If we know the effects of procedure calls, we can put up a
constraint system for determining the abstract state when reaching
a program point:

Rlmain] I enterf d

R|f] 3 enter® (Rlu]) k= (u,f(),,_) «cal
R|v] J RIf] v entry point of f
Rle] 3 [KF (Rlu]) k= (u,_,v) edge

564

... in the Example:

{a;— T,ret — T,t+— 0}
{a;— T,ret — T,t+— 0}
{a;— T,ret+— T,t— 0}
— T,ret— T,t+— 0}
{a; — 0,ret — T,t— 0}
{a; — 0,ret — 0,t — 0}

{a;, — 0,ret — T,t— 0}

SN O & W N =,k O
~—
=
—_

ret =1 — ret;

®

565

Discussion:

e Atleast copy-constants can be determined interprocedurally.

e For that, we had to ignore conditions and complex
assignments :~(

e In the second phase, however, we could have been more
precise :-)

e The extra abstractions were necessary for two reasons:

(1) The set of occurring transformers M C D — D
must be finite;

(2) The functions M € M must be efficiently
implementable :-)

e The second condition can, sometimes, be abandoned ...

566

Observation: Sharir/Pnueli, Cousot

— Often, procedures are only called for few distinct abstract
arguments.

|

Each procedure need only to be analyzed for these :-)

l

Put up a constraint system:

[vo,a]* 3 a v entry point
[v,a]* 3 combine® (Ju,a], [f, enter* [u, a]*]*)
(u, f();,v) call
v,al®* 3 [lab]|*u,al®* k= (u,lab,v) edge
[0, 4] g
allt 3 stop.,al? ston, end point of
Py Ps p

// [v,a]* == value for the argument 4.

567

Discussion:

e This constraint system may be huge :-(
e We do not want to solve it completely!!!

e Itis sufficient to compute the correct values for all calls which
occur, i.e., which are necessary to determine the value
[main(),a0]* == We apply our local fixpoint
algorithm :-))

e The fixpoint algo provides us also with the set of actual
parameters a € D for which procedures are (possibly) called
and all abstract values at their program points for each of
these calls :-)

568

... In the Example:

Let us try a full constant propagation ...

work () \

AN
—_

-
D
—+

Neg (a1) Pos (a1)

work ();

9
ret = aq;
@

O 0 I =~ W DD = O

[
O] BN e

main()

4 4 o o oo A+ 4+ A

i e e e e e e

o o o O

569

Discussion:

In the Example, the analysis terminates quickly :-)

If D has finite height, the analysis terminates if each
procedure is only analyzed for finitely many arguments :-))

Analogous analysis algorithms have proved very effective for
the analysis of Prolog :-)

Together with a points-to analysis and propagation of
negative constant information, this algorithm is the heart of a
very successful race analyzer for C with Posix threads :-)

570

(2) The Call-String Approach:

Idea:

— Compute the set of all reachable call stacks!

l

In general, this is infinite :-(

l

Only treat stacks up to a fixed depth d precisely! From
longer stacks, we only keep the upper prefix of length d

)
— Important special case: d = 0.

— Just track the current stack frame ...

571

... In the Example:

main()
t=20;
(1)

572

... In the Example:

main()

a1 = t,

work () \ enter

Neg (a1) Pos (a1)

ofl

éret — aq;
10
=4 combine

enter

§ combine
% ret =1 — ret;

573

The conditions for 5,7,10, e.g., are:

RI[5] 3 combine’ (R[4], R[10])
R[7] 3 enterf (R[4])
R[7] 3 enter’ (R[8])
R[9] 3 combine’ (R[8], R[10])

Warning:

The resulting super-graph contains obviously impossible paths ...

574

... in the Example this is:

main() work () \ enter

t=0; Neg (a1) Pos (a1)

ofl

M[17] = 3; éret = ay;
10
=/ combine

a, = t; enter

|§ combine
% ret =1 — ret;

575

... in the Example this is:

work () \ enter
(7,

Neg (a1) Pos (a1)

o

M[17] = 3; éret = ay;
10
> combine

a1 = t, enter

§ combine
% ret =1 — ret;

576

Note:

In the example, we find the same results:
more paths render the results less precise.

In particular, we provide for each procedure the result just
for one (possibly very boring) argument :~(

The analysis terminates — whenever [) has no infinite
strictly ascending chains :-)

The correctness is easily shown w.r.t. the operational
semantics with call stacks.

For the correctness of the functional approach, the semantics
with computation forests is better suited :-)

577

3 Exploiting Hardware Features

Question: How can we optimally use:

Registers
Pipelines
Caches

Processors ?7?7?

578

3.1 Registers

Example:

read();

x = M[A];

y=x+1;

if (y) 1
MI|A| = z;

} else {
t=-y-y
M[A] = t;

579

The program uses 5 variables ...

Problem:

What if the program uses more variables than there are registers

=

Idea:

Use one register for several variables :-)

In the example, e.g., one for x,f, z ...

580

x = M[A];
y=x+1;
if (y) 1
M|A] = z;
} else {
b=—-y-y;
M[A] = t;
}

581

582

Warning:
This is only possible if the live ranges do not overlap :-)

The (true) live range of x 1is defined by:

Llx] = {u|x e Llu]}

... in the Example:

583

584

S P, NN W = O & NN @

585

S P, NN W = O & NN @

{A,z}
{A, x}
{A,t}
{A v}
{A, x,y}
{A, x}
{A}

Live Ranges:

,..,7)
(2,3,6)
{2,4}
{5}

{7}

- = RN

N

586

In order to determine sets of compatible variables, we construct the
Interference Graph [= (Vars, E;) where:

Er={{xy} | x#y, LIx]0 L[y] # 0}

E; hasanedgeforx #vy iff x,y arejointly live at some
program point :-)

... in the Example:

587

Interference Graph:

588

Variables which are not connected with an edge can be assigned to
the same register :-)

589

Variables which are not connected with an edge can be assigned to
the same register :-)

Color Register

590

