Entwerfe eine Analyse, die für jedes u

- die Werte ermittelt, die Variablen sicher haben;
- mitteilt, ob *u* überhaupt erreichbar ist :-)

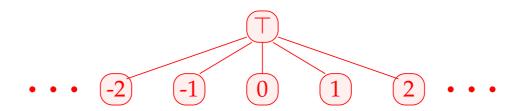
Entwerfe eine Analyse, die für jedes u

- die Werte ermittelt, die Variablen sicher haben;
- mitteilt, ob <u>u</u> überhaupt erreichbar ist :-)

Den vollständigen Verband konstruieren wir in zwei Schritten.

(1) Die möglichen Werte für Variablen:

$$\mathbb{Z}^{\top} = \mathbb{Z} \cup \{\top\}$$
 mit $x \sqsubseteq y$ gdw. $y = \top$ oder $x = y$



Achtung: \mathbb{Z}^{\top} ist selbst kein vollständiger Verband :-(

(2)
$$\mathbb{D} = (Vars \to \mathbb{Z}^{\top})_{\perp} = (Vars \to \mathbb{Z}^{\top}) \cup \{\bot\}$$

// \perp heißt: "nicht erreichbar" :-))

mit $D_1 \sqsubseteq D_2$ gdw. $\perp = D_1$ oder

 $D_1 x \sqsubseteq D_2 x$ $(x \in Vars)$

Bemerkung: D ist ein vollständiger Verband :-)

Achtung: \mathbb{Z}^{\top} ist selbst kein vollständiger Verband :-(

(2)
$$\mathbb{D} = (Vars \to \mathbb{Z}^{\top})_{\perp} = (Vars \to \mathbb{Z}^{\top}) \cup \{\bot\}$$

// \perp heißt: "nicht erreichbar" :-))

mit $D_1 \sqsubseteq D_2$ gdw. $\perp = D_1$ oder

 $D_1 x \sqsubseteq D_2 x$ $(x \in Vars)$

Bemerkung: D ist ein vollständiger Verband :-)

Betrachte dazu $X \subseteq \mathbb{D}$. O.E. $\perp \notin X$.

Dann $X \subseteq Vars \to \mathbb{Z}^{\top}$.

Ist $X = \emptyset$, dann $\bigsqcup X = \bot \in \mathbb{D}$:-)

Ist
$$X \neq \emptyset$$
 , dann ist $\bigcup X = D$ mit
$$Dx = \bigcup \{fx \mid f \in X\}$$

$$= \begin{cases} z & \text{falls} \quad fx = z \quad (f \in X) \\ \top & \text{sonst} \end{cases}$$
 :-))

Ist
$$X \neq \emptyset$$
 , dann ist $\bigcup X = D$ mit
$$Dx = \bigcup \{fx \mid f \in X\}$$

$$= \begin{cases} z & \text{falls} \quad fx = z \quad (f \in X) \\ \top & \text{sonst} \end{cases}$$
 :-))

Zu jeder Kante $k=(_,lab,_)$ konstruieren wir eine Effekt-Funktion $[\![k]\!]^\sharp=[\![lab]\!]^\sharp:\mathbb{D}\to\mathbb{D}$, die die konkrete Berechnung simuliert.

Offenbar ist $[lab]^{\sharp} \perp = \perp$ für alle lab :-) Sei darum nun $\perp \neq D \in Vars \rightarrow \mathbb{Z}^{\top}$.

• Wir benutzen D, um die Werte von Ausdrücken zu ermitteln.

- Wir benutzen D, um die Werte von Ausdrücken zu ermitteln.
- Für manche Teilausdrücke erhalten wir ☐ :-)

- Wir benutzen *D* , um die Werte von Ausdrücken zu ermitteln.
- Für manche Teilausdrücke erhalten wir \top :-)

$$\Longrightarrow$$

Wir müssen die konkreten Operatoren \Box durch abstrakte Operatoren \Box^{\sharp} ersetzen, die mit \top umgehen können:

$$a \Box^{\sharp} b = \begin{cases} \top & \text{falls } a = \top \text{ oder } b = \top \\ a \Box b & \text{sonst } \end{cases}$$

