We conclude:

- → Solving the constraint system returns the MOP solution :-)
- \rightarrow Let \mathcal{V} denote this solution.

If $x \in \mathcal{V}[u]e$, then x at u contains the value of e — which we have stored in T_e

 \Longrightarrow

the access to x can be replaced by the access to T_e :-)

For $V \in \mathbb{V}$, let V^- denote the variable substitution with:

$$V^- x = \begin{cases} T_e & \text{if } x \in V e \\ x & \text{otherwise} \end{cases}$$

if $Ve \cap Ve' = \emptyset$ for $e \neq e'$. Otherwise: $V^-x = x$:-)

Transformation 3:

... analogously for edges with Neg(e)

Transformation 3 (cont.):

$$\sigma = \mathcal{V}[u]^{-}$$

$$x = M[e];$$

$$x = M[\sigma(e)];$$

$$\sigma = \mathcal{V}[u]^ M[e_1] = e_2;$$
 $M[\sigma(e_1)] = \sigma(e_2);$

Procedure as a whole:

(1)	Availability of expressions:	T1
	+ removes arithmetic operations	
	 inserts superfluous moves 	
(2)	Values of variables:	T3
	+ creates dead variables	
(3)	(true) liveness of variables:	T2
	+ removes assignments to dead variables	

Example: a[7]--;

Example: a[7]--;

Example (cont.): a[7]--;

Example (cont.): a[7]--;

1.4 Constant Propagation

Idea:

Execute as much of the code at compile-time as possible!

Example:

$$x = 7;$$
if $(x > 0)$

$$M[A] = B;$$

Obviously, x has always the value 7:-)

Thus, the memory access is always executed :-))

Goal:

Obviously, x has always the value 7 :-)

Thus, the memory access is always executed :-))

Goal:

Generalization: Partial Evaluation

Neil D. Jones, DIKU, Kopenhagen

Design an analysis which for every u,

- determines the values which variables definitely have;
- tells whether u can be reached at all :-)

Design an analysis which for every u,

- determines the values which variables definitely have;
- tells whether u can be reached at all :-)

The complete lattice is constructed in two steps.

(1) The potential values of variables:

$$\mathbb{Z}^{\top} = \mathbb{Z} \cup \{\top\}$$
 with $x \sqsubseteq y$ iff $y = \top$ or $x = y$

Warning: \mathbb{Z}^{\top} is not a complete lattice in itself :-(

(2)
$$\mathbb{D} = (Vars \to \mathbb{Z}^{\top})_{\perp} = (Vars \to \mathbb{Z}^{\top}) \cup \{\bot\}$$

// \perp denotes: "not reachable" :-))

with $D_1 \sqsubseteq D_2$ iff $\perp = D_1$ or

 $D_1 x \sqsubseteq D_2 x$ $(x \in Vars)$

Remark: \mathbb{D} is a complete lattice :-)

Warning: \mathbb{Z}^{\top} is not a complete lattice in itself :-(

(2)
$$\mathbb{D} = (Vars \to \mathbb{Z}^{\top})_{\perp} = (Vars \to \mathbb{Z}^{\top}) \cup \{\bot\}$$

// \perp denotes: "not reachable" :-))

with $D_1 \sqsubseteq D_2$ iff $\perp = D_1$ or

 $D_1 x \sqsubseteq D_2 x$ $(x \in Vars)$

Remark: \mathbb{D} is a complete lattice :-)

Consider $X \subseteq \mathbb{D}$. W.l.o.g., $\perp \notin X$.

Then $X \subseteq Vars \to \mathbb{Z}^{\top}$.

