We conclude:

l

Solving the constraint system returns the MOP solution :-)

Let)V denote this solution.

l

If xe€Vule,then x at u contains the value of e¢—
which we have stored in T,

—

the access to x can be replaced by the accessto T, :-)

For V eV,let V- denote the variable substitution with:

B T, ifxeVe
Vo x =
X otherwise

if VenVe =0 for e#¢ .Otherwise: V- x=x)

253

Transformation 3:

o= V|u|"
Pos (e) —> Pos (o(e))

... analogously for edges with Neg (¢)

o= Vul~
X =e; ﬁ x = o(e);

254

Transformation 3 (cont.):

o= Vu|”
iM[el] = ey; ﬁ Mlo(e1)] =0o(er);

255

Procedure as a whole:

(1) Availability of expressions: T1

+ removes arithmetic operations

— inserts superfluous moves

(2) Values of variables: T3

+ creates dead variables

(3) (true) liveness of variables: T2

+ removes assignments to dead variables

256

Example:
A1 =A+7;
B1 = M[A1];
B, = B; —1;
Ay = A+7;
M[A;3] = By;

a[7] --;

T1.1

Th=A+7
A =Ty;
B1 = M[A4];
T, =B —1;
By =1T5;
T =A+7
Ay =Ty;
M|[A;] = By;

257

Example:

Ay =A+7;
B1 = M[A4];
B, =B —1;
Ay = A+7;
M[A;] = By;

a[7] --;

T1.1

Th=A+7
A =Ty;
B1 = M[A4];
T, =B —1;
By =1T5;
T =A+7
Ay =Ty;
M|[A;] = By;

258

T1.2

T, = A+7:
Ay =Ty;

B1 = M[A1];
T, =B —1;
By = 1Ty;

Ay = Ty;
M[A;] = By;

Ty =A+7
Ay =Ty;
B1 = M[A4];
T, =B —1;
By = Ty;
Ay = Ty;
M[A;] = By;

Example (cont.):

T3

a[7]--;

T =A+7
A =Ty;
B1 = M[T1];
T, =By —1;
By = Ty;
Ay =Ty;
M[T1] = Ty;

259

Example (cont.):

Ty =A+7
Ay =Ty;
B1 = M[A4];
T, =B —1;
By =T5;
Ay =Ty;
M[A;] = By;

T3

a[7]--;

T = A+7:
Ay =Tx;
B, = M[T1];
T, =B —1;
By =1T5;
Ay =Ty;
M[T1] = Ty;

260

T2

Th=A+7
By = M[T1};
T2 = B1 — 1,'
M[Tl] = Tz,’

1.4 Constant Propagation

Idea:

Execute as much of the code at compile-time as possible!

Example:

x=7; Neg (x > 0)
if (x>0)
M|A] = B;

261

Obviously, x has always the value 7 :-)

Thus, the memory access is always executed :-))

Goal:

262

Obviously, x has always the value 7 :-)

Thus, the memory access is always executed :-))

Goal:

263

Generalization: Partial Evaluation

Neil D. Jones, DIKU, Kopenhagen

264

Idea:

Design an analysis which for every 1,

e determines the values which variables definitely have;

e tells whether u canbereached atall :-)

265

Idea:

Design an analysis which for every 1,

e determines the values which variables definitely have;

e tells whether u canbereached atall :-)

The complete lattice is constructed in two steps.

(1) The potential values of variables:

7' =7U{T} with xCy iffy=Torx=y

266

Warning: Z' isnota complete lattice in itself :-(

2) D= Vars - Z"), = (Vars - Z")U{L}
// L denotes: “not reachable” :-))

with D1 E Dz iff 1 = D1 or
DixC Dyx (x € Vars)

Remark: D isacomplete lattice :-)

267

Warning: Z' isnota complete lattice in itself :-(

2) D= (Vars = Z"), = (Vars - Z" YU {L}
// L denotes: “not reachable” :-))

with D1 E Dz iff 1 = D1 or
DixC Dyx (x € Vars)

Remark: D isacomplete lattice :-)

Consider X CD.Wlo.g, L1 ¢&X.
Then X C Vars — Z' .
If X=0,then |[|[X=1¢e¢D :)

268

If X#0

, then

D x

||X =D with

Lif x| feX}

|

z it fx=z

T otherwise

269

(f € X)

-))

If X#(,then ||X=D with

Dx = {fx|feX}
_ {z if fx=z (feX)

T otherwise

-))

For every edge k = (_,lab,), construct an effect function
[k]* = [lab]* : D — D which simulates the concrete computation.