- Wir benutzen *D* , um die Werte von Ausdrücken zu ermitteln.
- Für manche Teilausdrücke erhalten wir \top :-)

$$\Longrightarrow$$

Wir müssen die konkreten Operatoren \Box durch abstrakte Operatoren \Box^{\sharp} ersetzen, die mit \top umgehen können:

$$a \Box^{\sharp} b = \begin{cases} \top & \text{falls } a = \top \text{ oder } b = \top \\ a \Box b & \text{sonst } \end{cases}$$

 Mit den abstrakten Operatoren können wir eine abstrakte Ausdrucks-Auswertung definieren:

$$\llbracket e \rrbracket^{\sharp} : (Vars \to \mathbb{Z}^{\top}) \to \mathbb{Z}^{\top}$$

Abstrakte Ausdrucksauswertung ist wie konkrete

Ausdrucksauswertung, aber mit abstrakten Werten und Operatoren. Hier:

$$\llbracket c \rrbracket^{\sharp} D = c$$
 $\llbracket e_1 \square e_2 \rrbracket^{\sharp} D = \llbracket e_1 \rrbracket^{\sharp} D \square^{\sharp} \llbracket e_2 \rrbracket^{\sharp} D$
... analog für unäre Operatoren :-)

Abstrakte Ausdrucksauswertung ist wie konkrete

Ausdrucksauswertung, aber mit abstrakten Werten und Operatoren. Hier:

$$\llbracket c \rrbracket^{\sharp} D = c$$
 $\llbracket e_1 \square e_2 \rrbracket^{\sharp} D = \llbracket e_1 \rrbracket^{\sharp} D \square^{\sharp} \llbracket e_2 \rrbracket^{\sharp} D$
... analog für unäre Operatoren :-)

Beispiel:
$$D = \{x \mapsto 2, y \mapsto \top\}$$

Damit erhalten wir für die Kanten-Effekte $[ab]^{\sharp}$:

$$[\![;]\!]^{\sharp} D = D$$

$$[\![\operatorname{Pos}(e)]\!]^{\sharp} D = \begin{cases} \bot & \text{falls } 0 = [\![e]\!]^{\sharp} D \\ D & \text{sonst} \end{cases}$$

$$[\![\operatorname{Neg}(e)]\!]^{\sharp} D = \begin{cases} D & \text{falls } 0 \sqsubseteq [\![e]\!]^{\sharp} D \\ \bot & \text{sonst} \end{cases}$$

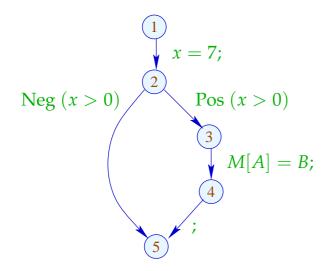
$$[\![x = e ;]\!]^{\sharp} D = D \oplus \{ x \mapsto [\![e]\!]^{\sharp} D \}$$

$$[\![x = M[e] ;]\!]^{\sharp} D = D \oplus \{ x \mapsto \top \}$$

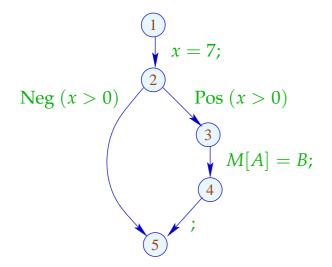
$$[\![M[e_1] = e_2 ;]\!]^{\sharp} D = D$$

$$\dots \text{ sofern } D \neq \bot :-)$$

An *start* gilt $D_{\perp} = \{x \mapsto \top \mid x \in Vars\}$.



An *start* gilt $D_{\perp} = \{x \mapsto \top \mid x \in Vars\}$.