If
$$X = \emptyset$$
, then $| | X = \bot \in \mathbb{D}$:-)

If
$$X \neq \emptyset$$
 , then $\bigsqcup X = D$ with
$$Dx = \bigsqcup \{fx \mid f \in X\}$$

$$= \begin{cases} z & \text{if } fx = z & (f \in X) \\ \top & \text{otherwise} \end{cases}$$
 :-))

If
$$X \neq \emptyset$$
 , then $\bigcup X = D$ with
$$Dx = \bigcup \{fx \mid f \in X\}$$

$$= \begin{cases} z & \text{if } fx = z & (f \in X) \\ \top & \text{otherwise} \end{cases}$$
:-))

For every edge $k = (_, lab, _)$, construct an effect function $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp} : \mathbb{D} \to \mathbb{D}$ which simulates the concrete computation.

Obviously, $[\![lab]\!]^{\sharp} \perp = \perp$ for all lab :-) Now let $\perp \neq D \in Vars \rightarrow \mathbb{Z}^{\top}$.

• We use *D* to determine the values of expressions.

- We use *D* to determine the values of expressions.
- For some sub-expressions, we obtain \top :-)

- We use *D* to determine the values of expressions.
- For some sub-expressions, we obtain \top :-)

 \Longrightarrow

We must replace the concrete operators \Box by abstract operators \Box^{\sharp} which can handle \top :

$$a \Box^{\sharp} b = \begin{cases} \top & \text{if } a = \top \text{ or } b = \top \\ a \Box b & \text{otherwise} \end{cases}$$

- We use *D* to determine the values of expressions.
- For some sub-expressions, we obtain \top :-)

 \Longrightarrow

We must replace the concrete operators \Box by abstract operators \Box^{\sharp} which can handle \top :

$$a \Box^{\sharp} b = \begin{cases} \top & \text{if } a = \top \text{ or } b = \top \\ a \Box b & \text{otherwise} \end{cases}$$

• The abstract operators allow to define an abstract evaluation of expressions:

$$\llbracket e \rrbracket^{\sharp} : (Vars \to \mathbb{Z}^{\top}) \to \mathbb{Z}^{\top}$$

Abstract evaluation of expressions is like the concrete evaluationbut with abstract values and operators. Here:

$$[\![c]\!]^{\sharp} D = c$$

$$[\![e_1 \square e_2]\!]^{\sharp} D = [\![e_1]\!]^{\sharp} D \square^{\sharp} [\![e_2]\!]^{\sharp} D$$

... analogously for unary operators :-)

Abstract evaluation of expressions is like the concrete evaluation — but with abstract values and operators. Here:

$$[\![c]\!]^{\sharp} D = c$$

$$[\![e_1 \square e_2]\!]^{\sharp} D = [\![e_1]\!]^{\sharp} D \square^{\sharp} [\![e_2]\!]^{\sharp} D$$

... analogously for unary operators :-)

Example:
$$D = \{x \mapsto 2, y \mapsto \top\}$$

Thus, we obtain the following effects of edges $[ab]^{\sharp}$:

$$[\![;]\!]^{\sharp} D = D$$

$$[\![Pos(e)]\!]^{\sharp} D = \begin{cases} \bot & \text{if } 0 = [\![e]\!]^{\sharp} D \\ D & \text{otherwise} \end{cases}$$

$$[\![Neg(e)]\!]^{\sharp} D = \begin{cases} D & \text{if } 0 \sqsubseteq [\![e]\!]^{\sharp} D \\ \bot & \text{otherwise} \end{cases}$$

$$[\![x = e;]\!]^{\sharp} D = D \oplus \{x \mapsto [\![e]\!]^{\sharp} D\}$$

$$[\![x = M[e];]\!]^{\sharp} D = D \oplus \{x \mapsto \top\}$$

$$[\![M[e_1] = e_2;]\!]^{\sharp} D = D$$

... whenever $D \neq \bot$:-)

At *start*, we have $D_{\top} = \{x \mapsto \top \mid x \in Vars\}$.

Example:

At *start*, we have $D_{\top} = \{x \mapsto \top \mid x \in Vars\}$.

