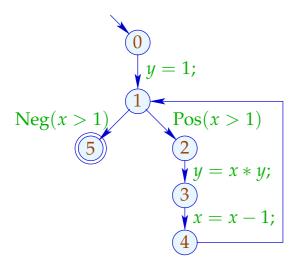
Achtung: Naive Fixpunkt-Iteration ist ziemlich ineffizient :-(



	1	2	3	4
0	Ø	Ø	Ø	Ø
1	$\{1, x > 1, x - 1\}$	{1}	{1}	{1}
2	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$
3	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$
4	{1}	{1}	{1}	{1}
5	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$

Wir können Constraint-Systeme durch Fixpunkt-Iteration lösen, d.h. durch wiederholtes Einsetzen :-)

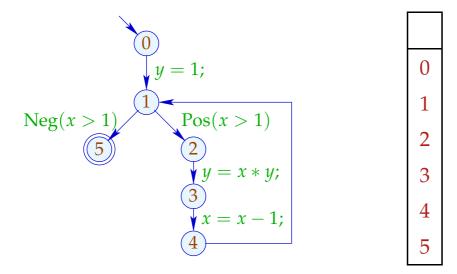
Achtung: Naive Fixpunkt-Iteration ist ziemlich ineffizient :-(



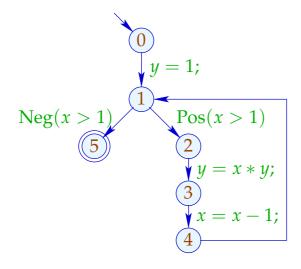
	1	2	3	4	5
0	Ø	Ø	Ø	Ø	
1	$\{1, x > 1, x - 1\}$	{1}	{1}	{1}	
2	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$	
3	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	dito
4	{1}	{1}	{1}	{1}	
5	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$	

Benutze bei der Iteration nicht die Werte der letzten Iteration, sondern die jeweils aktuellen :-)

Benutze bei der Iteration nicht die Werte der letzten Iteration, sondern die jeweils aktuellen :-)

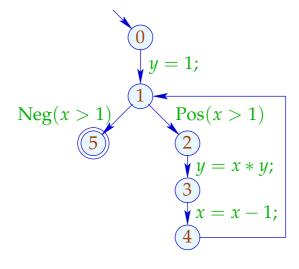


Benutze bei der Iteration nicht die Werte der letzten Iteration, sondern die jeweils aktuellen :-)



	1
0	Ø
1	{1}
2	$\{1, x > 1\}$
3	$\{1, x > 1\}$
4	{1}
5	$\{1, x > 1\}$

Benutze bei der Iteration nicht die Werte der letzten Iteration, sondern die jeweils aktuellen :-)



	1	2
0	Ø	
1	{1}	
2	$\{1, x > 1\}$	
3	$\{1, x > 1\}$	dito
4	{1}	
5	$\{1, x > 1\}$	

Der Code für Round Robin Iteration sieht in Java so aus:

```
for (i = 1; i \leq n; i++) x_i = \bot;
do {
      finished = true;
      for (i = 1; i \le n; i++) {
             new = f_i(x_1, \ldots, x_n);
             if (!(x_i \supseteq new)) {
                   finished = false;
                   x_i = x_i \sqcup new;
} while (!finished);
```

Zur Korrektheit:

```
Sei y_i^{(d)} die i-te Komponente von F^d \perp.
Sei x_i^{(d)} der Wert von x_i nach der i-ten RR-Iteration.
```

Zur Korrektheit:

Sei $y_i^{(d)}$ die *i*-te Komponente von $F^d \perp$.

Sei $x_i^{(d)}$ der Wert von x_i nach der *i*-ten RR-Iteration.

Man zeigt:

$$(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)} \quad :-)$$

Zur Korrektheit:

Sei $y_i^{(d)}$ die *i*-te Komponente von $F^d \perp$.

Sei $x_i^{(d)}$ der Wert von x_i nach der *i*-ten RR-Iteration.

Man zeigt:

- $(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)} \quad :-)$
- (2) $x_i^{(d)} \sqsubseteq z_i$ für jede Lösung (z_1, \ldots, z_n) :-)

Zur Korrektheit:

Sei $y_i^{(d)}$ die *i*-te Komponente von $F^d \perp$.

Sei $x_i^{(d)}$ der Wert von x_i nach der *i*-ten RR-Iteration.

Man zeigt:

- $(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)} \quad :-)$
- (2) $x_i^{(d)} \sqsubseteq z_i$ für jede Lösung (z_1, \ldots, z_n) :-)
- (3) Terminiert RR-Iteration nach d Runden, ist $(x_1^{(d)}, \dots, x_n^{(d)})$ eine Lösung :-))

Achtung:

Die Effizienz von RR-Iteration hängt von der Anordnung der Variablen ab !!!

