Discussion

o Although the example program is not in SSA form, all live
ranges still form tree fragments :-)

e The intersection of tree fragments is again a tree fragment !

o AsetC of tree fragments forms a clique iff their intersection is
non-empty !!!

e The greedy algorithm will find an optimal coloring ...

629

Proof of the Intersection Property

(1) Assume LN #(0 and v; istherootof I. Then:
el or v, €l

(2) Let C denote aclique of tree fragments.

Then there is an enumeration C ={[,...,[,} with roots
v1,...,0, such that

v; € I forall j <1

In particular, v, € I; foralli. :-)

630

The Greedy Algorithm

forall (1 € Nodes) visited|u] = false;
forall (x € Llstart]) I'(x) = extract(free);

alloc(start);

void alloc (Node) {
visited|u| = true;
forall ((lab,v) € edges|u])
if (—wvisited[v]) {
forall (x € L[u]\L][v]) insert(free, x);
forall (x € L[v]\L[u]) T(x) = extract(free);
alloc (v);

}

4

631

Example

632

633

Remark:

e Intersection graphs for tree fragments are also known as
cordal graphs ...

e A cordal graph is an undirected graph where every cycle with
more than three nodes contains a cord :-)

e Cordal graphs are another sub-class of perfect graphs :-))

e Cheap register allocation comes at a price:

when transforming into SSA form, we have introduced
parallel register-register moves :-(

634

Problem

The parallel register assignment:

1P1:R1:R2|R2:R1

is meant to exchange the registers R; and R, :-)

There are at least two ways of implementing this exchange ...

635

Problem

The parallel register assignment:

1P1:R1:R2|R2:R1

is meant to exchange the registers R; and R, :-)

There are at least two ways of implementing this exchange ...

(1) Using an auxiliary register:

636

(2) XOR:

Ry, = R;DRy;
Ri = R;DRy;

637

(2) XOR:
Ri = Ri@Ry;
Ry = Ri@Ry;
Ri = Ri®DRy;

But what about cyclic shifts such as:
Yy =R =Ry |...|Re1 =R | Rk = Ry

fork > 277?

638

(2) XOR:
Ri = Ri@Ry;
Ry = Ri@Ry;
Ri = Ri®DRy;

But what about cyclic shifts such as:
Ye=Ri =Ry |...| Ry = R | Re = Ry

fork > 277?

Then at most k — 1 swaps of two registers are needed:

Yr = Ry < Ry;
Ry <> Rg;

Rx_1 < Rg;

639

Next complicated case: permutations.

e Every permutation can be decomposed into a set of disjoint
shifts :-)

e Any permutation of n registers with r shifts can be realized by
n —rswaps ...

640

Next complicated case: permutations.

e Every permutation can be decomposed into a set of disjoint
shifts :-)

e Any permutation of n registers with r shifts can be realized by
n —r swaps ...
Example
Pp=R =R |Ro=R5 |Rs=Rs | R =R3 | Rs = R4
consists of the cycles (R, R, R5) and (R, Ry). Therefore:

P = Ry Ry
Ry <> Rs;
R3 <> Ry;

641

The general case:

e Every register receives its value at most once.

e The assignment therefore can be decomposed into a
permutation together with tree-like assignments (directed
towards the leaves) ...

Example

=Ry =Ry | Ry = Ry | Rs = Rs | Rs = Rs

The parallel assignment realizes the linear register moves for
Ry, R, and R, together with the cyclic shift for R; and Rs:

P = Ry = Ry;
Ry = Ry;
R3 < R5,

642

Interprocedural Register Allocation:

l

l

For every local variable, there is an entry in the stack frame.

Before calling a function, these must be saved into the stack
frame and be restored after the call.

Sometimes there is hardware support :-)
Then the call is transparent for all registers.

If it is our responsibility to save and restore, we may ...

e save only registers which are over-written :-)

e restore overwritten registers only.

Alternatively, we save only registers which are still live after
the call — and then possibly into different registers ——
reduction of life ranges :-)

643

3.2 Instruction Level Parallelism

Modern processors do not execute one instruction after the other
strictly sequentially.

Here, we consider two approaches:

(1) VLIW (Very Large Instruction Words)
(2) Pipelining

644

VLIW:

One instruction simultaneously executesup to k (e.g., 4:-)
elementary Instructions.

Pipelining:

Instruction execution may overlap.

Example:

w = (Ry = Ra+ Ry | D = Dy # Dy | Ry = M[Ry])

645

Warning:

e Instructions occupy hardware ressources.

e Instructions may access the same busses/registers ——
hazards

e Results of an instruction may be available only after some
delay.

e During execution, different parts of the hardware are
involved:

Fetch (— Decode = Execute (— Write

e During Execute and Write different internal
registers/busses/alus may be used.

646

We conclude:

Distributing the instruction sequence into sequences of words is
amenable to various constraints ...

In the following, we ignore the phases Fetch und Decode :-)

Examples for Constraints:

(1) atmost one load/store per word;
(2) at most one jump;
(3) at most one write into the same register.

647

Example Timing:

Gleitkomma-Operation | 3

Laden/Speichern 2
Integer-Arithmetik 1

Timing Diagram:

5 =1 0.3

49

LW NN = O

17.4

R3 1is over-written, after the addition has fetched 2 :-)

648

If a register is accessed simultaneously (here: Rj), a strategy of
conflict solving is required ...

Conflicts:

Read-Read: A register is simulatneously read.

—— in general, unproblematic :-)

Read-Write: A register is simultaneously read and written.

Conflict Resolution:

e .. ruled out!
e Read is delayed (stalls), until write has terminated!

e Read before write returns old value!

649

Write-Write: A register is simultaneously written to.
——> in general, unproblematic :-)

Conflict Resolutions:

e .. ruled out!

In Our Examples ...

e simultaneous read is permitted;
e simultaneous write/read and write/write is ruled out;

e no stalls are injected.

We first consider basic blocks only, i.e., linear sequences of
assignments ...

650

Idea: Data Dependence Graph

Vertices | Instructions

Edges Dependencies

Example:
(1) x=x41;
(2) y=MlA];
(3) t=z;
(4) z= M[A+x];
(5) t=vy+z;

651

Possible Dependencies:

Definition — Use // Reaching Definitions
Use — Definition // 7?7
Definition — Definition // Reaching Definitions

Reaching Definitions:

Determine for each u which definitions of may reach —=
can be determined by means of a system of constraints :-)

... In the Example:

652

,,,,,
HN R R R Y

~
P P P P P P

~ S SN SN S S~

x+1;

X

R
N +
< <C N
- ey +
= N = >

Il I
> -

\G*?‘éh@h@

653

Let U;, D; denote the sets of variables which are used or
. Then:

defined at the edge outgoing from

(uy,up) € DD
(uy,up) € DU

.. In the Example:

Def | Use
1| x=x+1; {x} | {x}
2 |y =MI[A]; Wy | 1AY
3|t=z {t} | {z}
41 z=M[A+x]; | {z} | {A x}
5lt=y+z RV

Uj

if M1ER[U2]/\D10D27§®
if M1€R[M2]/\D1HUQ7§®

o

654

DU

Y

t=y—+z

1|lx=x+1; 3|t=2z
DN uD
4Z:M[A+ﬁDu DD