Example:

1	$\{x \mapsto \top\}$
2	$\{x \mapsto 7\}$
3	$\{x \mapsto 7\}$
4	$\{x \mapsto 7\}$
5	$\perp \sqcup \{x \mapsto 7\} = \{x \mapsto 7\}$

The abstract effects of edges $[\![k]\!]^{\sharp}$ are again composed to the effects of paths $\pi = k_1 \dots k_r$ by:

$$\llbracket \pi
rbracket^{\sharp} = \llbracket k_r
rbracket^{\sharp} \circ \ldots \circ \llbracket k_1
rbracket^{\sharp} : \mathbb{D} o \mathbb{D}$$

Idea for Correctness:

Abstract Interpretation

Cousot, Cousot 1977

Patrick Cousot, ENS, Paris

The abstract effects of edges $[\![k]\!]^{\sharp}$ are again composed to the effects of paths $\pi = k_1 \dots k_r$ by:

$$\llbracket \pi
rbracket^{\sharp} = \llbracket k_r
rbracket^{\sharp} \circ \ldots \circ \llbracket k_1
rbracket^{\sharp} : \mathbb{D} o \mathbb{D}$$

Idea for Correctness:

Abstract Interpretation

Cousot, Cousot 1977

Establish a description relation Δ between the concrete values and their descriptions with:

$$x \Delta a_1 \wedge a_1 \sqsubseteq a_2 \implies x \Delta a_2$$

Concretization:
$$\gamma a = \{x \mid x \Delta a\}$$

// returns the set of described values :-)

(1) Values:
$$\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$$

$$z \Delta a$$
 iff $z = a \lor a = \top$

Concretization:

$$\gamma a = \begin{cases} \{a\} & \text{if} \quad a \sqsubseteq \top \\ \mathbb{Z} & \text{if} \quad a = \top \end{cases}$$

(1) Values:
$$\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$$
 $z \Delta a \quad \text{iff} \quad z = a \lor a = \top$

Concretization:

$$\gamma a = \begin{cases} \{a\} & \text{if} \quad a \sqsubseteq \top \\ \mathbb{Z} & \text{if} \quad a = \top \end{cases}$$

(2) Variable Assignments: $\Delta \subseteq (Vars \to \mathbb{Z}) \times (Vars \to \mathbb{Z}^{\top})_{\perp}$ $\rho \Delta D \quad \text{iff} \quad D \neq \perp \wedge \rho x \sqsubseteq D x \quad (x \in Vars)$

Concretization:

$$\gamma D = \begin{cases} \emptyset & \text{if } D = \bot \\ \{\rho \mid \forall x : (\rho x) \Delta (D x)\} & \text{otherwise} \end{cases}$$

Example: $\{x \mapsto 1, y \mapsto -7\}$ $\Delta \{x \mapsto \top, y \mapsto -7\}$

(3) States:

$$\Delta \subseteq ((Vars \to \mathbb{Z}) \times (\mathbb{N} \to \mathbb{Z})) \times (Vars \to \mathbb{Z}^{\top})_{\perp}$$

$$(\rho, \mu) \Delta D \quad \text{gdw.} \quad \rho \Delta D$$

Concretization:

$$\gamma D = \begin{cases} \emptyset & \text{if } D = \bot \\ \{(\rho, \mu) \mid \forall x : (\rho x) \Delta (D x)\} & \text{otherwise} \end{cases}$$

We show:

(*) If $s \Delta D$ and $\llbracket \pi \rrbracket s$ is defined, then: $(\llbracket \pi \rrbracket s) \Delta (\llbracket \pi \rrbracket^{\sharp} D)$

The abstract semantics simulates the die concrete semantics :-)

In particular:

$$\llbracket \pi
rbracket{s} s \in \gamma (\llbracket \pi
rbracket{\pi}
rbracket{s} D)$$

The abstract semantics simulates the die concrete semantics :-)

In particular:

$$\llbracket \boldsymbol{\pi} \rrbracket \, \boldsymbol{s} \in \boldsymbol{\gamma} \, (\llbracket \boldsymbol{\pi} \rrbracket^{\sharp} \, D)$$

