4 Optimization of Functional Programs

Example:

```
let rec fac x =  if x \le 1 then 1 else x \cdot fac (x - 1)
```

- There are no basic blocks :-(
- There are no loops :-(
- Virtually all functions are recursive :-((

Strategies for Optimization:

- ⇒ Improve specific inefficiencies such as:
 - Pattern matching
 - Lazy evaluation (if supported ;-)
 - Indirections Unboxing / Escape Analysis
 - Intermediate data-structures Deforestation
- ⇒ Detect and/or generate loops with basic blocks :-)
 - Tail recursion
 - Inlining
 - **let**-Floating

Then apply general optimization techniques

... e.g., by translation into C ;-)

Warning:

Novel analysis techniques are needed to collect information about functional programs.

Example: Inlining

let
$$\max(x, y) = \inf x > y$$
 then x
else y
let $abs z = \max(z, -z)$

As result of the optimization we expect ...

let
$$\max(x,y) = \inf x > y$$
 then x
else y

let $abs z = let \quad x = z$
and $y = -z$

in $\inf x > y$ then x
else y

end

Discussion:

For the beginning, max is just a name. We must find out which value it takes at run-time

→ Value Analysis required !!

Nevin Heintze in the Australian team of the Prolog-Programming-Contest, 1998

The complete picture:

4.1 A Simple Functional Language

For simplicity, we consider:

$$e ::= b \mid (e_1, ..., e_k) \mid c e_1 ... e_k \mid \text{fun } x \to e$$
 $\mid (e_1 e_2) \mid (\Box_1 e) \mid (e_1 \Box_2 e_2) \mid$
 $\text{let } x_1 = e_1 \text{ and } ... \text{ and } x_k = e_k \text{ in } e_0 \mid$
 $\text{match } e_0 \text{ with } p_1 \to e_1 \mid ... \mid p_k \to e_k$
 $p ::= b \mid x \mid c x_1 ... x_k \mid (x_1, ..., x_k)$
 $t ::= \text{let rec } x_1 = e_1 \text{ and } ... \text{ and } x_k = e_k \text{ in } e$

where b is a constant, x is a variable, c is a (data-)constructor and \Box_i are i-ary operators.

Discussion:

- let rec only occurs on top-level.
- Constructors and functions are always unary.
 Instead, there are explicit tuples :-)
- **if**-expressions and case distinction in function definitions is reduced to **match**-expressions.
- In case distinctions, we allow just simple patterns.
 - → Complex patterns must be decomposed ...
- **let**-definitions correspond to basic blocks :-)
- Type-annotations at variables, patterns or expressions could provide further useful information
 - which we ignore :-)

... in the Example:

A definition of max may look as follows:

Accordingly, we have for abs:

let abs = fun
$$x \rightarrow let z = (x, -x)$$

in max z

4.2 A Simple Value Analysis

Idea:

For every subexpression e we collect the set $[e]^{\sharp}$ of possible values of e ...

Let *V* denote the set of occurring (classes of) constants, applications of constructors and functions. As our lattice, we choose:

$$\mathbb{V} = 2^V$$

As usual, we put up a constraint system:

• If e is a value, i.e., of the form: $b, ce, (e_1, \ldots, e_k)$, an operator application or $fun x \rightarrow e$ we generate the constraint:

$$\llbracket e \rrbracket^{\sharp} \supseteq \{e\}$$

• If $e \equiv (e_1 e_2)$ and $f \equiv \text{fun } x \rightarrow e'$, then

$$\begin{bmatrix} e \end{bmatrix}^{\sharp} \supseteq (f \in \llbracket e_1 \rrbracket^{\sharp}) ? \llbracket e' \rrbracket^{\sharp} : \emptyset$$

$$\llbracket x \rrbracket^{\sharp} \supseteq (f \in \llbracket e_1 \rrbracket^{\sharp}) ? \llbracket e_2 \rrbracket^{\sharp} : \emptyset$$

• • •

• int-values returned by operators are described by the unevaluated expression;

Operator applications which return Boolean values, e.g., by {True, False} :-)

