
Narrowing Iteration in the Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i + 1;

Neg(i < 42)

M[A1] = i;

A1 = A + i;

2

3

Pos(0 ≤ i < 42)

0 1

l u l u

0 −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞

2 0 +∞ 0 41

3 0 +∞ 0 41

4 0 +∞ 0 41

5 0 +∞ 0 41

6 1 +∞ 1 42

7 42 +∞ ⊥

8 42 +∞ 42 +∞

351



Narrowing Iteration in the Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i + 1;

Neg(i < 42)

M[A1] = i;

A1 = A + i;

2

3

Pos(0 ≤ i < 42)

0 1 2

l u l u l u

0 −∞ +∞ −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞ 0 42

2 0 +∞ 0 41 0 41

3 0 +∞ 0 41 0 41

4 0 +∞ 0 41 0 41

5 0 +∞ 0 41 0 41

6 1 +∞ 1 42 1 42

7 42 +∞ ⊥ ⊥

8 42 +∞ 42 +∞ 42 42

352



Discussion:

→ We start with a safe approximation.

→ We find that the inner check is redundant :-)

→ We find that at exit from the loop, always i = 42 :-))

→ It was not necessary to construct an optimal loop separator

:-)))

Last Question:

Do we have to accept that narrowing may not terminate ???

353



4. Idea: Accelerated Narrowing

Assume that we have a solution x = (x1, . . . , xn) of the system

of constraints:

xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n (1)

Then consider the system of equations:

xi = xi ⊓ fi (x1, . . . , xn) , i = 1, . . . , n (4)

Obviously, we have for monotonic fi : Hk x = Fk x :-)

where H (x1, . . . , xn) = (y1, . . . , yn) , yi = xi ⊓ fi (x1, . . . , xn).

In (4) , we replace ⊓ durch by the novel operator ⊓–

where:

a1 ⊓ a2 ⊑ a1 ⊓– a2 ⊑ a1

354



... for Interval Analysis:

We preserve finite interval bounds :-)

Therefore, ⊥⊓– D = D⊓– ⊥ = ⊥ and for D1 6= ⊥ 6= D2:

(D1 ⊓– D2) x = (D1 x)⊓– (D2 x) where

[l1, u1]⊓– [l2, u2] = [l, u] mit

l =

{

l2 if l1 = −∞

l1 otherwise

u =

{

u2 if u1 = ∞

u1 otherwise

==⇒ ⊓– is not commutative !!!

355



Accelerated Narrowing in the Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i + 1;

Neg(i < 42)

M[A1] = i;

A1 = A + i;

2

3

Pos(0 ≤ i < 42)

0 1 2

l u l u l u

0 −∞ +∞ −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞ 0 42

2 0 +∞ 0 41 0 41

3 0 +∞ 0 41 0 41

4 0 +∞ 0 41 0 41

5 0 +∞ 0 41 0 41

6 1 +∞ 1 42 1 42

7 42 +∞ ⊥ ⊥

8 42 +∞ 42 +∞ 42 42

356



Discussion:

→ Warning: Widening also returns for non-monotonic fi a

solution. Narrowing is only applicable to monotonic fi !!

→ In the example, accelerated narrowing already returns the

optimal result :-)

→ If the operator ⊓– only allows for finitely many

improvements of values, we may execute narrowing until

stabilization.

→ In case of interval analysis these are at most:

#points · (1 + 2 · #Vars)

357



1.6 Pointer Analysis

Questions:

→ Are two addresses possibly equal? May Alias

→ Are two addresses definitively equal? Must Alias

==⇒ Alias Analysis

358



1.6 Pointer Analysis

Questions:

→ Are two addresses possibly equal? May Alias

→ Are two addresses definitively equal? Must Alias

==⇒ Alias Analysis

359



The analyses so far without alias information:

(1) Available Expressions:

• Extend the set Expr of expressions by occurring loads

M[e] .

• Extend the Effects of Edges:

[[x = e;]]♯ A = (A ∪ {e})\Exprx

[[x = M[e];]]♯ A = (A ∪ {e,M[e]})\Exprx

[[M[e1] = e2;]]♯ A = (A ∪ {e1, e2})\Loads

360



(2) Values of Variables:

• Extend the set Expr of expressions by occurring loads

M[e] .