1	$\{x \mapsto \top\}$
2	$\{x \mapsto 7\}$
3	$\{x \mapsto 7\}$
4	$\{x \mapsto 7\}$
5	$\bot \sqcup \{x \mapsto 7\} = \{x \mapsto 7\}$

Die abstrakten Kanten-Effekte $[\![k]\!]^{\sharp}$ setzen wir wieder zu den Effekten von Pfaden $\pi = k_1 \dots k_r$ zusammen durch:

$$\llbracket \pi
rbracket^{\sharp} = \llbracket k_r
rbracket^{\sharp} \circ \ldots \circ \llbracket k_1
rbracket^{\sharp} : \mathbb{D} o \mathbb{D}$$

Idee zur Korrektheit:

Abstrakte Interpretation

Cousot, Cousot 1977

Patrick Cousot, ENS, Paris

Die abstrakten Kanten-Effekte $[\![k]\!]^{\sharp}$ setzen wir wieder zu den Effekten von Pfaden $\pi = k_1 \dots k_r$ zusammen durch:

$$\llbracket \pi
rbracket^{\sharp} = \llbracket k_r
rbracket^{\sharp} \circ \ldots \circ \llbracket k_1
rbracket^{\sharp} : \mathbb{D} o \mathbb{D}$$

Idee zur Korrektheit:

Abstrakte Interpretation

Cousot, Cousot 1977

Aufstellen einer Beschreibungsrelation Δ zwischen konkreten Werten und deren Beschreibungen mit:

$$x \Delta a_1 \wedge a_1 \sqsubseteq a_2 \implies x \Delta a_2$$

Konkretisierung:
$$\gamma a = \{x \mid x \Delta a\}$$

// liefert Menge der beschriebenen Werte :-)

(1) Werte:
$$\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$$

$$z \Delta a$$
 gdw. $z = a \lor a = \top$

Konkretisierung:

$$\gamma a = \begin{cases}
\{a\} & \text{falls} \quad a \sqsubseteq \top \\
\mathbb{Z} & \text{falls} \quad a = \top
\end{cases}$$

(1) Werte:
$$\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$$
 $z \Delta a \quad \text{gdw.} \quad z = a \lor a = \top$

Konkretisierung:

$$\gamma a = \begin{cases}
\{a\} & \text{falls} \quad a \sqsubseteq \top \\
\mathbb{Z} & \text{falls} \quad a = \top
\end{cases}$$

(2) Variablenbelegungen: $\Delta \subseteq (Vars \to \mathbb{Z}) \times (Vars \to \mathbb{Z}^{\top})_{\perp}$ $\rho \Delta D$ gdw. $D \neq \perp \land \rho x \sqsubseteq D x \quad (x \in Vars)$

Konkretisierung:

$$\gamma D = \begin{cases} \emptyset & \text{falls } D = \bot \\ \{\rho \mid \forall x : (\rho x) \Delta (D x)\} & \text{sonst} \end{cases}$$

Beispiel: $\{x \mapsto 1, y \mapsto -7\}$ $\Delta \{x \mapsto \top, y \mapsto -7\}$

(3) Zustände:

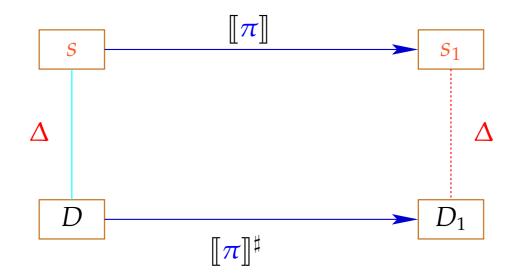
$$\Delta \subseteq ((Vars \to \mathbb{Z}) \times (\mathbb{N} \to \mathbb{Z})) \times (Vars \to \mathbb{Z}^{\top})_{\perp}$$
$$(\rho, \mu) \Delta D \quad \text{gdw.} \quad \rho \Delta D$$

Konkretisieruing:

$$\gamma D = \begin{cases} \emptyset & \text{falls } D = \bot \\ \{(\rho, \mu) \mid \forall x : (\rho x) \Delta (D x)\} & \text{sonst} \end{cases}$$

Wir zeigen:

(*) Gilt $s \Delta D$ und ist $\llbracket \pi \rrbracket s$ definiert, dann gilt auch: $(\llbracket \pi \rrbracket s) \Delta (\llbracket \pi \rrbracket^{\sharp} D)$



Die abstrakte Semantik simuliert die konkrete :-)
Insbesondere gilt:

$$\llbracket \boldsymbol{\pi} \rrbracket s \in \gamma (\llbracket \boldsymbol{\pi} \rrbracket^{\sharp} D)$$

