Proof:

Ad (1):

Every unknown x; may change its value at most / times :-)
Each time, the list [[x;] isaddedto W.

Thus, the total number of evaluations is:

n+ 3 (h-#(1]x]))
w3 # (1))
n+h-yi#(Dep fi)
-3 (1+#(Dep fi))
h-N

IA

410

Ad (2):
We only consider the assertion for monotonic f; .

Let D, denote the least solution. We show:

e Dolx;| dDlx] (all the time)
e Dix| A fieval = x; €W (at exit of the loop body)

e On termination, the algo returns a solution :-))

411

Discussion:

e In the example, fewer evaluations of right-hand sides are
required than for RR-iteration

)

e The algo also works for non-monotonic

e For monotonic f;, the algo can be simplified:

D|x;]

D[xi] LIt

4

e In presence of widening, we replace:

Dlx;]

D[xi] L t;

—

—

e In presence of Narrowing, we replace:

Dlx;]

D[xi] L t,

—

412

i)
D[xi] = t;
D[xi] = D[xi] Lt
D[xi] = D[xi] [t

Warning:
e The algorithm relies on explicit dependencies among the

unknowns.

So far in our applications, these were obvious. This need not
always be the case :-(

e We need some strategy for extract which determines the
next unknown to be evaluated.

e It would be ingenious if we always evaluated first and then
accessed the result ... :-)

— recursive evaluation ...

413

Idea:

If during evaluation of f; , an unknown x; isaccessed,
x;j is first solved recursively. Then x; isaddedto I[x;j]

)
eval x; x; = solvex;;
Ixj] = Ilx;] Uxis
Dlxj];
In order to prevent recursion to descend infinitely, a set

Stable of unknown is maintained for which solve just
looks up their values :-)

Initially, Stable =) ...

414

The Function solve:

solve x; = if (x; & Stable) {

Stable = Stable U {x;};

t = f; (eval x;);

if (£ £ Dlxi]) {
W=I[x); I[x]=0;
Dlxi] = Dlxi| Ut;
Stable = Stable\W;
app solve W;

415

Helmut Seidl, TU Miinchen

416

Example:

Consider our standard example:

x; 2 {a}Ux;
Xo 2 X3 () {a, b}
X3 o x1 U {C}

A trace of the fixpoint algorithm then looks as follows:

417