In practice, this means, e.g., that Dx = -7 implies:

$$\rho' x = -7 \text{ for all } \rho' \in \gamma D$$

$$\longrightarrow \rho_1 x = -7 \text{ for } (\rho_1, _) = \llbracket \pi \rrbracket s$$

To prove (*), we show for every edge k:

Then (*) follows by induction :-)

To prove (**), we show for every expression e: (***) $(\llbracket e \rrbracket \rho)$ Δ $(\llbracket e \rrbracket^{\sharp} D)$ whenever $\rho \Delta D$

To prove (**), we show for every expression e: (***) $(\llbracket e \rrbracket \rho)$ Δ $(\llbracket e \rrbracket^{\sharp} D)$ whenever $\rho \Delta D$

To prove (***), we show for every operator \square :

 $(x \Box y) \Delta (x^{\sharp} \Box^{\sharp} y^{\sharp})$ whenever $x \Delta x^{\sharp} \wedge y \Delta y^{\sharp}$

To prove
$$(**)$$
, we show for every expression e : $(***)$ $(\llbracket e \rrbracket \rho)$ Δ $(\llbracket e \rrbracket^{\sharp} D)$ whenever $\rho \Delta D$

To prove (***), we show for every operator \square :

$$(x \Box y) \Delta (x^{\sharp} \Box^{\sharp} y^{\sharp})$$
 whenever $x \Delta x^{\sharp} \wedge y \Delta y^{\sharp}$

This precisely was how we have defined the operators \Box^{\sharp} :-)

Now, (**) is proved by case distinction on the edge labels lab. Let $s = (\rho, \mu) \ \Delta \ D$. In particular, $\bot \neq D$: $Vars \to \mathbb{Z}^{\top}$

Case
$$x = e;$$
:
$$\rho_1 = \rho \oplus \{x \mapsto \llbracket e \rrbracket \rho\} \quad \mu_1 = \mu$$

$$D_1 = D \oplus \{x \mapsto \llbracket e \rrbracket^{\sharp} D\}$$

$$\Longrightarrow (\rho_1, \mu_1) \Delta D_1$$

Case
$$x = M[e]$$
; :
$$\rho_1 = \rho \oplus \{x \mapsto \mu(\llbracket e \rrbracket^{\sharp} \rho)\} \qquad \mu_1 = \mu$$

$$D_1 = D \oplus \{x \mapsto \top\}$$

 \longrightarrow $(\rho_1, \mu_1) \Delta D_1$

Case
$$M[e_1] = e_2;$$
:
$$\rho_1 = \rho \qquad \mu_1 = \mu \oplus \{ \llbracket e_1 \rrbracket^{\sharp} \rho \mapsto \llbracket e_2 \rrbracket^{\sharp} \rho \}$$

$$D_1 = D$$

$$\longrightarrow (\rho_1, \mu_1) \Delta D_1$$

Case
$$Neg(e)$$
: $(\rho_1, \mu_1) = s$ where:
$$0 = [e] \rho$$

$$\Delta [e]^{\sharp} D$$

$$\Longrightarrow 0 \sqsubseteq [e]^{\sharp} D$$

$$\Longrightarrow \bot \neq D_1 = D$$

$$\Longrightarrow (\rho_1, \mu_1) \Delta D_1$$

Case
$$Pos(e)$$
: $(\rho_1, \mu_1) = s$ where:

$$0 \neq \llbracket e \rrbracket \rho$$

$$\Delta \llbracket e \rrbracket^{\sharp} D$$

$$\longrightarrow 0 \neq \llbracket e \rrbracket^{\sharp} D$$

$$\longrightarrow \bot \neq D_{1} = D$$

$$\longrightarrow (\rho_{1}, \mu_{1}) \Delta D_{1}$$

:-)

We conclude: The assertion (*) is true :-))

The MOP-Solution:

$$\mathcal{D}^*[v] = \bigsqcup\{\llbracket \pi \rrbracket^{\sharp} D_{\top} \mid \pi : start \to^* v\}$$

where $D_{\top} x = \top$ $(x \in Vars)$.