Achtung:

Die Effizienz von RR-Iteration hängt von der Anordnung der Variablen ab !!!

Günstig:

- \rightarrow *u* vor v, falls $u \rightarrow^* v$;
- → Eintrittsbedingung vor Schleifen-Rumpf :-)

Achtung:

Die Effizienz von RR-Iteration hängt von der Anordnung der Variablen ab !!!

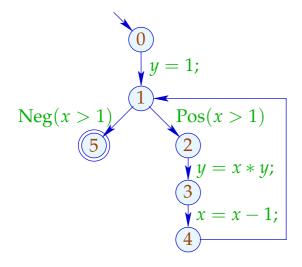
Günstig:

- \rightarrow *u* vor *v*, falls $u \rightarrow^* v$;
- → Eintrittsbedingung vor Schleifen-Rumpf :-)

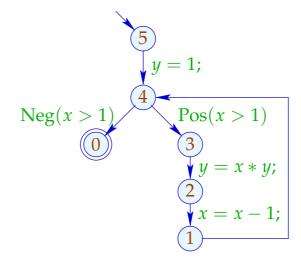
Ungünstig:

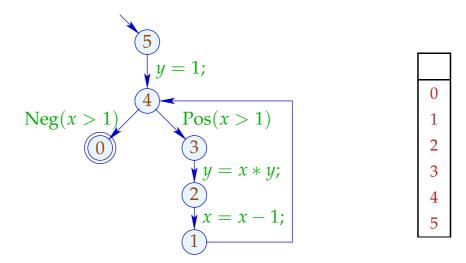
z.B. post-order DFS auf dem CFG, startend von start :-)

Günstig:



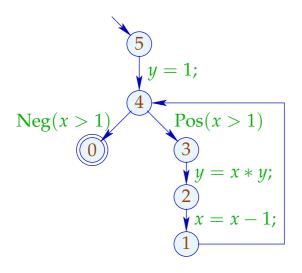
Ungünstig:



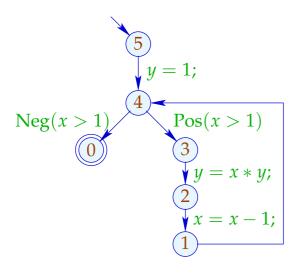




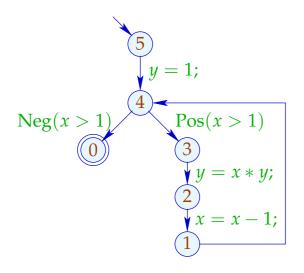
	1
0	Expr
1	{1}
2	$\{1, x - 1, x > 1\}$
3	Expr
4	{1}
5	Ø



	1	2
0	Expr	$\{1, x > 1\}$
1	{1}	{1}
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$
3	Expr	$\{1, x > 1\}$
4	{1}	{1}
5	Ø	Ø



	1	2	3
0	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$
1	{1}	{1}	{1}
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$	$\{1, x > 1\}$
3	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$
4	{1}	{1}	{1}
5	Ø	Ø	Ø



	1	2	3	4
0	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$	
1	{1}	{1}	{1}	
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$	$\{1, x > 1\}$	dito
3	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$	
4	{1}	{1}	{1}	
5	Ø	Ø	Ø	

deutlich weniger effizient :-)

Letzte Frage:

Wieso hilft uns eine (oder die kleinste) Lösung des Constraint-Systems weiter ???

Letzte Frage:

Wieso hilft uns eine (oder die kleinste) Lösung des Constraint-Systems weiter ???

Betrachte für einen vollständigen Verband \mathbb{D} Systeme:

$$\mathcal{I}[start] \supseteq d_0$$
 $\mathcal{I}[v] \supseteq [k]^{\sharp} (\mathcal{I}[u]) \qquad k = (u, _, v) \quad \text{Kante}$

wobei $d_0 \in \mathbb{D}$ und alle $[\![k]\!]^{\sharp} : \mathbb{D} \to \mathbb{D}$ monoton sind ...

Letzte Frage:

Wieso hilft uns eine (oder die kleinste) Lösung des Constraint-Systems weiter ???