• If $e \equiv \text{let } x_1 = e_1 \text{ and } \dots \text{ and } x_k = e_k \text{ in } e_0$, then we generate:

$$\begin{bmatrix} x_i \end{bmatrix}^{\sharp} \supseteq \begin{bmatrix} e_i \end{bmatrix}^{\sharp}$$
$$\begin{bmatrix} e \end{bmatrix}^{\sharp} \supseteq \begin{bmatrix} e_0 \end{bmatrix}^{\sharp}$$

• Assume $e \equiv \mathbf{match} \ e_0 \ \mathbf{with} \ p_1 \rightarrow e_1 \ | \ \dots \ | \ p_k \rightarrow e_k \ .$ Then we generate for $p_i \equiv b$,

$$\llbracket e \rrbracket^{\sharp} \supseteq (b \in \llbracket e \rrbracket^{\sharp}) ? \llbracket e_i \rrbracket^{\sharp} : \emptyset$$

If $p_i \equiv c y$ and $v \equiv c e'$ is a value, then

$$\begin{bmatrix} e \end{bmatrix}^{\sharp} \supseteq (v \in \llbracket e_0 \rrbracket^{\sharp}) ? \llbracket e_i \rrbracket^{\sharp} : \emptyset \\
\llbracket y \rrbracket^{\sharp} \supseteq (v \in \llbracket e_0 \rrbracket^{\sharp}) ? \llbracket e' \rrbracket^{\sharp} : \emptyset$$

If $p_i \equiv (y_1, \dots, y_k)$ and $v \equiv (e'_1, \dots, e'_k)$ is a value, then

$$\begin{bmatrix} e \end{bmatrix}^{\sharp} \supseteq (v \in \llbracket e_0 \rrbracket^{\sharp}) ? \llbracket e_i \rrbracket^{\sharp} : \emptyset \\
\llbracket y_j \rrbracket^{\sharp} \supseteq (v \in \llbracket e_0 \rrbracket^{\sharp}) ? \llbracket e'_j \rrbracket^{\sharp} : \emptyset$$

If $p_i \equiv y$, then

$$\llbracket e \rrbracket^{\sharp} \supseteq \llbracket e_i \rrbracket^{\sharp}$$
 $\llbracket y \rrbracket^{\sharp} \supseteq \llbracket e_0 \rrbracket^{\sharp}$

Example The append-Function

Consider the concatenation of two lists. In Ocaml, we would write:

```
let rec app = fun x \to \text{match } x \text{ with}
[] \to \text{fun } y \to y
|h::t \to \text{fun } y \to h:: \text{app } t \text{ } y
in app [1;2] [3]
```

The analysis then results in:

```
[app]^{\sharp} = \{\mathbf{fun} \, x \to \mathbf{match} \dots\}
[x]^{\sharp} = \{[1;2],[1],[]\}
[\mathbf{match} \dots]^{\sharp} = \{\mathbf{fun} \, y \to y, \mathbf{fun} \, y \to x :: \mathsf{app} \dots\}
[y]^{\sharp} = \{[3]\}
```

Values
$$ce$$
 or (e_1, \ldots, e_k) now are interpreted as recursive calls $c[e]^{\sharp}$ or $([e_1]^{\sharp}, \ldots, [e_k]^{\sharp})$, respectively.

----- regular tree grammar

... in the Example:

We obtain for $A = [app t y]^{\sharp}$:

Let $\mathcal{L}(e)$ denote the set of terms derivable from $[e]^{\sharp}$ w.r.t. the regular tree grammar. Thus, e.g.,

$$\mathcal{L}(h) = \{1,2\}$$

 $\mathcal{L}(\mathsf{app}\,t\,y) = \{[a_1;\ldots,a_r;3] \mid r \ge 0, a_i \in \{1,2\}\}$

4.3 An Operational Semantics

Idea:

We construct a Big-Step operational semantics which evaluates expressions w.r.t. an environment :-)

Values are of the form:

$$v := b \mid c v \mid (v_1, \ldots, v_k) \mid (\mathbf{fun} x \rightarrow e, \eta)$$

Examples for Values:

c 1
$$[1;2] = :: 1 (:: 2 [])$$

$$(\mathbf{fun} \ x \to x :: y, \{y \mapsto [5]\})$$

Expressions are evaluated w.r.t. an environment $\eta: Vars \rightarrow Values$.

