
If we know the effects of procedure calls, we can put up a

constraint system for determining the abstract state when reaching

a program point:

R[main] ⊒ enter
♯ d0

R[f] ⊒ enter
♯ (R[u]) k = (u, f ();, _) call

R[v] ⊒ R[f] v entry point of f

R[v] ⊒ [[k]]♯ (R[u]) k = (u, _, v) edge

564

... in the Example:

0

4

5

1

2

3

6

ret = 1− ret;

main()

t = 0;

Pos (t)Neg (t)

M[17] = 3;

a1 = t;

work();

0 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

1 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

2 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

3 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

4 {a1 7→ 0, ret 7→ ⊤, t 7→ 0}

5 {a1 7→ 0, ret 7→ 0, t 7→ 0}

6 {a1 7→ 0, ret 7→ ⊤, t 7→ 0}

565

Discussion:

• At least copy-constants can be determined interprocedurally.

• For that, we had to ignore conditions and complex

assignments :-(

• In the second phase, however, we could have been more

precise :-)

• The extra abstractions were necessary for two reasons:

(1) The set of occurring transformers M ⊆ D → D

must be finite;

(2) The functions M ∈ M must be efficiently

implementable :-)

• The second condition can, sometimes, be abandoned ...

566

Observation: Sharir/Pnueli, Cousot

→ Often, procedures are only called for few distinct abstract

arguments.

→ Each procedure need only to be analyzed for these :-)

→ Put up a constraint system:

[[v, a]]♯ ⊒ a v entry point

[[v, a]]♯ ⊒ combine
♯ ([[u, a]], [[f , enter

♯ [[u, a]]♯]]♯)

(u, f ();, v) call

[[v, a]]♯ ⊒ [[lab]]♯ [[u, a]]♯ k = (u, lab, v) edge

[[f , a]]♯ ⊒ [[stop f , a]]
♯ stop f end point of f

// [[v, a]]♯ == value for the argument a .

567

Discussion:

• This constraint system may be huge :-(

• We do not want to solve it completely!!!

• It is sufficient to compute the correct values for all calls which

occur, i.e., which are necessary to determine the value

[[main(), a0]]♯ ==⇒ We apply our local fixpoint

algorithm :-))

• The fixpoint algo provides us also with the set of actual

parameters a ∈ D for which procedures are (possibly) called

and all abstract values at their program points for each of

these calls :-)

568

... in the Example:

Let us try a full constant propagation ...

0

4

5

1

2

3

6

ret = 1− ret;

7

8

work();

9

10

main()

t = 0;

Pos (t)Neg (t)

M[17] = 3;

a1 = t;

work();

Pos (a1)

ret = a1 ;

work ()

Neg (a1)

a1 ret a1 ret

0 ⊤ ⊤ ⊤ ⊤

1 ⊤ ⊤ ⊤ ⊤

2 ⊤ ⊤ ⊥

3 ⊤ ⊤ ⊤ ⊤

4 ⊤ ⊤ 0 ⊤

7 0 ⊤ 0 ⊤

8 0 ⊤ ⊥

9 0 ⊤ 0 ⊤

10 0 ⊤ 0 0

5 ⊤ ⊤ 0 0

main() ⊤ ⊤ 0 1

569

Discussion:

• In the Example, the analysis terminates quickly :-)

• If D has finite height, the analysis terminates if each

procedure is only analyzed for finitely many arguments :-))

• Analogous analysis algorithms have proved very effective for

the analysis of Prolog :-)

• Together with a points-to analysis and propagation of

negative constant information, this algorithm is the heart of a

very successful race analyzer for C with Posix threads :-)

570

(2) The Call-String Approach:

Idea:

→ Compute the set of all reachable call stacks!

→ In general, this is infinite :-(

→ Only treat stacks up to a fixed depth d precisely! From

longer stacks, we only keep the upper prefix of length d

:-)

→ Important special case: d = 0.

==⇒ Just track the current stack frame ...

571

... in the Example:

7

8

0

4

5

1

2

3

6

ret = 1− ret;

work();

9

10

main()

t = 0;

Pos (t)Neg (t)

M[17] = 3;

a1 = t;

work();

Neg (a1) Pos (a1)

ret = a1;

work ()

572

... in the Example:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos (t)Neg (t)

ret = 1− ret;

combine

enter

enter

M[17] = 3;

a1 = t;

work ()

Neg (a1) Pos (a1)

combine

573

The conditions for 5, 7, 10 , e.g., are:

R[5] ⊒ combine
♯ (R[4],R[10])

R[7] ⊒ enter
♯ (R[4])

R[7] ⊒ enter
♯ (R[8])

R[9] ⊒ combine
♯ (R[8],R[10])

Warning:

The resulting super-graph contains obviously impossible paths ...