We conclude: The assertion (*) is true :-))

The MOP-Solution:

$$\mathcal{D}^*[v] = \bigsqcup\{\llbracket \pi \rrbracket^{\sharp} D_{\top} \mid \pi : start \to^* v\}$$

where $D_{\top} x = \top$ $(x \in Vars)$.

By (*), we have for all initial states s and all program executions π which reach v:

$$(\llbracket \pmb{\pi}
rbracket^{oldsymbol{s}}) \ \Delta \ (\mathcal{D}^*[\pmb{v}])$$

We conclude: The assertion (*) is true :-))

The MOP-Solution

$$\mathcal{D}^*[v] = \bigsqcup\{\llbracket \pi \rrbracket^{\sharp} D_{\top} \mid \pi : start \to^* v\}$$

where $D_{\top} x = \top$ $(x \in Vars)$.

By (*), we have for all initial states s and all program executions π which reach v:

$$(\llbracket \pmb{\pi}
rbracket^{oldsymbol{s}}) \ \Delta \ (\mathcal{D}^*[\pmb{v}])$$

In order to approximate the MOP, we use our constraint system :-))

	1			
	x	y		
0	T	T		
1	10	T		
2	10	1		
3	10	1		
4	10	10		
5	9	10		
6	<u> </u>			
7	\perp			

	1		2	
	χ	y	X	y
0	T	T	T	T
1	10	T	10	Т
2	10	1	T	Т
3	10	1	T	Т
4	10	10	T	Т
5	9	10	$\mid \top \mid$	T
6	_	i i		\top
7	_	L	T	Т

	1		2		3	
	χ	y	χ	y	x	y
0	T	T	T	T		
1	10	Т	10	Т		
2	10	1	$ \top$	Т		
3	10	1	$ \top$	Т		
4	10	10		T	dito	
5	9	10		T		
6	<u> </u>			T		
7	上		$\mid \top \mid$	T		

Conclusion:

Although we compute with concrete values, we fail to compute everything :-(

The fixpoint iteration, at least, is guaranteed to terminate:

```
For n program points and m variables, we maximally need: n \cdot (m+1) rounds :-)
```

Warning:

The effects of edge are not distributive !!!

Counter Example: $f = [x = x + y;]^{\sharp}$

Let
$$D_1 = \{x \mapsto 2, y \mapsto 3\}$$

 $D_2 = \{x \mapsto 3, y \mapsto 2\}$
Dann $f D_1 \sqcup f D_2 = \{x \mapsto 5, y \mapsto 3\} \sqcup \{x \mapsto 5, y \mapsto 2\}$
 $= \{x \mapsto 5, y \mapsto \top\}$
 $\neq \{x \mapsto \top, y \mapsto \top\}$
 $= f \{x \mapsto \top, y \mapsto \top\}$
 $= f \{D_1 \sqcup D_2\}$
:-((

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$\mathcal{D}^*[v] \subseteq \mathcal{D}[v]$$

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$\mathcal{D}^*[v] \subseteq \mathcal{D}[v]$$

As an upper approximation, $\mathcal{D}[v]$ nonetheless describes the result of every program execution π which reaches v:

$$(\llbracket \boldsymbol{\pi} \rrbracket (\rho, \mu)) \Delta (\mathcal{D}[\boldsymbol{v}])$$

whenever $\llbracket \pi \rrbracket (\rho, \mu)$ is defined ;-))

Transformation 4:

Removal of Dead Code

$$\llbracket lab \rrbracket^{\sharp}(\mathcal{D}[u]) = \bot$$

$$\overline{u}$$

Transformation 4 (cont.): Removal of Dead Code

Transformation 4 (cont.): Simplified Expressions