Betrachte für einen vollständigen Verband \mathbb{D} Systeme:

$$\mathcal{I}[start] \supseteq d_0$$
 $\mathcal{I}[v] \supseteq [k]^{\sharp} (\mathcal{I}[u]) \qquad k = (u, _, v) \quad \text{Kante}$

wobei $d_0 \in \mathbb{D}$ und alle $[\![k]\!]^{\sharp} : \mathbb{D} \to \mathbb{D}$ monoton sind ...

monotoner Analyse-Rahmen

Gesucht: MOP (Merge Over all Paths)

$$\mathcal{I}^*[\boldsymbol{v}] = \bigsqcup\{[\![\boldsymbol{\pi}]\!]^\sharp d_0 \mid \boldsymbol{\pi} : \boldsymbol{start} \to^* \boldsymbol{v}\}$$

Gesucht: MOP (Merge Over all Paths)

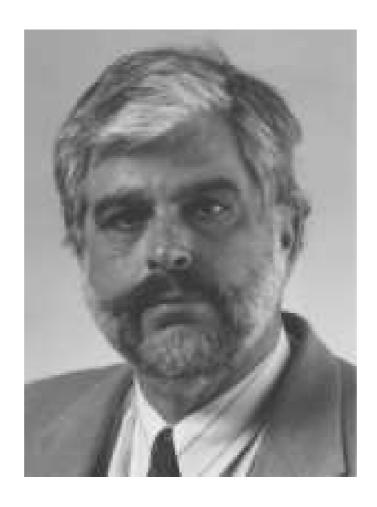
$$\mathcal{I}^*[v] = \bigsqcup\{\llbracket \pi \rrbracket^\sharp d_0 \mid \pi : start \to^* v\}$$

Theorem

Kam, Ullman 1975

die kleinste Lösung des Constraint-Systems. Dann gilt:

$$\mathcal{I}[v] \supseteq \mathcal{I}^*[v]$$
 für jedes v



Jeffrey D. Ullman, Stanford

Gesucht: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup\{\llbracket \pi \rrbracket^\sharp d_0 \mid \pi : start \to^* v\}$$

Theorem

Kam, Ullman 1975

Sei \mathcal{I} die kleinste Lösung des Constraint-Systems. Dann gilt:

$$\mathcal{I}[v] \supseteq \mathcal{I}^*[v]$$
 für jedes v

Insbesondere:
$$\mathcal{I}[v] \supseteq \llbracket \pi \rrbracket^{\sharp} d_0$$
 für jedes $\pi : start \to^* v$

Anfang: $\pi = \epsilon$ (leerer Pfad)

Anfang: $\pi = \epsilon$ (leerer Pfad)

Dann gilt:

$$\llbracket \boldsymbol{\pi} \rrbracket^{\sharp} d_0 = \llbracket \boldsymbol{\epsilon} \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[start]$$

Anfang: $\pi = \epsilon$ (leerer Pfad)

Dann gilt:

$$\llbracket \boldsymbol{\pi} \rrbracket^{\sharp} d_0 = \llbracket \boldsymbol{\epsilon} \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[start]$$

Schluss: $\pi = \pi' k$ für $k = (u, _, v)$ Kante.

Anfang:
$$\pi = \epsilon$$
 (leerer Pfad)

Dann gilt:

$$\llbracket \boldsymbol{\pi} \rrbracket^{\sharp} d_0 = \llbracket \boldsymbol{\epsilon} \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[start]$$

Schluss:
$$\pi = \pi' k$$
 für $k = (u, _, v)$ Kante.

Dann gilt:

Enttäuschung:

Liefern Lösungen des Constraint-Systems nur obere Schranken ???

Enttäuschung:

Liefern Lösungen des Constraint-Systems nur obere Schranken ???

Antwort:

Im allgemeinen: ja :-(

Enttäuschung:

Liefern Lösungen des Constraint-Systems nur obere Schranken ???

Antwort:

```
Im allgemeinen: ja :-(
```

Es sei denn, alle Funktionen $[\![k]\!]^{\sharp}$ sind distributiv ... :-)

- distributiv, falls $f(\coprod X) = \coprod \{f \ x \mid x \in X\}$ für alle $\emptyset \neq X \subseteq \mathbb{D}$;
- strikt, falls $f \perp = \perp$.
- total distributiv, falls f distributiv und strikt ist.

- distributiv, falls $f(\coprod X) = \coprod \{f \ x \mid x \in X\}$ für alle $\emptyset \neq X \subseteq \mathbb{D}$;
- strikt, falls $f \perp = \perp$.
- total distributiv, falls f distributiv und strikt ist.

Beispiele:

• $f x = x \cap a \cup b$ für $a, b \subseteq U$.

- distributiv, falls $f(\coprod X) = \coprod \{f \ x \mid x \in X\}$ für alle $\emptyset \neq X \subseteq \mathbb{D}$;
- strikt, falls $f \perp = \perp$.
- total distributiv, falls f distributiv und strikt ist.

Beispiele:

• $f x = x \cap a \cup b$ für $a, b \subseteq U$.

Striktheit: $f \emptyset = a \cap \emptyset \cup b = b = \emptyset$ sofern $b = \emptyset$:-(

- distributiv, falls $f(\coprod X) = \coprod \{f \ x \mid x \in X\}$ für alle $\emptyset \neq X \subseteq \mathbb{D}$;
- strikt, falls $f \perp = \perp$.
- total distributiv, falls f distributiv und strikt ist.