Die abstrakte Semantik simuliert die konkrete :-)
Insbesondere gilt:

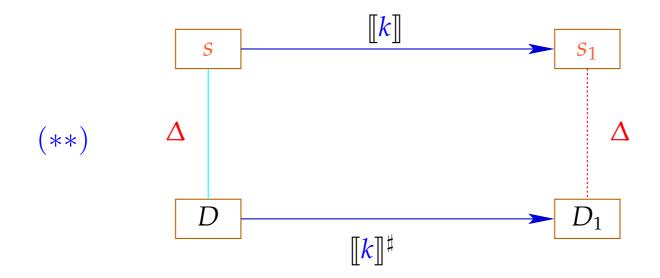
$$\llbracket \boldsymbol{\pi} \rrbracket \mathbf{s} \in \gamma \left(\llbracket \boldsymbol{\pi} \rrbracket^{\sharp} D \right)$$

Praktisch heißt das z.B., dass für Dx = -7 gilt:

$$\rho' x = -7 \text{ für alle } \rho' \in \gamma D$$

$$\longrightarrow \rho_1 x = -7 \text{ für } (\rho_1, \underline{\ }) = \llbracket \pi \rrbracket s$$

Zum Beweis von (*) zeigen wir für jede Kante k:



Dann folgt (*) mittels Induktion :-)

Zum Beweis von (**) zeigen wir für jeden Ausdruck e: (***) ($\llbracket e \rrbracket \rho$) Δ ($\llbracket e \rrbracket^{\sharp} D$) sofern nur $\rho \Delta D$

Zum Beweis von (**) zeigen wir für jeden Ausdruck e: (***) ($\llbracket e \rrbracket \rho$) Δ ($\llbracket e \rrbracket^{\sharp} D$) sofern nur $\rho \Delta D$

Zum Beweis von (***) zeigen wir für jeden Operator \square :

 $(x \Box y) \Delta (x^{\sharp} \Box^{\sharp} y^{\sharp})$ sofern $x \Delta x^{\sharp} \wedge y \Delta y^{\sharp}$

Zum Beweis von (**) zeigen wir für jeden Ausdruck e: (***) ($\llbracket e \rrbracket \rho$) Δ ($\llbracket e \rrbracket^{\sharp} D$) sofern nur $\rho \Delta D$

Zum Beweis von (***) zeigen wir für jeden Operator \square :

$$(x \Box y) \Delta (x^{\sharp} \Box^{\sharp} y^{\sharp})$$
 sofern $x \Delta x^{\sharp} \wedge y \Delta y^{\sharp}$

So hatten wir die Operatoren □[‡] aber gerade definiert :-)

Nun zeigen wir (**) durch Fallunterscheidung nach der Kanten-Beschriftung *lab* .

Sei $s = (\rho, \mu) \ \Delta \ D$. Insbesondere ist $\bot \neq D$: $Vars \to \mathbb{Z}^{\top}$

Fall
$$x = e$$
;:

$$\rho_1 = \rho \oplus \{x \mapsto \llbracket e \rrbracket \rho\} \quad \mu_1 = \mu \\
D_1 = D \oplus \{x \mapsto \llbracket e \rrbracket^{\sharp} D\}$$

$$\longrightarrow$$
 $(\rho_1, \mu_1) \Delta D_1$

Fall
$$x = M[e]$$
; :
$$\rho_1 = \rho \oplus \{x \mapsto \mu(\llbracket e \rrbracket^{\sharp} \rho)\} \qquad \mu_1 = \mu$$
$$D_1 = D \oplus \{x \mapsto \top\}$$
$$\Longrightarrow (\rho_1, \mu_1) \Delta D_1$$

Fall
$$M[e_1] = e_2$$
; :
$$\rho_1 = \rho \qquad \mu_1 = \mu \oplus \{ \llbracket e_1 \rrbracket^{\sharp} \rho \mapsto \llbracket e_2 \rrbracket^{\sharp} \rho \}$$

$$D_1 = D$$

$$\Longrightarrow \qquad (\rho_1, \mu_1) \Delta D_1$$

Fall
$$Neg(e)$$
: $(\rho_1, \mu_1) = s$, wobei:
$$0 = [e] \rho$$
$$\Delta [e]^{\sharp} D$$
$$\Longrightarrow 0 \sqsubseteq [e]^{\sharp} D$$
$$\Longrightarrow \bot \neq D_1 = D$$
$$\Longrightarrow (\rho_1, \mu_1) \Delta D_1$$