Obviously, [lab]* L = L forall lab :-)
Nowlet 1 #D € Vars — 7",

270

Idea:

e Weuse D todetermine the values of expressions.

271

Idea:

e Weuse D todetermine the values of expressions.

e For some sub-expressions, we obtain T :-)

272

Idea:

e Weuse D todetermine the values of expressions.
e For some sub-expressions, we obtain T :-)
—

We must replace the concrete operators O by abstract
operators 0O° which canhandle T :

ﬂ {T if a=Torb=T
aO%b =

aOb otherwise

273

Idea:

e Weuse D todetermine the values of expressions.
e For some sub-expressions, we obtain T :-)
—

We must replace the concrete operators O by abstract
operators 0O° which canhandle T :

ﬂ {T if a=Torb=T
aO%b =

aOb otherwise

e The abstract operators allow to define an abstract evaluation
of expressions:

le]* : (Vars = Z7) = Z7T

274

Abstract evaluation of expressions is like the concrete evaluation
— but with abstract values and operators. Here:

[c]* D =
[ei0e]*D = [ei]* DO [ea]* D

... analogously for unary operators :-)

275

Abstract evaluation of expressions is like the concrete evaluation
— but with abstract values and operators. Here:

[c]* D = ¢
[ei0e]*D = [ei]* DO [ea]* D

... analogously for unary operators :-)

Example: D={x—2,y— T}

[x +7]*D = [«x]!D +*! [7]*D
2 +57
= 9
[x—y]!D = 2% T
= T

276

Thus, we obtain the following effects of edges [lab]* :

[]* D

[Pos (e)]* D

[Neg (¢)]* D

[x = ¢]*D
[x = Mle[;]* D
[Mle1] = ex]* D

L if 0=[¢]*D
D otherwise

D if 0C [¢]*D
otherwise

D & {x — [e]* D}
D®{xw— T}

D

<

|_

... wWhenever D+#1)

277

At start, wehave D+ ={x+— T |x € Vars}.

Example:

278

At start, wehave Dt ={x— T |x € Vars}.

Example:

Qg1 = W N =

fx—T)
fx =7}
fx =7}
fx 7}
LU{xs7) = {x—7)

279

The abstract effects of edges [k]* are again composed to the
effects of paths 7w =k;... k. by:

[7]* = [k]fo...0[k]* :D—D

Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

280

Patrick Cousot, ENS, Paris

281

The abstract effects of edges [k]* are again composed to the
effects of paths 7w =k;... k. Dby:

[7]* = [k]fo...0o[k]* :D—D

Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation A between theconcrete values
and their descriptions with:

xAay N a1La — xAa

Concretization: ya={x|xAa}
// returns the set of described values :-)

282

(1) Values: A CZXZ'
zAa iff z=aVa=T

Concretization:

if T
o {a} if aC
Z it a=T

283

(1) Values: A CZXZ'
zAa iff z=aVa=T

Concretization:

{a} if aC T
ya—
Z it a=T

(2) Variable Assignments: A C (Vars - Z) x (Vars - Z."),
pAD iff D#1 AN pxCDx (x¢& Vars)

Concretization:

{@ if D=1
YD =
{p|Vx: (px) A(Dx)} otherwise

284

Example: {x—1y— -7} AMx—T,y— -7}

(3) States:

A C ((Vars = Z) x (N — Z)) x (Vars = Z") |
(p,u) AD gdw. pAD

Concretization:

{ 0 if D=1
YD =
{(p,u) |[Vx: (px) A(Dx)} otherwise

285

We show:

(*)

If sAD and

[7] s is defined, then:

([7]s) A ([#]* D)

[7]

[7]*

286

The abstract semantics simulates the die concrete semantics
-)
In particular:

[7]s € v ([~]* D)

287

The abstract semantics simulates the die concrete semantics
-)
In particular:

[7]s € v ([~]* D)

In practice, this means, e.g., that D x = —7 implies:
ox = —7 forall p'e€yD
—— px = =7 for (p1,_) =[n]s

