Narrowing Iteration in the Example:

Pos(i <

42)

Pos(0 <i < 42)

A=A+

M[Al] = i}

6

1 =141

351

xR NI &N G B WO, O

_ o O O O O

42
42

_ o O O O O

42

352

Narrowing Iteration in the Example:

xR NI &N G B WO, O

_ o O O O O

42
42

_ o O O O O

42

_ o O O O O

42

42
41
41
41
41
42

42

Discussion:

We start with a safe approximation.
We find that the inner check is redundant :-)
We find that at exit from the loop, always i =42 :-))

L

It was not necessary to construct an optimal loop separator

-)))

Last Question:

Do we have to accept that narrowing may not terminate ???

353

4.Idea: Accelerated Narrowing

Assume that we have a solution x = (x3,...,x,) of the system
of constraints:

xi Jfi(x,...,x,), i=1,...,n (1)
Then consider the system of equations:

xi = M fi(xq,...,x,), i=1,...,n (4)

Obviously, we have for monotonic f;: Hfx = Ffx)
where H(xy,...,x,) = (y1,.--,Vn), Vi=xT1fi(x1,...,x,).
In (4),wereplace [1 durch by the novel operator
where:

ailla, L a;Ra, & ag

354

.. for Interval Analysis:

We preserve finite interval bounds :-)

Therefore, ILAD = DAL = 1 andfor D; # 1 # D,:

(D1ADy)x = (D1x)FA(D;x) where
1, ur] A [y, uy]

1, u] mit
(L if L =-00
I = <
| 1 otherwise

(.
U, if u; = oo

| u; otherwise

—— [1s not commutative !!!

355

356

Accelerated Narrowing in the Example:

xR NI &N G B WO, O

_ o O O O O

42
42

_ o O O O O

42

_ o O O O O

42

42
41
41
41
41
42

42

Discussion:

— Warning: Widening also returns for non-monotonic f; a
solution. Narrowing is only applicable to monotonic f; !

— In the example, accelerated narrowing already returns the
optimal result :-)

— If the operator M only allows for finitely many
improvements of values, we may execute narrowing until
stabilization.

— In case of interval analysis these are at most:

#points - (14 2 - #Vars)

357

1.6 Pointer Analysis

Questions:

— Are two addresses possibly equal?

— Are two addresses definitively equal?

358

1.6 Pointer Analysis

Questions:
— Are two addresses possibly equal? May Alias
— Are two addresses definitively equal? Must Alias

—— Alias Analysis

359

The analyses so far without alias information:
(1) Available Expressions:

e Extend theset Lxpr of expressions by occurring loads
Mle] .

e Extend the Effects of Edges:

[x=e]" A = (AU{e})\Expr,
[x = M[eJ]FA = (AU{e, Mle]})\Expr,
[Mler] =e]FA = (AU{er, ex})\Loads

360

(2) Values of Variables:

e Extend theset LExpr ofexpressions by occurring loads
Mle] .

e Extend the Effects of Edges:

{x} if ¢ = M|e]
[x = Mle|;]fFVe = < @ if ¢=e
| Ve'\{x} otherwise
(@ lf 8/ & {81,82}

[[M[el]:ez;]]ﬁVe’ = <
Ve otherwise

361

3) Constant Propagation:

e Extend the abstract state by an abstract store M

e Execute accesses to known memory locations!

[x = M[e[;]* (D, M)

[Mle] = ex;]* (D, M)

2

Ve

(D@ {x+— Mal}, M) if

362

[e]*D=acT

(D@ {x— T},M) otherwise
((D,M & {a— [e]'D})

if
ﬂel]]’j D=aC T
otherwise where

Problems:

e Addresses are from N
There are no infinite strictly ascending chains, but ...
e [Exact addresses at compile-time are rarely known :-(

e At the same program point, typically different addresses are
accessed ...

e Storing at an unknown address destroys all information M

X

—— constant propagation fails :-(

——> memory accesses/pointers kill precision :~(

363

Simplification:

e We consider pointers to the beginning of blocks A which
allow indexed accesses Ali| :-)

o Weignore well-typedness of the blocks.

e New statements:

x =new(); // allocation of a new block
x =vyle]; // indexed read access to a block

yle1] =e,; // indexed write access to a block

e Blocks are possibly infinite :-)

e For simplicity, all pointers point to the beginning of a block.

364

Simple Example:

x = new();
y = new();
x[0] = y;
yl1] =7;

365

The Semantics:

366

The Semantics:

367

The Semantics:

368

The Semantics:

369

The Semantics:

370

More Complex Example:

r = Null;

while (f # Null) { Neg(t # Null)
h =t
t = t[0];
h0] =r;
r=nh;

371

Concrete Semantics:

A store consists of a finite collection of blocks.

After h new-operations we obtain:

Addr, = A{refa|0<a<h} // addresses
Val, = Addr,UZ /] values
Store, = (Addr, x Nog) — Val, /] store
State, = (Vars — Valy,) x Storey, /] states

For simplicity, we set: 0 = Null

372

Let (p,pu) € State, . Then we obtain for the new edges:

[x = new();] (o) = (p®{x— refh},
w® {(refh,i)— 0, (i € Ny)

[x =yleli] (o) = (p@{x—u(py [e]p)} 1)
[yled]l = ex] (o) = (p,u®{(py, [ei] p) = plez] p})

373

Warning:

This semantics is too detailled in that it computes with absolute
Addresses. Accordingly, the two programs:

x = new(); y = new();
y = new(); x = new();

are not considered as equivalent !!?

Possible Solution:

Define equivalence only up to permutation of addresses :-)

374

Alias Analysis 1. Idea:

e Distinguish finitely many classes of blocks.
e (ollect all addresses of a block into one set!
e Use sets of addresses as abstract values!

—— Points-to-Analysis

Addr* = Edges /] creation edges
Valt = pAddr // abstract values
Store* = Addr* — Val’ // abstract store
State* = (Vars — Val*) x Store* // abstract states

// complete lattice !!!

375

... In the Simple Example:

—~ —~~
i @\ @\

N\ =2 =2 = ~ ~
(@) i Ay
~ ~ —

376