Fall
$$Pos(e)$$
: $(\rho_1, \mu_1) = s$, wobei:
$$0 \neq \llbracket e \rrbracket \rho$$
$$\Delta \llbracket e \rrbracket^{\sharp} D$$
$$\longrightarrow 0 \neq \llbracket e \rrbracket^{\sharp} D$$

:-)

 \longrightarrow \perp \neq $D_1 = D$

 \longrightarrow $(\rho_1, \mu_1) \Delta D_1$

Wir schließen: Die Behauptung (*) stimmt :-))

Die MOP-Lösung:

$$\mathcal{D}^*[v] = ||\{[\![\pi]\!]^{\sharp} D_0 \mid \pi : start \to^* v\}|$$

wobei $D_0 x = \top$ $(x \in Vars)$.

Wir schließen: Die Behauptung (*) stimmt :-))

Die MOP-Lösung:

$$\mathcal{D}^*[v] = \coprod \{ \llbracket \pi \rrbracket^\sharp \ D_0 \mid \pi : start \to^* v \}$$
 wobei $D_0 \ x = \top \qquad (x \in Vars) \ .$

Wegen (*) gilt für alle Anfangszustände s und alle Berechnungen π , die v erreichen:

$$(\llbracket \pi
rbracket^s] s) \Delta (\mathcal{D}^* \llbracket v
rbracket)$$

Wir schließen: Die Behauptung (*) stimmt :-))

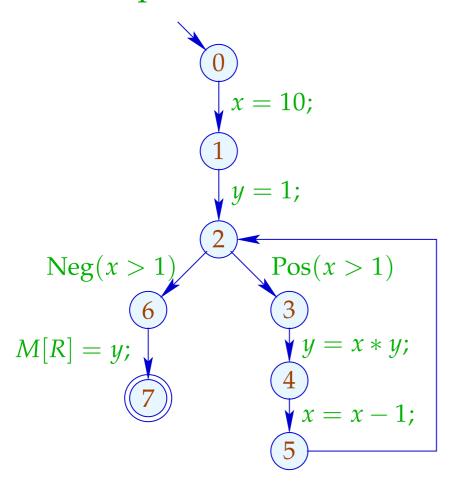
Die MOP-Lösung:

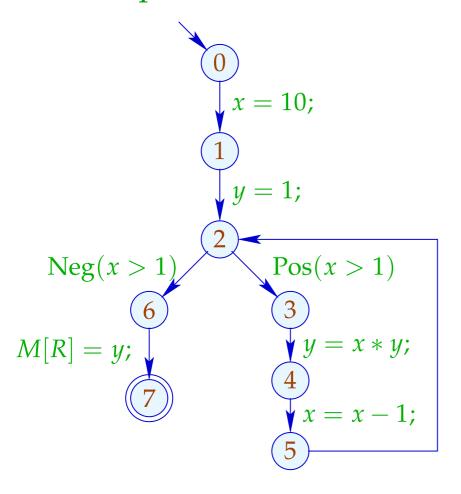
$$\mathcal{D}^*[v] = \coprod \{ \llbracket \pi \rrbracket^\sharp \ D_0 \mid \pi : start \to^* v \}$$
 wobei $D_0 \ x = \top \qquad (x \in Vars) \ .$

Wegen (*) gilt für alle Anfangszustände s und alle Berechnungen π , die v erreichen:

