Extension: Data Structures

e Functions may vary in the parts which they require from a
data structure ...

hd = fun! — match!with:z —

match z with (x,xs) — x

e hd only accesses the first element of a list.
e length only accesses the backbone of its argument.

e rev forces the evaluation of the complete argument — given
that the result is required completely ...

856

Extension of the Syntax:

We additionally consider expression of the form:

e == ... | []|:e| matcheywith|] — e | 2z — e

‘ (81,82) | match €o with (xl,xz) — €1

Top Strictness

e We assume that the program is well-typed.
e We are only interested in top constructors.

e Again, we model this property with (monotonic) Boolean
functions.

e For int-values, this coincides with strictness :-)

e We extend the abstract evaluation [e]]* p with rules for
case-distinction ...

857

[match ey with [] — ¢ | iz — e p
[eol* p A ([ea]F oV [e2]* (p® {z = 1}))
[match ey with (x1,x,) — e1]f p —
[eo]* p A [ed] (P {x1, %2 = 1})
[[]]Fp = [=elfp = [(er,e2)]" p = 1

The rules for match are analogous to those for if.

In case of ::, we know nothing about the values beneath the
constructor; therefore {z +— 1}.

We check our analysis on the function app ...

858

Example:

app = funx — funy — matchxwith || — vy

| ::z — match z with (x,xs) — :: (x,app xs y)

Abstract interpretation yields the system of equations:

[[app]]h bl bz — bl A (bz V 1)
= by

We conclude that we may conclude for sure only for the first
argument that its top constructor is required :-)

859

Total Strictness

Assume that the result of the function application is totally
required. Which arguments then are also totally required ?

We again refer to Boolean functions ...

[match ey with [] — e | 2z — e]f p = [eo]f oA [er]?p
Ve (0 & {z — [eo]* p})
[match ey with (x,x,) — ei]f p = letb = [e]f p
in [e.f (p®{x1— 1L, x—Db})V [erl]* (0D {x1— b, x5 +— 1})
[[1]F p = 1
[e[p = [elFp
[(e1,€2)]* p = [alf oA e p

860

Discussion:

e The rules for constructor applications have changed.

e Also the treatment of match now involves the components z
and x 1, X2.

e Again, we check the approach for the function app.
Example:

Abstract interpretation yields the system of equations:

lapp]l* by b, = by Aby V by A [app]* 1 b, V 1 A [app]? by by
= by Aby V by A [app]* 1 by V [app]* by by

861

This results in the following fixpoint iteration:

Ol funx — funy — 0

funx — funy — x A\ y

2| funx — funy — x Ay

We deduce that both arguments are definitely totally required if
the result is totally required :-)

Warning:

Whether or not the result is totally required, depends on the
context of the function call!

In such a context, a specialized function may be called ...

862

app# = funx — funy — let#x' =xand #y' =y in
match 'x with [| — v/
| ::z — match z with (x,xs) —
let #7r = :: (x, app# xs)
inr

Discussion:

e Both strictness analyses employ the same complete lattice.
e Results and application, though, are quite different :-)

e Thereby, we use the following description relations:

Top Strictness 1L AQ
Total Strictness z A Qif L occursin z.

e Both analyses can also be combined to an a joint analysis ...

863

Combined Strictness Analysis

e We use the complete lattice:

T={0C1C 2}

e The description relation is given by:

1L A0 zA1(zcontains 1) z A2 (zvalue)

e The lattice is more informative, the functions, though, are no
longer as efficiently representable, e.g., through Boolean
expressions :-(

e We require the auxiliary functions:

T
(lgx),y_{y Irz7 L Xx

0 otherwise

864

The Combined Evaluation Function:

[matcheywith[] — e | mz — e]fp =
(2E [eol* p) s [ea]* LI (1 E [eo]? p) ; [e2]* (p© {z = [ea]* p})
[match ey with (x1, x2) — e1]p = letb = [e]*p

in (1C [eo]* p); ([ea]* (0 ® {x1 +— 2, %2 +— b})
L [er]* (p @ {x1 = b, x2 — 2}))

1% p = 2
[::e]f o = 11U [e]fp
[(e1,e2)]" p = 1U ([es]? p 11 [e2]* p)

865

Example:

For our beloved function app, we obtain:

[app]t di dy =

—

QW L X

)

1); (1 U [app]? dy d2 U dy 1 [app]® 2 ds)
)
)

I

—

this results in the fixpoint computation:

866

0| funx — funy — 0

funx — funy — 2Cx); yU (1Cx); 1
2| funx —» funy — 2Cx); yU (1Cx); 1

We conclude

e that both arguments are totally required if the result is totally
required; and

e that the root of the first argument is required if the root of the
result is required :-)

Remark:

The analysis can be easily generalized such that it guarantees
evaluationup toadepth d ;-)

867

Further Directions:

e Our Approach is also applicable to other data structures.

e In principle, also higher-order (monomorphic) functions can
be analyzed in this way :-)

e Then, however, we require higher-order abstract functions —
of which there are many :-(

e Such functions therefore are approximated by:

funx; — ... funx, — T

e For some known higher-order functions such as map, foldl,
loop, ... this approach then should be improved :-))

868

5 Optimization of Logic Programs

We only consider the mini language PuP’ (“Pure Prolog”). In
particular, we do not consider:

e arithmetic;
e the cut-operator.

e Self-modification by means of assert and retract.

869

bigger(X,Y) «— X = elephant,Y = horse

bigger(X,Y) «— X = horse,Y = donkey

bigger(X,Y) — X =donkey,Y = dog

bigger(X,Y) «— X = donkey,Y = monkey

is_bigger(X,Y) <« bigger(X,Y)

is_bigger(X,Y) <« bigger(X,Z),is_bigger(Z,Y)
«— is_bigger(elephant, dog)

870

A more realistic Example:

app(X,Y,Z) Y
app(X, Y, Z) «— X = [H\X’] = [H|Z'], app(X', Y, Z')
N app(X,[] [El b, Z])

871