Beispiele:

• $f x = x \cap a \cup b$ für $a, b \subseteq U$.

Striktheit: $f \emptyset = a \cap \emptyset \cup b = b = \emptyset$ sofern $b = \emptyset$:-(**Distributivität:**

$$f(x_1 \cup x_2) = a \cap (x_1 \cup x_2) \cup b$$
$$= a \cap x_1 \cup a \cap x_2 \cup b$$
$$= f x_1 \cup f x_2 \qquad :-)$$

•
$$\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}, \quad \operatorname{inc} x = x + 1$$

für

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $\operatorname{inc} x = x + 1$ Striktheit: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(

für

1

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $\operatorname{inc} x = x + 1$ Striktheit: $f \perp = \operatorname{inc} 0 = 1 \neq \perp :$ -(

Distributivität: $f(\sqcup X) = \sqcup \{x + 1 \mid x \in X\}$ für $\emptyset \neq X :$ -)

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $\operatorname{inc} x = x + 1$ Striktheit: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(

Distributivität: $f(\sqcup X) = \sqcup \{x + 1 \mid x \in X\}$ für $\emptyset \neq X$:-)

•
$$\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$$
, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $\operatorname{inc} x = x + 1$ Striktheit: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(
Distributivität: $f(\sqcup X) = \sqcup \{x + 1 \mid x \in X\}$ für $\emptyset \neq X$:-)

• $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$:

Striktheit: $f \perp = 0 + 0 = 0$:-)

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $\operatorname{inc} x = x + 1$ Striktheit: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(

Distributivität: $f(\sqcup X) = \sqcup \{x + 1 \mid x \in X\}$ für $\emptyset \neq X$:-)

• $\mathbb{D}_1=(\mathbb{N}\cup\{\infty\})^2$, $\mathbb{D}_2=\mathbb{N}\cup\{\infty\}$, $f(x_1,x_2)=x_1+x_2$:

Striktheit: $f\perp=0+0=0$:-)

Distributivität:

$$f((1,4) \sqcup (4,1)) = f(4,4) = 8$$

 $\neq 5 = f(1,4) \sqcup f(4,1)$:-)

Bemerkung:

Ist $f: \mathbb{D}_1 \to \mathbb{D}_2$ distributiv, dann auch monoton :-)

Bemerkung:

Ist $f: \mathbb{D}_1 \to \mathbb{D}_2$ distributiv, dann auch monoton :-)

Offenbar gilt: $a \sqsubseteq b$ gdw. $a \sqcup b = b$.

Bemerkung:

Ist $f: \mathbb{D}_1 \to \mathbb{D}_2$ distributiv, dann auch monoton :-)

Offenbar gilt: $a \sqsubseteq b$ gdw. $a \sqcup b = b$.

Daraus folgt:

$$fb = f(a \sqcup b)$$

$$= fa \sqcup fb$$

$$\Longrightarrow fa \sqsubseteq fb : -)$$

Annahme: alle *v* sind von *start* erreichbar.

Annahme: alle *v* sind von *start* erreichbar. Dann gilt:

Theorem Kildall 1972

Sind alle Kanten-Effekte $[\![k]\!]^{\sharp}$ distributiv, dann ist: $\mathcal{I}^*[v] = \mathcal{I}[v]$ für alle v.

Gary A. Kildall (1942-1994).

Hat später am Betriebssystem CP/M und an GUIs für PCs gearbeitet.

Annahme: alle *v* sind von *start* erreichbar. Dann gilt:

Theorem Kildall 1972

Sind alle Kanten-Effekte $[\![k]\!]^{\sharp}$ distributiv, dann ist: $\mathcal{I}^*[v] = \mathcal{I}[v]$ für alle v.

Annahme: alle *v* sind von *start* erreichbar. Dann gilt:

Theorem Kildall 1972

Sind alle Kanten-Effekte $[\![k]\!]^{\sharp}$ distributiv, dann ist: $\mathcal{I}^*[v] = \mathcal{I}[v]$ für alle v.

Beweis:

Offenbar genügt es zu zeigen, dass \mathcal{I}^* eine Lösung ist :-)

Wir zeigen, dass \mathcal{I}^* alle Ungleichungen erfüllt :-))

Wir zeigen, dass \mathcal{I}^* alle Ungleichungen erfüllt :-))

(1) Für *start* zeigen wir:

$$\mathcal{I}^*[start] = \bigsqcup \{ \llbracket \pi \rrbracket^\sharp d_0 \mid \pi : start \to^* start \}$$

$$\supseteq \llbracket \epsilon \rrbracket^\sharp d_0$$

$$\supseteq d_0 :-)$$