288

To prove (%), we show for every edge k:

(K]

[k]*

Then (%) follows by induction :-)

289

To prove (xx), we show for every expression e¢:

(xxx) ([e]p) A ([e]*D) whenever pA D

290

To prove (xx), we show for every expression e¢:

(xxx) ([e]p) A ([e]*D) whenever pA D

To prove (x* %), we show for every operator O :

(xOy) A (0%) whenever x A x* Ay A v

291

To prove (xx), we show for every expression e¢:

(xxx) ([e]p) A ([e]*D) whenever pA D

To prove (x* %), we show for every operator O :

(xOy) A (0%) whenever x A x* Ay A v

This precisely was how we have defined the operators 0OF :-)

292

Now, (xx) is proved by case distinction on the edge labels lab .

Let s=(p,u) A D.Inparticular, | #D : Vars —Z'

Case |x =e¢;]:

o = po{x—lefpy wm = n
D; = D&{x— [¢]!D}

— (p1, 1) A Dy

293

Case |x = Mlel;|:

oo = p&{x— u([elp)} b= u
D1 = D@{XHT}
— (p1, 1) A Dy

Case |Mlei] = ex;|:

= p w = pud{[e]fo— [e2]p}

— (p1, 1) A Dy

294

Case

Neg(e) |:

—
—

0 = [e]p
A "e':ﬁD

0 C [e]*D
£ D, =D

(p1, 1) A Dy

295

Case

Pos(e) |:

0 # [elp

A [l D
0 # [e]*D
L 4 D, =D

296

We conclude: The assertion (%) istrue :-))

The MOP-Solution:
D*lv] = | [{[#]* D+ | 7 : start —* v}

where Dyx=T (x € Vars) .

297

We conclude: The assertion (%) istrue :-))

The MOP-Solution:
D*lv] = | [{[#]* D+ | 7 : start —* v}

where Dyx=T (x € Vars) .

By (%), we have for all initial states s and all program
executions 7 whichreach ©v:

(I=]s) A (D*[o])

298

We conclude: The assertion (%) istrue :-))

The MOP-Solution
D*lv] = | [{[#]* D+ | 7 : start —* v}

where Dyx=T (x € Vars) .

By (%), we have for all initial states s and all program
executions 7 whichreach ©v:

(I=]s) A (D*[o])

In order to approximate the MOP, we use our constraint system

-))

299

300

N U W N R, O

10
10
10
10

|_

e

10

301

- - F F - -
=T el e
- = =2 2
-2 =2=2=29°
© — NN o < 1o

302

Ly Yy
o T[T || T |T
110 T 10| T
21100 1 | T | T
310} 1 | T | T
4111010 T | T | dito
519 110 T | T
6 L T 1T
7 1 T 1T

303

Conclusion:

Although we compute with concrete values, we fail to compute
everything :~(

The fixpoint iteration, at least, is guaranteed to terminate:

For n program pointsand m variables, we maximally need:
n-(m+1) rounds :-)

Warning:

The effects of edge are not distributive !!!

304

Counter Example: f o= [x=x+y]

Let D = {XI—>2,y|—>3}
{(x—3,y—2}

3
|

Dann fD; U f D, {x+—5y—3}U{x— D5y~ 2}
x—=5y—=T;
=T, y—T}
fixm T,y T}

f(D1U D)

| N

=((

305

We conclude:

The least solution D of the constraint system in general yields
only an upper approximation of the MOP, i.e.,

D[] T D]

306

We conclude:

The least solution D of the constraint system in general yields
only an upper approximation of the MOP, i.e.,

D[] T D]

As an upper approximation, D[v] nonetheless describes the
result of every program execution 7 which reaches v:

([7] (o, 1)) A (D[v])

whenever [7] (p,u) isdefined ;-))

307

Transformation 4: Removal of Dead Code

\/ owe

i
O... Q...Q O

i [lab]#(D[u]) = L (1)
lab —>
O

308

Transformation 4 (cont.): Removal of Dead Code

1 #Dlul =D
[e]* D =0
Neg (e) ﬁ ;

1 #Dlul=D

[e]"D ¢ {0, T}
Pos (e) ﬁ ;

309

Transformation 4 (cont.): Simplified Expressions

1 #Dlul=D
[e]*D = ¢

310