The Big-Step operational semantics provides rules to infer the value to which an expression is evaluated w.r.t. a given environment...

Values:

$$(b, \eta) \Longrightarrow b$$

$$(\operatorname{fun} x \to e, \eta) \Longrightarrow (\operatorname{fun} x \to e, \eta)$$

$$(e, \eta) \Longrightarrow v$$

$$(ce, \eta) \Longrightarrow cv$$

$$(e_1, \eta) \Longrightarrow v_1 \quad \dots \quad (e_k, \eta) \Longrightarrow v_k$$

$$((e_1, \dots, e_k), \eta) \Longrightarrow (v_1, \dots, v_k)$$

Global Definition:

let rec ...
$$x = e$$
 ... in ... $(e, \emptyset) \Longrightarrow v$ $(x, \eta) \Longrightarrow v$

Function Application:

$$(e_1, \eta) \Longrightarrow (\mathbf{fun} \ x \to e, \eta_1)$$
 $(e_2, \eta) \Longrightarrow v_2$
 $(e, \eta_1 \oplus \{x \mapsto v_2\}) \Longrightarrow v_3$
 $(e_1 \ e_2, \eta) \Longrightarrow v_3$

Case Distinction 1:

$$(e, \eta) \Longrightarrow b$$

 $(e_i, \eta) \Longrightarrow v_i$

(match
$$e$$
 with $p_1 \rightarrow e_1 \mid \ldots \mid p_k \rightarrow e_k, \eta) \Longrightarrow v_i$

if $p_i \equiv b$ is the first pattern which matches b :-)

Case Distinction 2:

$$(e, \eta) \Longrightarrow c v$$
 $(e_i, \eta \oplus \{z \mapsto v\}) \Longrightarrow v_i$

(match e with $p_1 \to e_1 \mid \ldots \mid p_k \to e_k, \eta) \Longrightarrow v_i$

if $p_i \equiv c z$ is the first pattern which matches c v:-)

Case Distinction 3:

$$(e, \eta) \Longrightarrow (v_1, \dots, v_k)$$
 $(e_i, \eta \oplus \{y_1 \mapsto v_1, \dots, y_1 \mapsto v_k\}) \Longrightarrow v_i$
 $(\text{match } e \text{ with } p_1 \to e_1 \mid \dots \mid p_k \to e_k, \eta) \Longrightarrow v_i$

if
$$p_i \equiv (y_1, \dots, y_k)$$
 is the first pattern which matches (v_1, \dots, v_k) :-)

Case Distinction 4:

$$(e, \eta) \Longrightarrow v$$
 $(e_i, \eta \oplus \{x \mapsto v\}) \Longrightarrow v_i$

$$(\mathbf{match} \ e \ \mathbf{with} \ p_1 \to e_1 \ | \ \dots \ | \ p_k \to e_k, \eta) \Longrightarrow v_i$$

if $p_i \equiv x$ is the first pattern which matches v:-)

Local Definitions:

$$(e_1, \eta) \Longrightarrow v_1$$

 $(e_2, \eta \oplus \{x_1 \mapsto v_1\}) \Longrightarrow v_2$
...
 $(e_k, \eta \oplus \{x_1 \mapsto v_1, \dots, x_{k-1} \mapsto v_{k-1}\}) \Longrightarrow v_k$
 $(e_0, \eta \oplus \{x_1 \mapsto v_1, \dots, x_k \mapsto v_k\}) \Longrightarrow v_0$
(let $x_1 = e_1$ and ... and $x_k = e_k$ in $e_0, \eta) \Longrightarrow v_0$

Correctness of the Analysis:

For every (e, η) occurring in a proof for the program, it should hold:

- If $\eta(x) = v$, then $[v] \in \mathcal{L}(x)$.
- If $(e, \eta) \Longrightarrow v$, then $[v] \in \mathcal{L}(e)$...
- where [v] is the stripped expression corresponding to v, i.e., obtained by removing all environments.

Conclusion:

 $\mathcal{L}(e)$ returns a superset of the values to which e is evaluated :-)