• Extend the Effects of Edges:

[[x = M[e];]]♯ V e′ =















{x} if e′ = M[e]

∅ if e′ = e

V e′\{x} otherwise

[[M[e1] = e2;]]♯ V e′ =

{

∅ if e′ ∈ {e1, e2}

V e′ otherwise

361



(3) Constant Propagation:

• Extend the abstract state by an abstract store M

• Execute accesses to known memory locations!

[[x = M[e];]]♯ (D,M) =















(D⊕ {x 7→ M a},M) if

[[e]]♯ D = a⊏⊤

(D⊕ {x 7→ ⊤},M) otherwise

[[M[e1] = e2;]]♯ (D,M) =















(D,M⊕ {a 7→ [[e2]]♯D}) if

[[e1]]♯ D = a⊏⊤

(D,⊤) otherwise where

⊤ a = ⊤ (a ∈ N)

362



Problems:

• Addresses are from N :-(

There are no infinite strictly ascending chains, but ...

• Exact addresses at compile-time are rarely known :-(

• At the same program point, typically different addresses are

accessed ...

• Storing at an unknown address destroys all information M

:-(

==⇒ constant propagation fails :-(

==⇒ memory accesses/pointers kill precision :-(

363



Simplification:

• We consider pointers to the beginning of blocks A which

allow indexed accesses A[i] :-)

• We ignore well-typedness of the blocks.

• New statements:

x = new(); // allocation of a new block

x = y[e]; // indexed read access to a block

y[e1] = e2; // indexed write access to a block

• Blocks are possibly infinite :-)

• For simplicity, all pointers point to the beginning of a block.

364



Simple Example:

x = new();

y = new();

x[0] = y;

y[1] = 7;
y[1] = 7;

x[0] = y;

1

y = new();

2

3

4

0

x = new();

365



The Semantics:

y

x

366



The Semantics:

y

x
1

0

367



The Semantics:

y

x

0

1

0

1

368



The Semantics:

y

x

0

1

0

1

369



The Semantics:

y

x

7

0

1

0

1

370



More Complex Example:

r = Null;

while (t 6= Null) {

h = t;

t = t[0];

h[0] = r;

r = h;

}

r = Null;

Pos(t 6= Null)Neg(t 6= Null)

7

r = h;

3

4

5

6

2

h = t;

1

0

t = t[0];

h[0] = r;

371



Concrete Semantics:

A store consists of a finite collection of blocks.

After h new-operations we obtain:

Addrh = {ref a | 0 ≤ a < h} // addresses

Valh = Addrh ∪Z // values

Storeh = (Addrh ×N0) → Valh // store

Stateh = (Vars → Valh)× Storeh // states

For simplicity, we set: 0 = Null

372



Let (ρ,µ) ∈ Stateh . Then we obtain for the new edges:

[[x = new();]] (ρ,µ) = (ρ ⊕ {x 7→ ref h},

µ ⊕ {(ref h, i) 7→ 0, (i ∈ N0)

[[x = y[e];]] (ρ,µ) = (ρ ⊕ {x 7→ µ (ρ y, [[e]]ρ)},µ)

[[y[e1] = e2;]] (ρ,µ) = (ρ,µ ⊕ {(ρ y, [[e1]]ρ) 7→ ρ [[e2]]ρ})

373



Warning:

This semantics is too detailled in that it computes with absolute

Addresses. Accordingly, the two programs:

x = new();

y = new();

y = new();

x = new();

are not considered as equivalent !!?

Possible Solution:

Define equivalence only up to permutation of addresses :-)

374



Alias Analysis 1. Idea:

• Distinguish finitely many classes of blocks.

• Collect all addresses of a block into one set!

• Use sets of addresses as abstract values!

==⇒ Points-to-Analysis

Addr♯ = Edges // creation edges

Val♯ = 2Addr
♯

// abstract values

Store♯ = Addr♯ → Val♯ // abstract store

State♯ = (Vars → Val♯)× Store♯ // abstract states

// complete lattice !!!

375



... in the Simple Example:

y[1] = 7;

x[0] = y;

1

y = new();

2

3

4

0

x = new();
x y (0, 1)

0 ∅ ∅ ∅

1 {(0, 1)} ∅ ∅

2 {(0, 1)} {(1, 2)} ∅

3 {(0, 1)} {(1, 2)} {(1, 2)}

4 {(0, 1)} {(1, 2)} {(1, 2)}

376