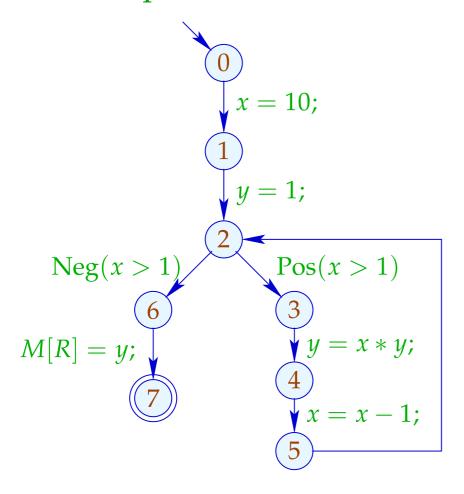
$$(\llbracket \pmb{\pi}
rbracket^{oldsymbol{s}}) \ \Delta \ (\mathcal{D}^*[\pmb{v}])$$

Zur Approximation des MOP benutzen wir unser Ungleichungssystem :-))

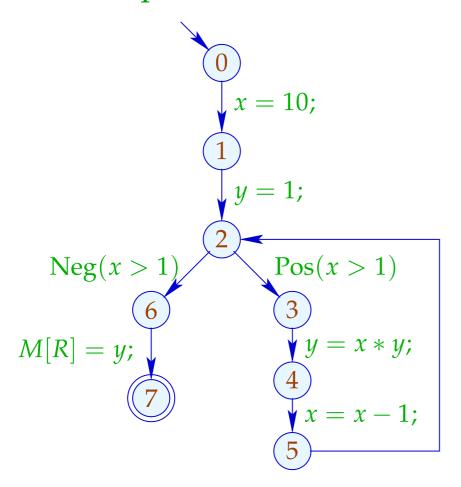




	ı	ı		
	1			
	x	y		
0	T	T		
1	10	\top		
2	10	1		
3	10	1		
4	10	10		
5	9	10		
6	<u> </u>			
7				



	1		2	
	χ	y	X	y
0	T	T	T	\top
1	10	T	10	\top
2	10	1	T	\top
3	10	1	$\mid \top \mid$	\top
4	10	10	T	\top
5	9	10	T	\top
6	<u> </u>		$\mid \top \mid$	$\mid \top \mid$
7	_	L	T	丁



	1		2)	3	3
	χ	y	x	y	x	y
0	T	T	T	T		
1	10	Т	10	Т		
2	10	1	T	Т		
3	10	1	T	Т		
4	10	10	_	T	di	to
5	9	10	一	T		
6	<u> </u>		_	T		
7	上		$\mid \top \mid$	T		

Fazit:

Obwohl wir mit konkreten Zahlen rechnen, kriegen wir nicht alles raus :-(

Dafür terminiert die Fixpunkt-Iteration garantiert:

Für n Programmpunkte und m Variablen benötigen wir maximal: $n \cdot (m+1)$ Runden :-)

Achtung:

Die Kanten-Effekte sind nicht distributiv!!!

Gegenbeispiel:
$$f = [x = x + y;]^{\sharp}$$

Sei
$$D_1 = \{x \mapsto 2, y \mapsto 3\}$$

 $D_2 = \{x \mapsto 3, y \mapsto 2\}$
Dann $f D_1 \sqcup f D_2 = \{x \mapsto 5, y \mapsto 3\} \sqcup \{x \mapsto 5, y \mapsto 2\}$
 $= \{x \mapsto 5, y \mapsto \top\}$
 $\neq \{x \mapsto \top, y \mapsto \top\}$
 $= f \{x \mapsto \top, y \mapsto \top\}$
 $= f \{D_1 \sqcup D_2\}$
:-((

Wir schließen:

Die kleinste Lösung \mathcal{D} des Ungleichungssystems liefert i.a. nur eine obere Approximation des MOP, d.h.:

$$\mathcal{D}^*[v] \subseteq \mathcal{D}[v]$$

Wir schließen:

Die kleinste Lösung \mathcal{D} des Ungleichungssystems liefert i.a. nur eine obere Approximation des MOP, d.h.:

$$\mathcal{D}^*[v] \subseteq \mathcal{D}[v]$$

Als obere Approximation beschreibt $\mathcal{D}[v]$ trotzdem das Ergebnis jeder Berechnung π , die in v endet:

$$(\llbracket \boldsymbol{\pi} \rrbracket (\rho, \mu)) \Delta (\mathcal{D}[\boldsymbol{v}])$$

wann immer $\llbracket \pi \rrbracket (\rho, \mu)$ definiert ist ;-))