4 Optimization of Functional Programs

Example:

letrec facx = if x <1 then 1

else x-fac (x —1)

e There are no basic blocks :-(
e There are no loops :-(

e Virtually all functions are recursive :-((

779

Strategies for Optimization:

—— Improve specific inefficiencies such as:

e Pattern matching

e Lazy evaluation (if supported ;-)

e Indirections — Unboxing / Escape Analysis
e Intermediate data-structures — Deforestation

—— Detect and/or generate loops with basic blocks :-)

e Tail recursion
e Inlining
e let-Floating
Then apply general optimization techniques

... .g., by translation into C ;-)

780

Warning:

Novel analysis techniques are needed to collect information about
functional programs.

Example: Inlining

let max (x, y) if x >y then x

else vy

let absz = max (z, —2)

As result of the optimization we expect ...

781

let max (x,y) = if x >y then «x

else vy
let abs z = let x=1z
and y=—z
in if x>y then x
else vy
end
Discussion:

For the beginning, max is just a name. We must find out which
value it takes at run-time

——— Value Analysis required !!

782

Nevin Heintze in the Australian team
of the Prolog-Programming-Contest, 1998

783

The complete picture:

784

41 A Simple Functional Language

For simplicity, we consider:

e == b|(e,...,ex) |cer...e | funx — e

| (ere2) | (Ore) | (e1Daea) |

letx; =e; and...and x; = ¢r in ¢ |

match ey with p; — e | ... | pr — e
p = b|x|cxy...x | (x1,..., %)
t = letrecx;=e;and...and xy = ¢ iIne

where b 1isaconstant, x isavariable, ¢ isa
(data-)constructor and 0O; are i-ary operators.

785

Discussion:

o letrec only occurs on top-level.

e Constructors and functions are always unary.
Instead, there are explicit tuples :-)

e if-expressions and case distinction in function definitions is
reduced to match-expressions.

e In case distinctions, we allow just simple patterns.
—— Complex patterns must be decomposed ...
e let-definitions correspond to basic blocks :-)

e Type-annotations at variables, patterns or expressions could
provide further useful information
— which we ignore :-)

786

... in the Example:

A definition of max may look as follows:

let max = fun x — match x with (x;,x,) — (
match x; < x»
with True : x,

| False : x

787

Accordingly, we have for abs:

let abs = fun x — let z = (x, —x)

In max z

42 A Simple Value Analysis

Idea:

For every subexpression ¢ we collect theset [e]f of
possiblevalues of e ...

788

Let V denote the set of occurring (classes of) constants,
applications of constructors and functions. As our lattice, we
choose:

VvV =2
As usual, we put up a constraint system:

e If ¢ isavalue, ie, of theform: b,ce, (e1,...,e),an
operator application or funx — e we generate the
constraint:

[e]* 2 {e}

e If e=(e1e;) and f=funx — ¢, then

[l 2 (felal)?[eT - 0
[P 2 (felal’)? el : 0

789

Int-values returned by operators are described by the
unevaluated expression;

Operator applications which return Boolean values, e.g., by
{True, False} :-)

If e=letx; =c¢;and...and x; = ¢, in ¢y, then we
generate:

[xi]F [e:]*
[e]l* 2 [eo]®

U

790

Assume ¢ = matcheywithp; — e |...| pr — e.
Then we generate for p; =0,

[e]* 2 (b € [e]*)? [e]* : 0

ce’ isavalue, then

[e] (v € [eo?) 2 [ei]F : 0
[v]* (v € [eo]®) 2 [€]° : 0

If pi=(,...,yx) and ov=(e),...,e) isavalue, then

If pi=cy and v

1y

[l 2 (veled)?[e]: 0
[yilF 2 (velel)? el - 0
If p;i=y,then
[elF 2 [elf
[vlF 2 [eol’

791

Example The append-Function

Consider the concatenation of two lists. In Ocaml, we would write:
let rec app = fun x — match x with
] — funy —y
| h:t — funy — h:iappty
in app [1;2] [3]

The analysis then results in:

[app]* = {funx — match...}

[x]* = {[L:2], 1], [1}

[match...[* = {funy — y,funy — x:app...}
[y]* = {3}

792

.ﬁﬁ.h.]]“ = 112}

1] = {21}

[app t]* =

[app [1; 2]] = {funy — y,funy — x:app...}
[app t y]* =

[app [L;2] [B]]F = {[3] huapp...}

Values ce or (ey,...,ex) now are interpreted as recursive
calls c[e]* or ([ei]?, ..., [ex]?), respectively.

—— regular tree grammar

793

... In the Example:

We obtain for A = [appty]*:

A — [3] | [h])F:A
[h]* — 1 | 2

Let £(e) denote the set of terms derivable from [e]* w.r.t. the
regular tree grammar. Thus, e.g.,

L(h) = {12}
L(appty) {lay;...,a;3] | r>0,a, € {1,2}}

794

43 An Operational Semantics

Idea:

We construct a Big-Step operational semantics which evaluates
expressions w.r.t. an environment :-)

Values are of the form:
vi=b|cv | (v1,...,%) | (funx — e, n)
Examples for Values:

cl
12 ==1(:21)])
(funx — x::y, {y — [5]})

795

Expressions are evaluated w.r.t. an environment
n : Vars — Values.

The Big-Step operational semantics provides rules to infer the
value to which an expression is evaluated w.r.t. a given
environment...

Values:
(b,m) = b

(funx — e,n) = (funx — e, n)

(e,n) =0

(ce,n) = cv

796

(e;,n) = v1 ... (e, n) = vk

((e1,...,ex),n) = (v1,...,0)

Global Definition:

letrec ... x=e¢ ...1n ...

(e,0) = v

(x,n) = v

797

Function Application:

(e1,n) = (funx — e, n)
(e2,m) = 02
(e, m @ {x+— v2}) = v3

(e1 €2, 1) = U3

798

Case Distinction 1:

(e,n) = b
(e, 1) = v

(matchewithpy — e | ... | px — e, n) = v

if p;, =b isthe first pattern which matches b :-)

799

Case Distinction 2;

(e,n) = cv
(e, nB{z— v}) = v

(matchewithpy — e | ... | px — e, n) = v

it p;i=cz isthe first pattern which matches cv :-)

800

Case Distinction 3:

(e,n) = (v1,..., V)
(e, M@ Ay = 01,..., Y1 U}) = 0

(matchewithpy — e | ... | px — e, n) = v;

if p;=(y1,...,yx) 1is the first pattern which matches

(01,...,0¢))

801

Case Distinction 4:

(e,n) =0
(e, n® {x — v}) = v

(matchewithpy — e | ... | px — e, n) = v

it p; ==x isthe first pattern which matches v :-)

802

Local Definitions:

(e1, 1) = 11
(e, n&{x1 —v1}) = v,

(ek,ﬂ D {x1 = 01,...,Xk-1 — Uk—1}) — Uk

(e, MB{x1+— 01,..., % — U }) = U

(let x; = e;and...and x; = ¢ in ey, 1) = vy

803

Correctness of the Analysis:

For every (e, 11) occurring in a proof for the program, it should
hold:

e If n(x)=v,then [v] € L(x).
e If (¢,n)=—=v,then [v] € L(e) ..

e where [v] is the stripped expression corresponding to v, i.e.,
obtained by removing all environments.

Conclusion:

L(e) returns a superset of the values to which e is evaluated

)

804