574

... in the Example this is:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos (t)Neg (t)

ret = 1− ret;

combine

enter

enter

M[17] = 3;

a1 = t;

work ()

Neg (a1) Pos (a1)

combine

575

... in the Example this is:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos (t)Neg (t)

ret = 1− ret;

combine

enter

enter

M[17] = 3;

a1 = t;

work ()

Neg (a1) Pos (a1)

combine

576

Note:

→ In the example, we find the same results:

more paths render the results less precise.

In particular, we provide for each procedure the result just

for one (possibly very boring) argument :-(

→ The analysis terminates — whenever D has no infinite

strictly ascending chains :-)

→ The correctness is easily shown w.r.t. the operational

semantics with call stacks.

→ For the correctness of the functional approach, the semantics

with computation forests is better suited :-)

577

3 Exploiting Hardware Features

Question: How can we optimally use:

... Registers

... Pipelines

... Caches

... Processors ???

578

3.1 Registers

Example:

read();

x = M[A];

y = x + 1;

if (y) {

z = x · x;

M[A] = z;

} else {

t = −y · y;

M[A] = t;

}
8

0

1

2

3

64

5 7

read();

x = M[A];

y = x + 1;

z = x · x

Neg (y) Pos (y)

M[A] = t; M[A] = z;

t = −y · y;

579

The program uses 5 variables ...

Problem:

What if the program uses more variables than there are registers

:-(

Idea:

Use one register for several variables :-)

In the example, e.g., one for x, t, z ...

580

read();

x = M[A];

y = x + 1;

if (y) {

z = x · x;

M[A] = z;

} else {

t = −y · y;

M[A] = t;

}
8

0

1

2

3

64

5 7

read();

x = M[A];

y = x + 1;

z = x · x

Neg (y) Pos (y)

M[A] = t; M[A] = z;

t = −y · y;

581

read();

R = M[A];

y = R + 1;

if (y) {

R = R · R;

M[A] = R;

} else {

R = −y · y;

M[A] = R;

}
8

0

1

2

3

64

5 7

read();

R = M[A];

y = R + 1;

Neg (y) Pos (y)

R = −y · y;

M[A] = R; M[A] = R;

R = R · R

582

Warning:

This is only possible if the live ranges do not overlap :-)

The (true) live range of x is defined by:

L[x] = {u | x ∈ L[u]}

... in the Example:

583

8

0

1

2

3

64

5 7

read();

x = M[A];

y = x + 1;

z = x · x

Neg (y) Pos (y)

M[A] = t; M[A] = z;

t = −y · y;

L

8 ∅

7 {A, z}

6 {A, x}

5 {A, t}

4 {A, y}

3 {A, x, y}

2 {A, x}

1 {A}

0 ∅

584

8

0

1

2

3

64

5 7

read();

x = M[A];

y = x + 1;

z = x · x

Neg (y) Pos (y)

M[A] = t; M[A] = z;

t = −y · y;

zt

x

y

L

8 ∅

7 {A, z}

6 {A, x}

5 {A, t}

4 {A, y}

3 {A, x, y}

2 {A, x}

1 {A}

0 ∅

585

8

0

1

2

3

64

5 7

read();

x = M[A];

y = x + 1;

z = x · x

Neg (y) Pos (y)

M[A] = t; M[A] = z;

t = −y · y;

zt

x

y

Live Ranges:

A {1, . . . , 7}

x {2, 3, 6}

y {2, 4}

t {5}

z {7}

586

In order to determine sets of compatible variables, we construct the

Interference Graph I = (Vars, EI) where:

EI = {{x, y} | x 6= y,L[x] ∩ L[y] 6= ∅}

EI has an edge forx 6= y iff x, y are jointly live at some

program point :-)

... in the Example:

587

8

0

1

2

3

64

5 7

read();

x = M[A];

y = x + 1;

z = x · x

Neg (y) Pos (y)

M[A] = t; M[A] = z;

t = −y · y;

zt

x

y

Interference Graph:

A

t z

y x

588

Variables which are not connected with an edge can be assigned to

the same register :-)

A

t z

y x

Color == Register

589

Variables which are not connected with an edge can be assigned to

the same register :-)

A

t z

y x

Color == Register

590

